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1 Physical context and motivation

Understanding the dependence of material properties of continuous media on frequency is a natural and
practically relevant task, stemming from the theoretical and experimental studies of “metamaterials”, e.g.
materials that exhibit negative refraction of propagating wave packets. As was noted in the pioneering work
[17], that negative refraction is only possible under the assumption of frequency dispersion, i.e. when the
material parameters (permittivity and permeability in electromagnetism, elastic moduli and mass density in
acoustics) are not only frequency-dependent, but also become negative in certain frequency bands.

Independently of the search for metamaterials, in the course of the development of the theory of elec-
tromagnetism, it has transpired in modern physics that the Maxwell equations need to be considered with
time-nonlocal “memory” terms, see e.g. [9, Section 7.10] and also [1], [15]. The generalised system (in the
absence of charges and currents in the domain of interest) has the form

ρ∂tu+

∫ t

−∞
a(t− τ)u(τ)dτ + iAu = 0, A =

(
0 i curl

−i curl 0

)
, (1)

where u represents the (time-dependent) electromagnetic field (H,E)⊤, the matrix ρ depends on the electric
permittivity and magnetic permeability, and a is a matrix-valued “susceptibility” operator, set to zero in
the more basic form of the system.1

Applying the Fourier transform in time t to (1), an equation in the frequency domain is obtained:(
iωρ+ â(ω)

)
û(·, ω) + iAû(·, ω) = 0, (2)

where û is the Fourier transform of u, and ω is the frequency. Equation (2) is often interpreted as a
“non-classical” version of Maxwell’s system of equations, where the permittivity and/or permeability are
frequency-dependent. The existence of such media (commonly known as Lorentz materials) and the analysis
of their properties go back a few decades in time and has also attracted considerable interest quite recently,
e.g. in the study of plasma in tokamaks, see [5] and references therein.

It is reasonable to ask the question of whether frequency dispersion laws such as pertaining to (2),
which in turn may provide one with metamaterial behaviour in appropriate frequency intervals [17], can be
derived by some process of homogenisation of composite media with contrast (or, more generally, any other
miscroscopic degeneracies resonating with the macroscopic wavefields, see e.g. Fig. 1).

It is instructive to point out that the results of [2] establish a thrilling relationship between the analysis
of thin structures and the homogenisation theory of high-contrast composites. Namely, the paper [2] deals
with the case of the so-called superlattices [16] with high contrast, see Fig. 2. It can be shown that the
asymptotic model for this system is precisely the one derived in [11, 12, 6] in the case of a resonant thin
structure converging to a chain-graph, see Fig. 1. As we shall argue in the present article, such superlattices
(and the corresponding chain-graphs) offer a simple prototype for a metamaterial, via the mathematical
approach outlined above.

As a particular realistic example of a thin network with high contrast, consider the problem of modelling
acoustic wave propagation in a system of channels Ωε,δ, ε-periodic in one direction, of thickness δ ≪ ε, and
with contrasting material properties (cf. Fig. 3). To simplify the presentation, we assume the antiplane shear

1From the rigorous operator-theoretic point of view, A in (1) is treated as a self-adjoint operator in a Hilbert space H of
functions of x ∈ Ω, for example H = L2(Ω;R6), where Ω is the part of the space occupied by the medium.
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Frequency-dependent BCs

Figure 1: An example of a resonant thin network. Edge volumes are asymptotically of the same order as

vertex volumes. The stiffness of the material of the structure is of the order period-squared. In the spectral analysis

of such “thin” periodic structures converging to metric graphs, impedance-type problems are obtained [11, 12, 6],

whiich in the periodic context lead to frequency/time dispersion.

Soft component

Stiff component

Frequency-dependent BCs

Figure 2: High-contrast superlattice. The problem for a superlattice is reduced to a one-dimensional high-

contrast problem. This is asymptotically equivalent to an impedance-type problem on the soft component. Note that

the stiff component reduces to an array of vertices.

wave polarisation (the so called S-waves), which leads to a scalar wave equation for the only non-vanishing
component W, of the form

Wtt −∇x · (aε(x)∇xW ) = 0, W = W (x, t), x, t ∈ R,

where the coefficient aε takes values 1 and ε2 in different channels of the ε-periodic structure. Looking for
time-harmonic solutions W (x, t) = U(x) exp(iωt), ω > 0, one arrives at the spectral problem

−∇ · (aε∇U) = ω2U. (3)
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Soft component

Stiff component

Figure 3: Thin network. An example of a high-contrast periodic network. Stiff channels are in grey, soft channels

are in blue.

As we argue below, the behaviour of (3) is close, in a quantitatively controlled way as ε → 0, to that of an
“effective medium” on R described by an equation of the form

−U ′′ = β(ω)U, (4)

for an appropriate function β = β(ω), explicitly given in terms of the material parameters aε and the
topology of the original system of channels.

Our goal: To derive an explicit formula for the function β in (4), in terms of the topology of the graph
representing the original domain of wave propagation.

2 Infinite-graph setup

Consider a graph G∞, periodic in one direction, so that G∞ + ℓ = G∞, where ℓ is a fixed vector, which
defines the graph axis. Let the periodicity cell G be a finite compact graph of total length ε ∈ (0, 1), and
denote by ej , j = 1, 2, . . . n, n ∈ N, its edges. For each j = 1, 2, . . . , n, we identify ej with the interval [0, εlj ],
where εlj is the length of ej . We associate with the graph G∞ the Hilbert space

L2(G∞) :=
⊕
Z

n⊕
j=1

L2(0, εlj).

Consider a sequence of operators Aε, ε > 0, in L2(G∞), generated by second-order differential expressions

− d

dx

((
aε
)2 d

dx

)
,

with positive G-periodic coefficients (aε)2 defined on G∞, with the domain dom(Aε) that describes the
coupling conditions at the vertices of G∞ :

dom(Aε) =

{
u ∈

⊕
e∈G∞

W 2,2
(
e)
∣∣∣ u continuous,

∑
e∋V

σe(a
ε)2u′(V ) = 0 ∀ V ∈ G∞

}
, (5)

In the formula (5) the summation is carried out over the edges e sharing the vertex V, the coefficient (aε)2

in the vertex condition is calculated on the edge e, and σe = −1 or σe = 1 for e incoming or outgoing for V,
respectively. The matching conditions (5) represent the combined conditions of continuity of the function
and of vanishing sums of its co-normal derivatives at all vertices (i.e. the so-called Kirchhoff conditions).
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3 Gelfand transform

We seek to apply the one-dimensional Gelfand transform

v(x) =

√
ε

2π

∑
n∈Z

u(x+ εn)e−it(x+εn). (6)

to the operator Aε defined on G∞ in order to obtain the direct fibre integral for the operator Aε :

Aε ∼= ⊕
∫ π/ε

−π/ε

Aε
tdt.

In order to do achieve this goal, we first note that the geometry of G∞ is encoded in the matching conditions
(5) only. This opens up the possibility to embed the graph G∞ into R by rearranging its edges as consecutive
segments of the real line (leading to a one-dimensional ε-periodic chain graph). The embedding leads to rather
complex non-local matching conditions, but, on the positive side, allows us to use the Gelfand transform
(6). The Gelfand transform leads to periodic conditions on the boundary of the cell G and thus in our case
identifies the “left” boundary vertices of the graph G with their translations by ℓ, which results in a modified
graph Ĝ. Due to the non-locality of matching conditions for the embedding of G∞ into R, the Kirchhoff
matching conditions at the vertices of G are replaced by by suitable “weighted Kirchhoff” conditions.

The image of the Gelfand transform is described as follows. There exists a unimodular list {wV (e)}e∋V ,

cf. [3], defined at each vertex V of Ĝ as a finite collection of values corresponding to the edges adjacent to
V . For each t ∈ [−π/ε, π/ε), the fibre operator Aε

t is generated by the differential expression(
1

i

d

dx
+ t

)
(aε)2

(
1

i

d

dx
+ t

)
(7)

on the domain

dom(Aε
t ) =

{
v ∈

⊕
e∈G

W 2,2
(
e)
∣∣∣ wV (e)v|e(V ) = wV (e

′)v|e′(V ) for all e, e′ adjacent to V,

∑
e∋V

∂(t)v(V ) = 0 for each vertex V

}
,

(8)

where ∂(t)v(V ) is the weighted “co-derivative” σewV (e)(a
ε)2(v′ + itv) of the function v on the edge e,

calculated at V.

4 Boundary triples

Definition 4.1 ([7, 10, 4]). Suppose:

• Amax is the adjoint to a densely defined symmetric operator on a separable Hilbert space H (“physical
region space”)

• Γ0, Γ1 be linear mappings of dom(Amax) ⊂ H to a separable Hilbert space H (“boundary space”).

A. The triple (H,Γ0,Γ1) is called a boundary triple for the operator Amax if the following two conditions
hold:

1. For all u, v ∈ dom(Amax) one has the second Green’s identity

⟨Amaxu, v⟩H − ⟨u,Amaxv⟩H = ⟨Γ1u,Γ0v⟩H − ⟨Γ0u,Γ1v⟩H.
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2. The mapping dom(Amax) ∋ u 7−→ (Γ0u,Γ1u) ∈ H ⊕H is onto.

B. The operator-valued Herglotz2 function M = M(z), defined by

M(z)Γ0uz = Γ1uz, uz ∈ ker(Amax − z), z ∈ C+ ∪ C−,

is called the M-function of the operator Amax with respect to the triple (H,Γ0,Γ1).

Consider the restriction AB of Amax given by

dom(AB) =
{
u ∈ dom(Amax) : Γ1u = BΓ0u

}
.

Key observation: u ∈ dom(AB) is an eigenvector of AB with eigenvalue z0 if and only if3(
M(z0)−B

)
Γ0u = 0.

In what follows we use the triple (Cm,Γ0,Γ1), where m is the number of vertices in the graph Ĝ, and4

Γ0v =
{
v(V )

}
V
, Γ1v =

{∑
e∋V

∂(t)v(V )
}
V
, v ∈ dom(Amax),

where v(V ) is the common value of wV (e)v|e(V ) for all edges e adjacent to V, and ∂(t)v(V ) is defined at the
end of Section 3, see also (9) below.

Exercise 4.2. By the definition of the M -matrix one has Γ1v = M(z)Γ0v, for functions v ∈ ker(Amax − z),
which have the form

v(x) = exp(−ixt)

{
Ae exp

(
− ikx

aε

)
+Be exp

(
ikx

aε

)}
, x ∈ e, Ae, Be ∈ C,

where k :=
√
z, and the co-derivative is given by

(aε)2(v′(x) + itv(x)) = ikaε exp(−ixt)

{
−Ae exp

(
− ikx

aε

)
+Be exp

(
ikx

aε

)}
, x ∈ e, (9)

For the vertex V and for every “Dirichlet data” vector Γ0v one of whose entries is unity and the other entries
vanish, the “Neumann data” vector Γ1v gives the column of the M -matrix corresponding to V. The elements
of Γ1v corresponding to diagonal and off-diagonal entries of M(z) are, respectively,

−
∑
e∈V

kaε cot

(
kεle
aε

)
,

∑
e∈V

kaεw̃V (e)

(
sin

kεle
aε

)−1

,

where {w̃V (e)}e∋V is a unimodular list uniquely determined by the list {wV (e)}e∋V . The resulting M -matrix
is constructed from these columns over all vertices V.

5 Examples

(0) Both components disconnected

Consider the high-contrast one-dimensional periodic medium (cf. [2]), as shown in Fig. 4. In this case, the
graph Gper is an infinite periodic chain-graph.

2For a definition and properties of Herglotz functions, see e.g. [13].
3Assuming z0 is not in the spectrum of the Dirichlet restriction of Amax.
4The maximal operator Amax = A∗

min is defined by the differential expression (7) on the domain

dom(Amax) =

{
v ∈

⊕
e∈Ĝ

W 2,2
(
e)

∣∣∣ wV (e)v|e(V ) = wV (e′)v|e′ (V ) for all e, e′ adjacent to V, ∀V ∈ Ĝ
}
.
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Figure 4: Example (0). Gper with Gε outlined on the left; the graph G after Gelfand transform on the right. The

soft component is drawn in blue.

The boundary space H pertaining to the graph G is chosen as H = C2. The unimodular list functions
wV1

and wV2
are chosen as follows:

{wV1
(e(j))}2j=1 = {1, 1}, {wV2

(e(j))}2j=1 = {1, 1}.

Note: The weights in this example are trivial due to the fact that no flattening was applied to Gε.
The M -matrix for the period graph is the sum of

M (τ),stiff
ε =

k

ε

 −a1 cot
kεl1
a1

a1e
−il1τ csc

kεl1
a1

a1e
il1τ csc

kεl1
a1

−a1 cot
kεl1
a1

 , M (τ),soft
ε = k

 −a2 cot
kl2
a2

a2e
il2τ csc

kl2
a2

a2e
−il2τ csc

kl2
a2

−a2 cot
kl2
a2

 .

Exercise 5.1. By considering the leading-order term of the left-hand side of the equation

det
(
M (τ),stiff

ε +M (τ),soft
ε

)
= 0

show that the limit spectrum as ε → 0 consists of the values k2 such that

cos

(
kl2
a2

)
− kl1

2a2
sin

(
kl2
a2

)
= cos τ (10)

for some τ ∈ [−π, π). By varying τ we obtain (for l1/a2 = l2/a2 = 1/2) the set shown in Fig. 5.

(1) Connected stiff component

The periodic graph considered, its periodicity cell and the result of Gelfand transform is shown in Fig. 6.
The boundary space H pertaining to the graph G is chosen as H = C2. The unimodular list functions wV1

and wV2
are chosen as follows:

{wV1(e
(j))}3j=1 = {1, 1, eiτ(l2+l3)}, {wV2(e

(j))}3j=1 = {eiτl3 , 1, 1} (11)
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Figure 5: The square root of the limit Bloch spectrum in Example (0). The oscillating solid line

is the graph of the function f(k) = cos(k/2) − k sin(k/2)/4. The square root of the spectrum is the union of the

intervals indicated by bold lines, that correspond to k ∈ R+ such that −1 ≤ f(k) ≤ 1 (“pass bands”).

Figure 6: Example (1). Gper with Gε outlined on the left; the graph G after Gelfand transform on the right. The

soft component is drawn in blue.

The M -matrix for the period graph is the sum of

M (τ),stiff
ε =

k

ε

 −a1 cot
kεl1
a1

− a3 cot
kεl3
a3

a1e
−i(l1+l3)τ csc

kεl1
a1

+ a3e
il2τ csc

kεl3
a3

a1e
i(l1+l3)τ csc

kεl1
a1

+ a3e
−il2τ csc

kεl3
a3

−a1 cot
kεl1
a1

− a3 cot
kεl3
a3

 ,

M (τ),soft
ε = k

 −a2 cot
kl2
a2

a2e
il2τ csc

kl2
a2

a2e
−il2τ csc

kl2
a2

−a2 cot
kl2
a2
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(2) Connected soft component

The periodic graph considered, its periodicity cell and the result of Gelfand transform is shown in Fig. 7.
It represents a “dual” situation to the one of Example (1), exhibiting a globally connected soft component.
The boundary space H pertaining to the graph G is chosen as H = C2. The unimodular list functions wV1

Figure 7: Example (2). Gper with Gε outlined on the left; the graph G after Gelfand transform on the right. The

soft component is drawn in blue.

and wV2
are chosen as in (11).

The M -matrix for the period graph is the sum of

M (τ),stiff
ε =

k

ε

 −a3 cot
kεl3
a3

a3e
il2τ csc

kεl3
a3

a3e
−il2τ csc

kεl3
a3

−a3 cot
kεl3
a3

 ,

M (τ),soft
ε = k

 −a1 cot
kl1
a1

− a2 cot
kl2
a2

a1e
−i(l1+l3)τ csc

kl1
a1

+ a2e
il2τ csc

kl2
a2

a1e
i(l1+l3)τ csc

kl1
a1

+ a2e
−il2τ csc

kl2
a2

−a1 cot
kl1
a1

− a2 cot
kl2
a2

 ,

6 “Homogenised” operators

(0) Both components disconnected

Assume (without loss of generality) that a2 = 1. For all τ ∈ [−π, π), consider an operator A(τ)
hom on

L2(0, l2)⊕ C defined as follows. The domain domA(τ)
hom is

domA(τ)
hom =

{
(u, β)⊤ : u ∈ W 2,2(0, l2), u(0) = ξ

(τ)
u(l2) = β/

√
l1

}
.

On domA(τ)
hom the action of the operator is set by

A(τ)
hom

(
u

β

)
=


(
1

i

d

dx
+ τ

)2

− 1√
l1

(
∂(τ)u

∣∣
0
− ξ

(τ)
∂(τ)u

∣∣
l2

)
 ,

where

ξ(τ) := exp(il1τ), ∂(τ)u :=

(
d

dx
+ iτ

)
u.
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Theorem 6.1. The resolvent (A
(τ)
ε − z)−1 admits the following estimate in the uniform operator norm

topology:

(A(τ)
ε − z)−1 −Ψ∗(A(τ)

hom − z)−1Ψ = O(ε2),

where Ψ is a partial isometry from H to Hhom. This estimate is uniform in τ ∈ [−π, π).

(1) Connected stiff component

Assume (without loss of generality) that a2 = 1. For all τ ∈ [−π, π), consider an operator A(τ)
hom on

L2(0, l2)⊕ C, defined as follows. The domain domA(τ)
hom is

domA(τ)
hom =

{
(u, β)⊤ ∈ Hhom : u ∈ W 2,2(0, l2), u|0 = − ξ

(τ)

|ξ(τ)|
u|l2 =

β√
l1 + l3

}
.

On domA(τ)
hom the action of the operator is set by

A(τ)
hom

(
u

β

)
=


(
1

i

d

dx
+ τ

)2

− 1√
l1 + l3

(
∂(τ)u

∣∣
0
+

ξ
(τ)

|ξ(τ)|
u
∣∣
l2

)
+
(
l1 + l3

)−1
(
l1
a21

+
l3
a23

)−1(
τ

ε

)2

β

 ,

where

ξ(τ) = −a21
l1

exp
(
iτ(l1 + l3)

)
− a23

l3
exp(−iτ l2), ∂(τ)u :=

(
d

dx
+ iτ

)
u.

Theorem 6.2. The resolvent (A
(τ)
ε − z)−1 admits the following estimate in the uniform operator norm

topology:

(A(τ)
ε − z)−1 −Ψ∗(A(τ)

hom − z)−1Ψ = O(ε2),

where Ψ is a partial isometry from H to Hhom. This estimate is uniform in τ ∈ [−π, π).

(2) Connected soft component

For all τ ∈ [−π, π), consider an operator A(τ)
hom on L2(0, l2)⊕ C, defined as follows. The domain of A(τ)

hom is

domA(τ)
hom =

{
(u1, u2, β)

⊤ ∈ L2[0, l1]⊕ L2(0, l2)⊕ C1 :

uj ∈ W 2,2(0, l(j)), j = 1, 2; u2

∣∣
0
= ξ

(τ)
2 u2

∣∣
l2
= ξ

(τ)
1 u1

∣∣
0
= u1

∣∣
l1
=

β√
l3

}
.

On domA(τ)
hom the action of the operator is set by

A(τ)
hom

u1

u2

β

 =


a21

(
1

i

d

dx
+ τ

)2

a22

(
1

i

d

dx
+ τ

)2

− 1√
l3

(
a22∂

(τ)u2

∣∣
0
− a22ξ

(τ)
2 ∂(τ)u2

∣∣
l2
+ a21ξ

(τ)
1 ∂(τ)u1

∣∣
0
− a21∂

(τ)u1

∣∣
l1

)


,

where

ξ
(τ)
2 = exp(−il2τ), ξ

(τ)
1 = exp

(
−i(l2 + l3)τ

)
, ∂(τ)uj :=

(
d

dx
+ iτ

)
uj , j = 1, 2.
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Theorem 6.3. The resolvent (A
(τ)
ε − z)−1 admits the following estimate in the uniform operator norm

topology:

(A(τ)
ε − z)−1 −Ψ∗(A(τ)

hom − z)−1Ψ = O(ε2),

where Ψ is a partial isometry from H to Hhom. This estimate is uniform in τ ∈ [−π, π).

7 Reduction to the stiff component

In this section we continue the study of the three examples, for which in Section 6 we constructed the
resolvent asymptotics, in view to obtain equivalent time-dispersive formulations on the real line. In order
to achieve this, we first introduce the orthogonal projection P of Hhom onto Hhom ⊖Hsoft, the latter space
being C1 in all three cases. Following this, we determine the corresponding Schur-Frobenius complement

P(A(τ)
hom − z)−1P, see [14, p. 416].

7.1 Examples (0) and (1)

Due to the fact that the soft component in each of these examples consists of only one edge, we shall consider
Examples (0) and (1) of Section 6 simultaneously. To this end, we set

Γτ

(
u

β

)
= −∂(τ)u

∣∣
0
+ wτ∂

(τ)u
∣∣
l2
+

(
στ

ε

)2
β

ρ
,

where wτ , σ and ρ depend on the particular case, cf. Theorems 6.1, 6.2. The problem of calculating

P(A(τ)
hom − z)−1P consists in determining β that solves

−
(

d

dx
+ iτ

)2

u− zu = 0, (12)(
u

β

)
∈ domA(τ)

hom,
1

ρ
Γτ

(
u

β

)
− zβ = δ. (13)

In order to exclude u from (12)–(13), we represent it as a sum of two functions: one of them is a solution to
the related inhomogeneous Dirichlet problem, while the other takes care of the boundary condition. More
precisely, consider the solution v to the problem

−
(

d

dx
+ iτ

)2

v = 0, v(0) = 1, v(l2) = wτ ,

i.e.
v(x) =

{
1 + (l2)

−1
(
wτ exp(iτ l2)− 1

)
x
}
exp(−iτx), x ∈ (0, l2). (14)

The function

ũ := u− β

ρ
v

satisfies

−
(

d

dx
+ iτ

)2

ũ− zũ =
zβ

ρ
v, ũ(0) = ũ(l2) = 0.

Equivalently, one has

ũ =
zβ

ρ
(AD − zI)−1v,

where AD is the Dirichlet operator in L2(0, l2) associated with the differential expression

−
(

d

dx
+ iτ

)2

.
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We now write the “boundary” part of the system (12)–(13) as

K(τ, z)β − zβ = δ, (15)

where

K(τ, z) :=
1

ρ2

{
zΓτ

(
(AD − zI)−1v

0

)
+ Γτ

(
v

ρ

)}
. (16)

Thus P(A(τ)
hom − z)−1P is the operator of multiplication in C1 by (K(τ, z)− z)−1.

The formula (16) shown, in particular, that the dispersion functionK is singular only at eigenvalues of the
Dirichlet Laplacian on the soft component. It allows to compute K in terms of the spectral decomposition
of AD, cf. [18]. In order to see this, we represent the action of the resolvent (AD − zI)−1 as a series in terms
of the normalised eigenfunctions

φj(x) =

√
2

l2
exp(−iτx) sin

πjx

l2
, x ∈ (0, l2), j = 1, 2, 3, . . . , (17)

of the operator AD, which yields

K(τ, z) :=
1

ρ2

z

∞∑
j=1

⟨v, φj⟩
µj − z

Γτ

(
φj

0

)
+ Γτ

(
v

ρ

) .

where µj = (πj/l2)
2, j = 1, 2, 3, . . . , are the corresponding eigenvalues and v is defined in (14). In each case

we consider the problem (12)–(13), where operator Γτ depends on the specific example at hand.

Exercise 7.1. Show that in the case of Example (0), the set of values z such that for some τ ∈ [−π, π)] one
has K(τ, z) = z coincides with the set of of k2 such that fors some τ the equation (10) holds.

7.2 Example (2)

Here we define

Γτ

(
u

β

)
= −a21

(
−∂(τ)u1

∣∣
l1
+ ξ

(τ)
1 ∂(τ)u1

∣∣
0

)
+ a22

(
−∂(τ)u2

∣∣
0
+ ξ

(τ)
2 ∂(τ)u2

∣∣
l2

)
,

ξ
(τ)
1 := exp

(
−i(l2 + l3)τ

)
, ξ

(τ)
2 := exp(−il2τ),

where u1 and u2 are the restrictions of the function u to the edges (0, l1) and (0, l2), respectively, and the

resolvent problem for A
(τ)
hom is given by (cf. (12)–(13))

−a21

(
d

dx
+ iτ

)2

u1 − zu1 = 0, (18)

−a22

(
d

dx
+ iτ

)2

u2 − zu2 = 0, (19)(
u

β

)
∈ domA(τ)

hom,
1

ρ
Γτ

(
u

β

)
− zβ = δ, (20)

where ρ =
√
l3. Following the strategy of Section 7.1, we consider the functions vj , j = 1, 2 that satisfy

appropriate Dirichlet problems:

−
(

d

dx
+ iτ

)2

v1 = 0, v1(0) = ξ
(τ)
1 , v1(l1) = 1,
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−
(

d

dx
+ iτ

)2

v2 = 0, v1(0) = 1, v2(l2) = ξ
(τ)
2 ,

i.e.

v1(x) = ξ
(τ)
1

{
1 + (l1)

−1
(
exp(iτ)− 1

)
x
}
exp(−iτx), x ∈ (0, l1), v2(x) = exp(−iτx), x ∈ (0, l2).

As in Section 7.1, we infer that

ũ =
zβ

ρ

2∑
n=1

χ(n)(A
(n)
D − zI)−1vn,

where A
(n)
D , n = 1, 2, are the Dirichlet operators in L2(0, l(n)), n = 1, 2 associated with the differential

expression

−a2n

(
d

dx
+ iτ

)2

, n = 1, 2,

and χ(n), n = 1, 2, are the characteristic functions of the edges (0, l(n)), n = 1, 2. Therefore we can write the
“boundary” part of the resolvent equation (18)–(20) as

K(τ, z)β − zβ = δ,

where

K(τ, z) :=
1

ρ2

2∑
n=1

{
zΓτ

(
χ(n)(A

(j)
D − zI)−1vn

0

)
+ Γτ

(
χ(n)vn

ρ

)}

=
1

ρ2

2∑
n=1

z

∞∑
j=1

⟨vn, φ(n)
j ⟩

µ
(n)
j − z

Γτ

(
χ(n)φ

(n)
j

0

)
+ Γτ

(
χ(n)vn

ρ

) .

Here (cf. (17))

φ
(n)
j (x) =

√
2

l(n)
exp(−iτx) sin

πjx

l(n)
, x ∈ (0, l(n)), µ

(n)
j =

(
πj

l(n)

)
, j = 1, 2, 3, . . . , n = 1, 2.

7.3 Expressions for the dispersion functions (and answer to Exercise 7.1)

For each τ ∈ [−π, π), the action of P(A(τ)
hom − z)−1P is the multiplication by (K(τ, z)− z)−1, where

Example (0) : K(τ, z) =
2
√
z
(
cos(l2

√
z)− cos τ

)
l1 sin(l2

√
z)

, (21)

Example (1) : K(τ, z) =
1

l1 + l3

{
2
√
z

(
cot(l2

√
z)− ℜθ(τ)

sin(l2
√
z)

)
+

(
στ

ε

)2
}
, (22)

Example (2) : K(τ, z) =
2
√
z

l3

{
a21

cos(l1
√
z)− cos τ

sin(l1
√
z)

− a22 tan

(
l2
√
z

2

)}
, (23)

θ(τ) :=

∣∣∣∣a21l1 e−iτ +
a23
l3

∣∣∣∣−1(
a21
l1
e−iτ +

a23
l3

)
, σ2 :=

(
l1
a21

+
l3
a23

)−1

.
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A Effective macroscopic problems on the real line

Here we shall interpret the Schur-Frobenius complements constructed in the previous section as a result of
applying the Gelfand transform (see Section 3) to a one-dimensional homogeneous medium. To this end, we
unitarily immerse the L2 space of functions of t into the L2 space of functions of t and x, corresponding to
the stiff component of the original medium, by the formula

β(t) 7→ β(t)
1√
εL

1(x),

where L is the length of the stiff component, i.e. L = l1 in Examples (0), L = l1 + l3 in Example (1), L = l3
in Example (2), and write the effective problem (15) in the form

K(εt, z)β(t)
1√
εL

1(x)− zβ(t)
1√
εL

1(x) = δ(t)
1√
εL

1(x), t ∈ [−π/ε, π/ε), x ∈ (0, εL), (24)

The solution operator for (24), namely

δ(t)
1√
εL

1(x) 7→ β(t)
1√
εL

1(x) such that (24) holds,

is the composition of a projection operator in L2
(
(−π/ε, π/ε)×(0, εL)

)
onto constants in x and multiplication

by the function
(
K(εt, z)− z

)−1
, as follows:(
K(εt, z)− z

)−1
〈
·, 1√

εL
1(x)

〉
1√
εL

1(x), (25)

for all z such that K(εt, z)− z is invertible. The sought representation on R is the Schur-Frobenius comple-
ment obtained by sandwiching the operator (25) with the Gelfand transform

GF (x, t) =

√
ε

2π

∑
n∈Z

F (x+ nε) exp
(
−i(x+ nε)t

)
, x ∈ (0, ε), t ∈ [−π/ε, π/ε), F ∈ L2(R),

and its inverse

G∗u(x) =

√
ε

2π

∫ π/ε

−π/ε

u(x, t) exp(ixt)dt, x ∈ R, u ∈ L2
(
(−π/ε, π/ε)× (0, ε)

)
,

so that the overall operator is given by

G∗

{(
K(εt, z)− z

)−1
〈
G ·, 1√

εL
1(x)

〉
1√
εL

1(x)

}
.

In constructing the above operator we assume that the operator given by (25) has been extended by zero to
the soft component of the medium.

This results in the mapping

F 7→ Ψε
KF :=

√
ε

2π

∫ π/ε

−π/ε

(
K(εt, z)− z

)−1
〈
GF, 1√

εL
1

〉
(t)

1√
εL

1(x) exp(itx)dt

=
1

L
√
2π

∫ π/ε

−π/ε

(
K(εt, z)− z

)−1
F̂ (t) exp(itx)dt, (26)

whose inverse yields the required effective problem on R. Here

F̂ (t) =
1√
2π

∫ ∞

−∞
F (x) exp(−ixt)dx, t ∈ R,

is the Fourier transform of the function F.
By applying Theorems 6.1, 6.2, 6.3, we arrive at the following statement.
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Theorem A.1. The direct integral of Schur-Frobenius complements

⊕
∫ π/ε

π/ε

Pstiff(A
(t)
ε − z)−1Pstiffdt (27)

is O(εr)-close, in the uniform operator-norm topology, to an operator unitary equivalent to the pseudo-
differential operator defined by (26). Here r = 1 in Example (1) and r = 2 in Examples (0) and (2).

The direct integral (27) is the composition of the original resolvent family (Aε− z)−1 applied to functions
supported by the stiff component of Gper and the orthogonal projection onto the same stiff component

On the basis of the above theorem, we will now explicitly characterise the effective time-dispersive medium
in each of the examples.

A.1 Example (0)

Notice that, by (26), for U := Ψε
KF one has

1

2

(
U(x+ ε) + U(x− ε)

)
=

1

l1
√
2π

∫ π/ε

−π/ε

cos(εt)

K(εt, z)− z
F̂ (t) exp(itx)dt, (28)

and since in Example (0) we have, see (21),

K(τ, z) =
2
√
z

l1
cot(l2

√
z)− 2

√
z

l1 sin(l2
√
z)

cos τ,

we obtain

2
√
z

l1
cot(l2

√
z)U(x)− 1

2

(
U(x+ ε) + U(x− ε)

) 2
√
z

l1 sin(l2
√
z)

− zU(x)

=
1

l1
√
2π

∫ π/ε

−π/ε

F̂ (t) exp(itx)dt ∼ 1

l1
F (x), ε → 0.

It follows that the asymptotic form of the equation on the function U is

−
√
z

sin(l2
√
z)

∆εU −
{
l1z + 2

√
z tan

(
l2
√
z

2

)}
U = F,

where
∆εU := U(·+ ε) + U(· − ε)− 2U, ε > 0. (29)

is the difference Laplace operator. Clearly, by a unitary rescaling of the independent variable we obtain an
ε-independent limit problem.

A.2 Example (1)

Lemma A.2. One has the estimate

∥Ψε
K −Ψ0

K∥L2(R)→L2(R) = O(ε2), ε → 0,

where (cf. 26)

Ψ0
K :=

1

(l1 + l3)
√
2π

∫ ∞

−∞

(
K(εt, z)− z

)−1
F̂ (t) exp(itx)dt,

with K(τ, z) defined by the formula (22) for all values of τ.
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Proof. The proof is standard, see e.g. [8].

It follows from ℜθ(τ) = ℜθ(0) +O(τ2) = 1 +O(τ2) that

K(εt, z) = K̃(t, z) +O(ε2t2), K̃(t, z) :=
1

l1 + l3

{
(σt)2 − 2

√
z tan

(
l2
√
z

2

)}
, t ∈ [−π/ε, π/ε),

from which we infer (
K(εt, z)− z

)−1
=
(
K̃(t, z)− z

)−1
+O(ε2),

and hence we obtain the following statement.

Lemma A.3. The following estimate holds:

∥Ψ0
K −Ψ0

K̃
∥L2(R)→L2(R) = O(ε2), ε → 0.

Therefore, for U := Ψ0
K̃
F, we obtain

−σ2 U ′′(x)−
{(

l1 + l3
)
z + 2

√
z tan

(
l2
√
z

2

)}
U(x) = F (x), x ∈ R. (30)

Theorem A.4. In the case of Example (1) the effective time-dispersive formulation on the real line is
provided by the formula (30) with an error bound of order O(ε2).

100 200 300 400 500 600 700

-1000

-500

500

1000

Figure 8: Dispersion function. The plot of the dispersion function on the right-hand side of (30), for l1 + l3 =

1− l2 = 0.2, cf. the analogous plot in [18]. The spectral gaps are highlighted in bold.

Remark A.5. 1. Note that in Examples (0) and (2) the effective time-dispersive formulation is given by
a difference equation, whereas in Example (1) — by a differential one. The reason for this is the global
connectedness of the stiff component (cf. [18]) in Example (1), which leads, see (23) to a nonuniform in ε
dependence of the kernel K(τ, z) on τ.

2. We point out that even in the case of globally connected stiff component one could end up in a situation
where Theorem A.4 yields a rate of convergence lower than O(ε2), see [3] for further details. In this case, a
“corrected” result can still be obtained, with the rate of convergence O(ε2), by replacing (30) by a differential
equation with non-local perturbation.
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A.3 Example (2)

By analogy with Example (0), we use the formula (28) and note that, in view of (23), we have

K(τ, z) =
2
√
z

l3

{
a21 tan(l1

√
z)− a22 tan

(
l2
√
z

2

)}
− 2a21

√
z

l3 sin(l1
√
z)

cos τ.

It follows that the time-dispersive effective formulation on U := Ψε
KF has the form

− a21
√
z

sin(l1
√
z)

∆εU −

{
l3z + 2

√
z

(
a21 tan

(
l1
√
z

2

)
+ a22 tan

(
l2
√
z

2

))}
U = F,

where the difference Laplacian ∆ε is defined by (29).

Remark A.6. 1. A version of Theorem A.4 seems to be impossible to obtain in Examples (0) and (2), due
to the fact that there is no suitable counterpart of Lemma A.2 available. In these cases the convergence to
the described effective medium holds, albeit without explicit control of the order of the remainder term.

2. The effective formulation (30) is precisely the one yielded by the approach of [18]. We note that in
the cited paper the stated result involves only two-scale convergence with no estimate on the error term. In
contrast, our approach provides norm-resolvent convergence, with an order-explicit error estimate.
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