SPECTRAL APPROACH TO HOMOGENIZATION OF NONSTATIONARY SCHRÖDINGER TYPE EQUATIONS

TATIANA SUSLINA

In $L_2(\mathbb{R}^d; \mathbb{C}^n)$, we consider a selfadjoint strongly elliptic operator A_{ε} , $\varepsilon > 0$, given by the differential expression $b(\mathbf{D})^*g(\mathbf{x}/\varepsilon)b(\mathbf{D})$. Here $g(\mathbf{x})$ is a periodic bounded and positive definite matrix-valued function, and $b(\mathbf{D})$ is a first order differential operator. We study the behavior of the operator exponential $e^{-itA_{\varepsilon}}$ for small ε . We prove that, as $\varepsilon \to 0$, the operator $e^{-itA_{\varepsilon}}$ converges to e^{-itA^0} in the $(H^s(\mathbb{R}^d) \to L_2(\mathbb{R}^d))$ -operator norm (for a suitable s). Here $A^0 = b(\mathbf{D})^*g^0b(\mathbf{D})$ is the effective operator. Sharp order error estimates are obtained. The results are applied to study the Schrödinger type equation $i\partial_t u_{\varepsilon}(x,t) = (A_{\varepsilon}u_{\varepsilon})(x,t)$. Applications to the Schrödinger equation and the two-dimensional Pauli equation with singular potentials are given. The method is based on the scaling transformation, the Floquet-Bloch theory and the analytic perturbation theory.

ST. PETERSBURG STATE UNIVERSITY, ST. PETERSBURG, RUSSIA *E-mail address:* suslina@list.ru