# An operator-asymptotic approach to periodic homogenization 

(applied to equations of linearized elasticity)

Yi-Sheng Lim



Joint work with Josip Zubrinic (University of Zagreb)
31/05/2023


## Goals

1. Explain an operator-asymptotic approach for homogenization.
2. State some extra results that we have obtained via this approach.
3. Discuss connections with other approaches.

## Origins of the method

- Due to Kirill Cherednichenko and Igor Velčić.

Applied to thin elastic plates (2022).

- Later applied to thin elastic rods (2023). Cherednichenko, Velčić, and Zubrinić https://arxiv.org/abs/2112.06265v3
- Dimension reduction + Homogenization.

Let's focus on this

Sharp operator-norm asymptotics for thin elastic plates with rapidly oscillating periodic properties

Kirill Cherednichenko ${ }^{1}$ | Igor Velčićc $^{2}$

Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
${ }^{2}$ Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, Zagreb 10000, Croatia

## Correspondence

Kirill Cherednichenko, Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA27AY, United Kingdom.
Email: k.cherednichenko@bath.ac.uk
Funding information
Engineering and Physical Sciences Research Council, Grant/Award Number EP/L018802/2; Croatian Science Foundation, Grant/Award Numbers: 9477, IP-2018-01-8904

## Abstract

We analyse a system of partial differential equations describing the behaviour of an elastic plate with periodic moduli in the two planar directions, in the asymptotic regime when the period and the plate thickness are of the same order. Assuming that the displacement gradients of the points of the plate are small enough for the equations of linearised elasticity to be a suitable approximation of the material response, such as the case in, for example, acoustic wave propagation, we derive a class of 'hybrid', homogenisation dimension-reduction, norm-resolvent estimates for the plate, under different energy scalings with respect to the plate thickness.

MSC 2020
35C20, 74B05, 74Q05 (primary), 74 K 20

## Problem Setup

Linearized elasticity in 3D. Periodic + moderate contrast regime

## Coefficient tensor

- Assumptions on the tensor $\mathbb{A}=\mathbb{A}(y)$ of material coefficients
- (Uniformly pos. def. on $\left.\mathbb{R}_{\text {sym }}^{3 \times 3}\right)$ There exist $v>0$ such that

$$
\nu|\xi|^{2} \leq \mathbb{A}(y) \xi: \xi \leq \frac{1}{v}|\xi|^{2} \quad \forall \xi \in \mathbb{R}_{\mathrm{sym}}^{3 \times 3} \text { and } y \in Y=[0,1)^{3}
$$

- (Symmetry) For $i, j, k, l \in\{1,2,3\}$,

$$
\mathbb{A}_{j l}^{i k}=\mathbb{A}_{i l}^{j k}=\mathbb{A}_{l j}^{k i}
$$

- (Boundedness)For $i, j, k, l \in\{1,2,3\}, \mathbb{A}_{j l}^{i k} \in L^{\infty}\left(Y ; \mathbb{R}^{3}\right)$.


## Key operators under study

- Let $\mathbb{A}_{\varepsilon}=\mathbb{A}(\overline{\bar{\varepsilon}})$.
- Define $\mathcal{A}_{\varepsilon} \equiv(\text { sym } \nabla)^{*} \mathbb{A}_{\varepsilon}($ sym $\nabla)$ as the op. on $L^{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$ corresponding to the sesquilinear form:

$$
a_{\varepsilon}(u, v)=\int_{\mathbb{R}^{3}} \mathbb{A}\left(\frac{x}{\varepsilon}\right) \operatorname{sym} \nabla u(x): \overline{\operatorname{sym} \nabla v(x)} d x,
$$

where $u, v \in \mathcal{D}\left(a_{\varepsilon}\right)=H^{1}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$.

- $\mathcal{A}_{\varepsilon}$ is self-adjoint, non-negative.


## Key operators under study

$$
\begin{gathered}
Y=[0,1)^{3} \\
Y^{\prime}=[-\pi, \pi)^{3}
\end{gathered}
$$

- Set $C_{\#}^{\infty}\left(Y ; \mathbb{C}^{3}\right)=\left\{u: \mathbb{R}^{3} \rightarrow \mathbb{C}^{3}: u\right.$ smooth and $\mathbb{Z}^{3}-$ periodic $\}$, and define

$$
H_{\#}^{1}\left(Y ; \mathbb{C}^{3}\right)=\overline{C_{\#}^{\infty}\left(Y ; \mathbb{C}^{3}\right)}\|\cdot\|_{H^{1}}
$$

- For $\chi \in Y^{\prime}$ define $X_{\chi}: L^{2}\left(Y ; \mathbb{C}^{3}\right) \rightarrow L^{2}\left(Y ; \mathbb{C}^{3 \times 3}\right)$ by

$$
X_{\chi} u=\operatorname{sym}(u \otimes \chi)=\operatorname{sym}\left(u \chi^{T}\right)
$$

- For $\chi \in Y^{\prime}$, define $\mathcal{A}_{\chi} \equiv\left(\operatorname{sym} \nabla+i X_{\chi}\right)^{*} \mathbb{A}_{\varepsilon}\left(\operatorname{sym} \nabla+i X_{\chi}\right)$ as the op. on $L^{2}\left(Y ; \mathbb{C}^{3}\right)$ corresponding to the sesquilinear form:

$$
a_{\chi}(u, v)=\int_{\mathbb{R}^{3}} \mathbb{A}(y)\left(\operatorname{sym} \nabla+i X_{\chi}\right) u(y): \overline{\left(\operatorname{sym} \nabla+i X_{\chi}\right) v(y)} d y
$$

where $u, v \in \mathcal{D}\left(a_{\chi}\right)=H_{\#}^{1}\left(Y ; \mathbb{C}^{3}\right)$.

## Relation between $\mathcal{A}_{\varepsilon}$ and $\mathcal{A}_{\chi}$ <br> $$
\begin{gathered} Y=[0,1)^{3} \\ Y^{\prime}=[-\pi, \pi)^{3} \end{gathered}
$$

- Define the scaled Gelfand transform $\mathcal{G}_{\varepsilon}$

$$
\begin{aligned}
\mathcal{G}_{\varepsilon}: L^{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right) & \rightarrow L^{2}\left(Y ; L^{2}\left(Y ; \mathbb{C}^{3}\right)\right)=\int_{Y^{\prime}}^{\oplus} L^{2}\left(Y ; \mathbb{C}^{3}\right) d \chi \\
\left(\mathcal{G}_{\varepsilon} u\right)(y, \chi) & :=\left(\frac{\varepsilon}{2 \pi}\right)^{3 / 2} \sum_{n \in \mathbb{Z}^{3}} e^{-i \chi \cdot(y+n)} u(\varepsilon(y+n)) \quad y \in Y \text { and } \chi \in Y^{\prime} .
\end{aligned}
$$

- Proposition (Passing to the unit cell for $\mathcal{A}_{\varepsilon}$ )

$$
\begin{aligned}
\mathcal{A}_{\varepsilon} & =\mathcal{G}_{\varepsilon}^{*}\left(\int_{Y^{\prime}}^{\oplus} \frac{1}{\varepsilon^{2}} \mathcal{A}_{\chi} d \chi\right) \mathcal{G}_{\varepsilon} \\
\left(\mathcal{A}_{\varepsilon}-z\right)^{-1} & =\mathcal{G}_{\varepsilon}^{*}\left(\int_{Y^{\prime}}^{\oplus}\left(\frac{1}{\varepsilon^{2}} \mathcal{A}_{\chi}-z\right)^{-1} d \chi\right) \mathcal{G}_{\varepsilon} \quad \text { for } z \in \rho\left(\mathcal{A}_{\varepsilon}\right)
\end{aligned} \begin{aligned}
& \text { Look to obtain uniform-in- } \chi \\
& \text { estimates in the operator norm }
\end{aligned}
$$

## The homogenized operator $\mathcal{A}^{\text {hom }}$

- Define the homogenized tensor $\mathbb{A}^{\text {hom }}$ through a symm bilinear form

$$
a^{\text {hom }}(\xi, \zeta)=\int_{Y} \mathbb{A}\left(\xi+\operatorname{sym} \nabla u^{\xi}\right): \zeta d y, \quad \forall \xi, \zeta \in \mathbb{R}_{\text {sym }}^{3 \times 3}
$$

where the corrector term $u^{\xi} \in H_{\#}^{1}\left(Y ; \mathbb{R}^{3}\right)$ solves the cell-problem

$$
\left\{\begin{array}{c}
\int_{Y} \mathbb{A}\left(\xi+\operatorname{sym} \nabla u^{\xi}\right): \operatorname{sym} \nabla v d y=0, \quad \forall v \in H_{\#}^{1}\left(Y ; \mathbb{R}^{3}\right) . \\
\int_{Y} u^{\xi}=0 .
\end{array}\right.
$$

- Define $\mathcal{A}^{\text {hom }} \equiv(\operatorname{sym} \nabla)^{*} A^{\text {hom }}(\operatorname{sym} \nabla)$ as the op on $L^{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$ corresponding to the form
- $\mathbb{A}^{\text {hom }}$ satisfies the same symmetries as $\mathbb{A}$.
- $\mathbb{A}^{\text {hom }}$ is unif. pos. def. on

$$
\mathbb{R}_{\mathrm{sym}}^{3 \times 3}
$$

- $a^{\text {hom }}(\xi, \zeta)=\mathbb{A}^{\text {hom }} \xi: \zeta$
- $\mathcal{D}\left(\mathcal{A}^{\mathrm{hom}}\right)=H^{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$.

$$
H^{1}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right) \times H^{1}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right) \ni(u, v) \mapsto \int_{\mathbb{R}^{3}} A^{\text {hom }} \operatorname{sym} \nabla u: \overline{\operatorname{sym} \nabla v} d y
$$

## Key operators under study (summary)

$$
\begin{aligned}
& =\mathcal{A}_{\varepsilon} \equiv(\operatorname{sym} \nabla)^{*} \mathbb{A}_{\varepsilon}(\operatorname{sym} \nabla) \text { on } L^{2}\left(\mathbb{R}^{3}\right) \\
& =\mathcal{A}_{\chi} \equiv\left(\operatorname{sym} \nabla+i X_{\chi}\right)^{*} \mathbb{A}_{\varepsilon}\left(\operatorname{sym} \nabla+i X_{\chi}\right) \text { on } L^{2}(Y) \\
& =\mathcal{A}^{\mathrm{hom}} \equiv(\operatorname{sym} \nabla)^{*} \mathbb{A}^{\mathrm{hom}}(\operatorname{sym} \nabla) \text { on } L^{2}\left(\mathbb{R}^{3}\right) \\
& =a^{\text {hom }}(\xi, \zeta):=\int_{Y} \mathbb{A}\left(\xi+\operatorname{sym} \nabla u^{\xi}\right): \zeta d y=\mathbb{A}^{\text {hom }} \xi: \zeta,
\end{aligned}
$$

$$
\text { where } \xi, \zeta \in \mathbb{R}_{\mathrm{sym}}^{3 \times 3} \text {, and } u^{\xi} \text { solves the cell-problem. }
$$

- $\mathbb{A}^{\text {hom }}$ satisfies the same assumptions as $\mathbb{A}$.


## Main result

Theorem There exists $C>0$, independent of $\varepsilon$, such that

- $\left\|\left(\mathcal{A}_{\varepsilon}+I\right)^{-1}-\left(\mathcal{A}^{\mathrm{hom}}+I\right)^{-1}\right\|_{L^{2} \rightarrow L^{2}} \leq C \varepsilon$

Result extends to $\left(\varepsilon^{-\gamma} \mathcal{A}_{\varepsilon}+I\right)^{-1}$, $\gamma \in[-2, \infty)$
$=\left\|\left(\mathcal{A}_{\varepsilon}+I\right)^{-1}-\left(\mathcal{A}^{\mathrm{hom}}+I\right)^{-1}-\mathcal{R}_{c o r r, 1}^{\varepsilon}\right\|_{L^{2} \rightarrow H^{1}} \leq C \varepsilon$
$-\left\|\left(\mathcal{A}_{\varepsilon}+I\right)^{-1}-\left(\mathcal{A}^{\mathrm{hom}}+I\right)^{-1}-\mathcal{R}_{c o r r, 1}^{\varepsilon}-\mathcal{R}_{c o r r, 2}^{\varepsilon}\right\|_{L^{2} \rightarrow L^{2}} \leq C \varepsilon^{2}$
where $\mathcal{R}_{\text {corr }, 1}^{\varepsilon}$ and $\mathcal{R}_{\text {corr }, 2}^{\varepsilon}$ are the corrector operators defined through the asymptotic procedure.
$\mathcal{R}_{\text {corr }, 1}^{\varepsilon} f=$ first-order term of the usual 2 -scale expansion

## Method

1. Gelfand Transform
2. Spectral analysis of $\mathcal{A}_{\chi}$
3. Fibrewise ( $=$ for each $\chi$ ) asymptotic expansion
4. Back to full space via functional calculus

## Spectral analysis of $\mathcal{A}_{\chi}$

$\mathcal{R}_{\chi}(u)=\frac{a_{\chi}(u, u)}{\|u\|_{L^{2}}}, \quad u \in H_{\#}^{1} \backslash\{0\}$

Proposition There exist constants $C_{r l}>c_{r l}>0$ s.t.

$$
\begin{aligned}
c_{r l}|\chi|^{2} & \leq \mathcal{R}_{\chi}(u) & & \forall u \in H_{\#}^{1}\left(Y ; \mathbb{C}^{3}\right) \backslash\{0\} \\
0 & \leq \mathcal{R}_{\chi}(u) \leq C_{r l}|\chi|^{2} & & \forall u \in \mathbb{C}^{3} \backslash\{0\} \\
c_{r l} & \leq \mathcal{R}_{\chi}(u) & & \forall u \in\left(\mathbb{C}^{3}\right)^{\perp} \cap H_{\#}^{1}\left(Y ; \mathbb{C}^{3}\right) \backslash\{0\}
\end{aligned}
$$

- The proof follows from assumptions on $\mathbb{A}$ and
- $\|u\|_{L^{2}} \leq \frac{c_{\text {fourier }}}{|x|}\left\|\left(\operatorname{sym} \nabla+i X_{\chi}\right) u\right\|_{L^{2}}$
- $\|\nabla u\|_{L^{2}} \leq C_{\text {fourier }}\left\|\left(\operatorname{sym} \nabla+i X_{\chi}\right) u\right\|_{L^{2}}$
where $u \in H_{\#}^{1} \backslash\{0\}$
- $\left\|u-\int u\right\|_{L^{2}} \leq c_{\text {fourier }}\left\|\left(\operatorname{sym} \nabla+i X_{\chi}\right) u\right\|_{L^{2}}$


## Spectral analysis of $\mathcal{A}_{\chi}$

- Theorem The spectrum $\sigma\left(\mathcal{A}_{\chi}\right)$ contains 3 eigenvalues of order $|\chi|^{2}$, as $|\chi| \downarrow 0$, while the remaining eigenvalues are of order 1.
- We focus on small $\chi$, as large $\chi$ will not contribute to the overall estimate.
- The space $\mathbb{C}^{3}$ is of key importance:

$$
\mathbb{C}^{3}=\operatorname{Eig}\left(\lambda_{1}^{0} ; \mathcal{A}_{0}\right) \oplus \operatorname{Eig}\left(\lambda_{1}^{0} ; \mathcal{A}_{0}\right) \oplus \operatorname{Eig}\left(\lambda_{1}^{0} ; \mathcal{A}_{0}\right)=\operatorname{Eig}\left(0 ; \mathcal{A}_{0}\right)=\operatorname{ker}\left(\mathcal{A}_{0}\right)
$$

- $\mathbb{C}^{3}=\operatorname{ker}\left(\operatorname{sym} \nabla_{\text {neumann }}\right) \cap H_{\#}^{1}\left(Y ; \mathbb{C}^{3}\right)$

$$
\text { This is the set of rigid displacements } w=A x+c \text {, }
$$ by Korn's inequality. $\left(A \in \mathbb{C}^{3 \times 3}, A^{T}=-A, c \in \mathbb{C}^{3}\right)$

## Spectral analysis of $\mathcal{A}_{\chi}$

- The averaging operator $\mathbb{P}_{\mathbb{C}^{3}}=S: L^{2}\left(Y ; \mathbb{C}^{3}\right) \rightarrow \mathbb{C}^{3} \hookrightarrow L^{2}\left(Y ; \mathbb{C}^{3}\right)$ is given by

$$
S u=\int_{Y} u
$$

- For $\varepsilon>0$, the smoothing operator $\Xi_{\varepsilon}: L^{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right) \rightarrow L^{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$ is given by

$$
\Xi_{\varepsilon} u=\mathcal{G}_{\varepsilon}^{-1}\left(\int_{Y \prime}^{\oplus} S d \chi\right) \mathcal{G}_{\varepsilon}=\mathcal{G}_{\varepsilon}^{-1}\left(\int_{Y}\left(\mathcal{G}_{\varepsilon} u\right)(y, \cdot) d y\right)
$$

## Definition of $\mathcal{A}_{\chi}^{\text {hom }}$

- Instead of $\left(\frac{1}{\varepsilon^{2}} \mathcal{A}_{\chi}-z\right)^{-1}$, look at $\left(\frac{1}{|\chi|^{2}} \mathcal{A}_{\chi}-z\right)^{-1}$
- We have defined $\mathcal{A}_{\varepsilon}, \mathcal{A}_{\chi}$, and $\mathcal{A}^{\text {hom }}$. Now let us define $\mathcal{A}_{\chi}^{\text {hom }} \in \mathbb{C}^{3 \times 3}$ :

$$
\left\langle\mathcal{A}_{\chi}^{\mathrm{hom}} c, d\right\rangle_{\mathbb{C}^{3}}=\int_{Y} \mathbb{A}\left({\left.\operatorname{sym} \nabla u_{c}+i X_{\chi} c\right): \overline{i X_{\chi} d}, \quad \forall c, d \in \mathbb{C}^{3} . . . . ~}_{\text {. }}\right.
$$

Where the corrector term $u_{c} \in H_{\#}^{1}\left(Y ; \mathbb{C}^{3}\right)$ solves the ( $\chi$-dependent) cell-problem

$$
\left\{\begin{array}{c}
\int_{Y} \mathbb{A}\left(\operatorname{sym} \nabla u_{c}+i X_{\chi} c\right): \overline{\operatorname{sym} \nabla v} d y=0, \quad \forall v \in H_{\#}^{1}\left(Y ; \mathbb{C}^{3}\right) \\
\int_{Y} u_{c}=0
\end{array}\right.
$$

These problems
appear naturally in the asymptotic expansion.

## Properties of $\mathcal{A}_{\chi}^{\text {hom }}$

- $\left\langle\mathcal{A}_{\chi}^{\text {hom }} c, d\right\rangle_{\mathbb{C}^{3}}=\int_{Y} \mathbb{A}\left(\operatorname{sym} \nabla u_{c}+i X_{\chi} c\right): \overline{i X_{\chi} d}$ - $u_{c} \in H_{\#}^{1}$ solves the $\chi$-dep. cell-problem

1. $\mathcal{A}_{\chi}^{\text {hom }} \in \mathbb{C}^{3 \times 3}$ is Hermitian.
2. $\mathcal{A}_{\chi}^{\mathrm{hom}}=\left(i X_{\chi}\right)^{*} \mathbb{A}^{\mathrm{hom}}\left(i X_{\chi}\right)$.

Get this by comparing the definitions of $\mathcal{A}_{\chi}^{\text {hom }}$ and $\mathbb{A}^{\text {hom }}$.
3. There exist $v_{1}>0$, indep of $\chi$, such that

$$
v_{1}|\chi|^{2}|c|^{2} \leq\left\langle\mathcal{A}_{\chi}^{\text {hom }} c, d\right\rangle_{\mathbb{C}^{3}} \leq \frac{1}{v_{1}}|\chi|^{2}|c|^{2} \quad \forall c \in \mathbb{C}^{3}
$$

4. Proposition (passing to the unit cell for $\mathcal{A}^{\text {hom }}$ ):

$$
\mathcal{A}^{\mathrm{hom}} \Xi_{\varepsilon}=\mathcal{G}_{\varepsilon}^{*}\left(\int_{Y,}^{\oplus} \frac{1}{\varepsilon^{2}} S^{*} \mathcal{A}_{\chi}^{\mathrm{hom}} S d \chi\right) \mathcal{G}_{\varepsilon}
$$

Proof of 4 go through key ingredients if time permits.

Key steps in proving $\mathcal{A}^{\text {hom }} \Xi_{\varepsilon}=\mathcal{G}_{\varepsilon}^{*}\left(\int_{Y^{\prime}}^{\oplus} \frac{1}{\varepsilon^{2}} S^{*} \mathcal{A}_{\chi}^{\text {hom }} S d \chi\right) \mathcal{G}_{\varepsilon}$.

- $\mathcal{A}^{\text {hom }}=(\operatorname{sym} \nabla)^{*} \mathbb{A}^{\text {hom }}(\operatorname{sym} \nabla)$ has the same form as $\mathcal{A}_{\varepsilon}=(\operatorname{sym} \nabla)^{*} \mathbb{A}(\operatorname{sym} \nabla)$, thus

$$
\mathcal{A}^{\text {hom }}=\mathcal{G}_{\varepsilon}^{*}\left(\int_{Y^{\prime}}^{\oplus} \frac{1}{\varepsilon^{2}} \mathcal{A}_{\chi}^{\mathrm{hom}-\mathrm{full}} d \chi\right) \mathcal{G}_{\varepsilon}
$$

where $\mathcal{A}^{\text {hom-full }}=\left(\operatorname{sym} \nabla+i X_{\chi}\right)^{*} \mathbb{A}^{\text {hom }}\left(\operatorname{sym} \nabla+i X_{\chi}\right)$, with $\mathcal{D}\left[\mathcal{A}_{\chi}^{\text {hom-full }}\right]=H_{\#}^{1}\left(Y ; \mathbb{C}^{3}\right)$.

- Apply the smoothing op $\Xi_{\varepsilon}$ to both sides, on the right:

$$
\begin{aligned}
& \mathcal{A}^{\text {hom }} \Xi_{\varepsilon}=\mathcal{G}_{\varepsilon}^{*}\left(\int_{Y^{\prime}}^{\oplus} \frac{1}{\varepsilon^{2}} \mathcal{A}_{\chi}^{\text {hom-full }} d \chi\right) \mathcal{G}_{\varepsilon} \mathcal{G}_{\varepsilon}^{*}\left(\int_{Y^{\prime}}^{\oplus} S d \chi\right) \mathcal{G}_{\varepsilon} \\
&=\mathcal{G}_{\varepsilon}^{*}\left(\int_{Y^{\prime}}^{\oplus} \frac{1}{\varepsilon^{2}} \mathcal{A}_{\chi}^{\text {hom-full }} S d \chi\right) \mathcal{G}_{\varepsilon} \\
&=\mathcal{G}_{\varepsilon}^{*}\left(\int_{Y^{\prime}}^{\oplus} \frac{1}{\varepsilon^{2}} S \mathcal{A}_{\chi}^{\text {hom }} S d \chi\right) \mathcal{G}_{\varepsilon} \longleftarrow \begin{array}{l}
\mathbb{C}^{3} \text { is an invariant subspace for } \mathcal{A}_{\chi}^{\text {hom-full }} \\
\text { (because } \left.A^{\text {hom }} \text { is const. in space }\right)
\end{array} \\
&\left.\mathcal{A}_{\chi}^{\text {hom-full }}\right|_{\mathbb{C}^{3}}=\left(i X_{\chi}\right)^{*} \mathbb{A}^{\text {hom }}\left(i X_{\chi}\right)=\mathcal{A}_{\chi}^{\text {hom }}
\end{aligned}
$$

## Asymptotic expansion of $\left(\frac{1}{|x|^{2}} \mathcal{A}_{\chi}-z\right)^{-1}$

$=$ Fix $\chi \neq 0$ and $z \in \rho\left(\frac{1}{|\chi|^{2}} \mathcal{A}_{\chi}\right) \cap \rho\left(\frac{1}{|\chi|^{2}} \mathcal{A}_{\chi}^{\text {hom }}\right)$ and $f \in L^{2}\left(Y ; \mathbb{C}^{3}\right)$.

- The resolvent equation of $\frac{1}{|\chi|^{2}} \mathcal{A}_{\chi}$, in the weak formulation is given by

$$
\frac{1}{|\chi|^{2}} \int_{Y} \mathbb{A}\left(\operatorname{sym} \nabla+i X_{\chi}\right) u: \overline{\left(\operatorname{sym} \nabla+i X_{\chi}\right) v}-z \int_{Y} u \cdot \bar{v}=\int_{Y} f \cdot \bar{v} \quad \forall v \in H_{\#}^{1}\left(Y ; \mathbb{C}^{3}\right)
$$

where we have a unique solution $u \in \mathcal{D}\left(\frac{1}{|\chi|^{2}} \mathcal{A}_{\chi}\right) \subset H_{\#}^{1}\left(Y ; \mathbb{C}^{3}\right)$.

- Let us expand the solution $u$ in the following way:



## ASyMn CXO OR $\left(\frac{1}{|\chi|^{2}} \mathcal{A}_{\chi}-z\right)^{-1}$ (YC|E $\begin{aligned} & u=u_{0}+u_{1}+u_{2}+u_{\mathrm{err}} \\ & u_{j}=\mathcal{O}\left(|\chi|^{j}\right) \text { in the } H^{1} \text { norm }\end{aligned}$

- Plug the expansion for $u$ into the resolvent eqn. We have: $\forall v \in H_{\#}^{1}\left(Y ; \mathbb{C}^{3}\right)$,

$$
\begin{aligned}
& \int_{Y} \mathbb{A} \operatorname{sym} \nabla u_{0}: \overline{\operatorname{sym} \nabla v}+\int_{Y} \mathbb{A} \operatorname{sym} \nabla u_{0}: \overline{i X_{\chi} v}+\int_{Y} \mathbb{A} i X_{\chi} u_{0}: \overline{\operatorname{sym} \nabla v}+\int_{Y} \mathbb{A} i X_{\chi} u_{0}: \overline{i X_{\chi} v} \\
& +\int_{Y} \mathbb{A} \operatorname{sym} \nabla u_{1}: \overline{\operatorname{sym} \nabla v}+\int_{Y} \mathbb{A} \operatorname{sym} \nabla u_{1}: \overline{i X_{\chi} v}+\int_{Y} \mathbb{A} i X_{\chi} u_{1}: \overline{\operatorname{sym} \nabla v}+\int_{Y} \mathbb{A} i X_{\chi} u_{1}: \overline{i X_{\chi} v} \\
& +\int_{Y} \mathbb{A} \operatorname{sym} \nabla u_{2}: \overline{\operatorname{sym} \nabla v}+\int_{Y} \mathbb{A} \operatorname{sym} \nabla u_{2}: \overline{i X_{\chi} v}+\int_{Y} \mathbb{A} i X_{\chi} u_{2}: \overline{\operatorname{sym} \nabla v}+\int_{Y} \mathbb{A} i X_{\chi} u_{2}: \overline{i X_{\chi} v} \\
& +\int_{Y} \mathbb{A} \operatorname{sym} \nabla u_{\mathrm{err}}: \overline{\operatorname{sym} \nabla v}+\int_{Y} \mathbb{A} \operatorname{sym} \nabla u_{\mathrm{err}}: \overline{\overline{i X_{\chi} v}}+\int_{Y} \mathbb{A} i X_{\chi} u_{\mathrm{err}}: \overline{\operatorname{sym} \nabla v}+\int_{Y} \mathbb{A} i X_{\chi} u_{\mathrm{err}}: \overline{i X_{\chi} v} \\
& -z|\chi|^{2} \int_{Y} u_{0} \cdot \bar{v}-z|\chi|^{2} \int_{Y} u_{1} \cdot \bar{v}-z|\chi|^{2} \int_{Y} u_{2} \cdot \bar{v}-z|\chi|^{2} \int_{Y} u_{\mathrm{err}} \cdot \bar{v}=|\chi|^{2} \int_{Y} f \cdot \bar{v}
\end{aligned}
$$

## ASyMn CXO OR $\left(\frac{1}{|\chi|^{2}} \mathcal{A}_{\chi}-z\right)^{-1}$ (YC|E $\begin{aligned} & u=u_{0}+u_{1}+u_{2}+u_{\mathrm{err}} \\ & u_{j}=\mathcal{O}\left(|\chi|^{j}\right) \text { in the } H^{1} \text { norm }\end{aligned}$

- $\mathcal{O}(1)$ terms gives us the problem: Seek $u_{0} \in H_{\#}^{1}\left(Y ; \mathbb{C}^{3}\right)$ that solves

$$
\int_{Y} \mathbb{A} \operatorname{sym} \nabla u_{0}: \overline{\operatorname{sym} \nabla v}=0, \quad \forall v \in H_{\#}^{1}
$$

- By Korn's inequality (or $\mathbb{C}^{3}=\operatorname{ker}\left(\mathcal{A}_{0}\right)$ ), $u_{0} \in \mathbb{C}^{3}$.
- Additional constraint needed to fix this const.


## ASYMnP $\operatorname{AXO}$ OR $\left(\frac{1}{|\chi|^{2}} \mathcal{A}_{\chi}-z\right)^{-1}$ (YC|e $\begin{aligned} & u=u_{0}+u_{1}+u_{2}+u_{\mathrm{err}} \\ & u_{j}=\mathcal{O}\left(|\chi|^{j}\right) \text { in the } H^{1} \text { norm }\end{aligned}$

- $\mathcal{O}(1)$ terms gives us: $u_{0} \in \mathbb{C}^{3}$.
- $\mathcal{O}(|\chi|)$ terms gives us: Seek $u_{1} \in \dot{H}_{\#}^{1}\left(=H_{\#}^{1}\right.$ with mean zero), that solves

$$
\int_{Y} \mathbb{A} \operatorname{sym} \nabla u_{1}: \overline{\operatorname{sym} \nabla v}=-\int_{Y} \mathbb{A} \operatorname{sym} \nabla u_{0}: \overline{i X_{\chi} v}-\int_{Y} \mathbb{A} i X_{\chi} u_{0}: \overline{\operatorname{sym} \nabla v}, \quad \forall v \in H_{\#}^{1}
$$

This is zero
as $u_{0} \in \mathbb{C}^{3}$.

- Use Lax-Milgram to conclude existence + uniqueness of the prob for $u_{1}$.
- (This is the $\chi$-dependent cell-problem with $c=u_{0}$ )


## 

- $\mathcal{O}\left(|\chi|^{2}\right)$ terms gives us: Seek $u_{2} \in \dot{H}_{\#}^{1}$ that solves

$$
\int_{Y} \mathbb{A} \operatorname{sym} \nabla u_{2}: \overline{\operatorname{sym} \nabla v}=-\int_{Y} \mathbb{A} i X_{\chi} u_{1}: \overline{\operatorname{sym} \nabla v}-\int_{Y} \mathbb{A} \operatorname{sym} \nabla u_{1}: \overline{i X_{\chi} v}-\int_{Y} \mathbb{A} i X_{\chi} u_{0}: \overline{i X_{\chi} v}
$$

- A necessary cond for $\exists$ ! is: The problem should hold on every test fct $v_{0} \equiv v \in \mathbb{C}^{3}$ :

Then $\operatorname{sym} \nabla v_{0}=0$. By how the $\chi$-cell-problem is defined,
we get

$$
\frac{1}{|\chi|^{2}}\left\langle\mathcal{A}_{\chi}^{\text {hom }} u_{0}, v_{0}\right\rangle_{\mathbb{C}^{3}}-z \int_{Y} u_{0} \cdot \overline{v_{0}}=\int_{Y} f \cdot \overline{v_{0}}, \quad \forall v_{0} \in \mathbb{C}^{3}
$$

i.e.

$$
\left(\frac{1}{|\chi|^{2}} \mathcal{A}_{\chi}^{\text {hom }}-z\right) u_{0}=S f
$$



## Summary of first cycle

$$
\begin{aligned}
& u=u_{0}+u_{1}+u_{2}+u_{\mathrm{err}} \\
& u_{j}=\mathcal{O}\left(|\chi|^{j}\right) \text { in the } H^{1} \text { norm }
\end{aligned}
$$

- We write $u=u_{0}+u_{1}+u_{2}+u_{\text {err }}$, where
- $u_{0} \in \mathbb{C}^{3} \subset H_{\#}^{1}$ is given by
- $u_{1} \in \dot{H}_{\#}^{1}$ is the unique solution to
- $u_{2} \in \dot{H}_{\#}^{1}$ is the unique solution to

$$
\begin{aligned}
& \left(\frac{1}{|\chi|^{2}} \mathcal{A}_{\chi}^{\text {hom }}-z\right) u_{0}=S f \\
& \int_{Y} \mathbb{A} \operatorname{sym} \nabla u_{1}: \overline{\operatorname{sym} \nabla v}=-\int_{Y} \mathbb{A} i X_{\chi} u_{0}: \overline{\operatorname{sym} \nabla v}, \quad \forall v \in H_{\#}^{1} \\
& \int_{Y} \mathbb{A} \operatorname{sym} \nabla u_{2}: \overline{\operatorname{sym} \nabla v}=-\int_{Y} \mathbb{A} i X_{\chi} u_{1}: \overline{\operatorname{sym} \nabla v}-\int_{Y} \mathbb{A} \operatorname{sym} \nabla u_{1}: \overline{i X_{\chi} v} \\
& \quad-\int_{Y} \mathbb{A} i X_{\chi} u_{0}: \overline{i X_{\chi} v}+z|\chi|^{2} \int_{Y} u_{0} \cdot \bar{v}+|\chi|^{2} \int_{Y} f \cdot \bar{v}, \quad \forall v \in H_{\#}^{1}
\end{aligned}
$$

- To justify the expansion, we need estimates on $u_{j}$ and $u_{\text {err }}$ (in $H^{1}$ ). We iteratively prove that
- $\left\|u_{0}\right\|_{H^{1}} \leq C \quad\|f\|_{L^{2}}$
- $\left\|u_{1}\right\|_{H^{1}} \leq C \quad|\chi|\|f\|_{L^{2}}$
- $\left\|u_{2}\right\|_{H^{1}} \leq C \quad|\chi|^{2}\|f\|_{L^{2}}$
- $\left\|u_{\mathrm{err}}\right\|_{H^{1}} \leq C|\chi|\|f\|_{L^{2}}$
- $C=C(z)$. But can be chosen independently of $z$, if $z$ comes from a compact subset of both resolvents.
- It turns out that $u_{e r r}$ is only $\mathcal{O}(|\chi|)$ in $H^{1}$.


## Second cycle (very briefly)

- We have enough to prove the $L^{2} \rightarrow L^{2}$ result. But we need more for $L^{2} \rightarrow H^{1}$ and higher order $L^{2} \rightarrow L^{2}$. How to continue the expansion?
- Thus far, we have

$$
u=\begin{array}{ccc}
\mathcal{O}(1) & \mathcal{O}(|\chi|) & \mathcal{O}\left(|\chi|^{2}\right) \\
u_{0} & +u_{1} & +u_{2} \\
& & +u_{\mathrm{err}}
\end{array}
$$

## Second cycle (very briefly)

- Propose a refined expansion:

$$
u=\begin{array}{cccc}
\mathcal{O}(1) & \mathcal{O}(|\chi|) & \mathcal{O}\left(|\chi|^{2}\right) & \mathcal{O}\left(|\chi|^{3}\right) \\
u_{0} & +u_{1} & +u_{2} & \\
& +u_{0}^{(1)} & +u_{1}^{(1)} & +u_{2}^{(1)} \\
& & &
\end{array}
$$

Heuristic: $u_{i}^{(j)}$ is $\mathcal{O}\left(|\chi|^{i+j}\right)$ in $H^{1}$-norm.

- Substitute this into the resolvent equation ... $7 * 5+1=36$ terms!
- But many terms cancel due to the problems for $u_{0}, u_{1}, u_{2}$ in Cycle 1.
- Equate terms with same orders of $|\chi|$, something similar to Cycle 1 happens:
- $\mathcal{O}(|\chi|)$ terms says that $u_{0}^{(1)} \in \mathbb{C}^{3}$.
- $\mathcal{O}\left(|\chi|^{2}\right)$ terms gives a BVP that $\mathrm{u}_{1}^{(1)} \in \dot{H}_{\#}^{1}$ uniquely solves.
- $\mathcal{O}\left(|\chi|^{3}\right)$ terms chooses the constant $u_{0}^{(1)}$, and in turn provides a BVP that $u_{2}^{(1)} \in \dot{H}_{\#}^{1}$ uniquely solves.


## Second cycle + Conclusion of Step 3

- Refined expansion:

$$
u=\begin{array}{cccc}
\mathcal{O}(1) & \mathcal{O}(|\chi|) & \mathcal{O}\left(|\chi|^{2}\right) & \mathcal{O}\left(|\chi|^{3}\right) \\
u_{0} & +u_{1} & +u_{2} & \\
& & +u_{0}^{(1)} & +u_{1}^{(1)}
\end{array}+u_{2}^{(1)}+u_{\mathrm{err}}^{(1)}
$$

- Error estimates
- $\left\|u_{0}^{(1)}\right\|_{H^{1}} \leq C \quad|\chi| \quad\|f\|_{L^{2}}$
- $\left\|u_{1}^{(1)}\right\|_{H^{1}} \leq C \quad|\chi|^{2}\|f\|_{L^{2}}$
- $\left\|u_{2}^{(1)}\right\|_{H^{1}} \leq C \quad|\chi|^{3}\|f\|_{L^{2}}$
- $\left\|u_{\mathrm{err}}^{(1)}\right\|_{H^{1}} \leq C \quad|\chi|^{2}\|f\|_{L^{2}}$
- Theorem Let $\chi \in Y^{\prime} \backslash\{0\}$ and $z \in \rho\left(\frac{1}{|\chi|^{2}} \mathcal{A}_{\chi}\right) \cap \rho\left(\frac{1}{|\chi|^{2}} \mathcal{A} \mathcal{A}_{\chi}^{\text {hom }}\right)$. There exist a constant $C>0$, which does not depend on $\chi$, (and $z$ if $z$ is taken from a compact subset of ) such that
$=\left\|\left(\frac{1}{|x|^{2}} \mathcal{A} \mathcal{A}_{\chi}-z\right)^{-1}-\left(\frac{1}{|\chi|^{2}} \mathcal{A}_{\chi}^{\text {hom }}-z\right)^{-1} S\right\|_{L^{2} \rightarrow H^{1}} \leq C|\chi|\|f\|_{L^{2}}$.
- $\left\|\left(\frac{1}{|\chi|^{2}} \mathcal{A}_{\chi}-z\right)^{-1}-\left(\frac{1}{|\chi|^{2}} \mathcal{A}_{\chi}^{\text {hom }}-z\right)^{-1} S-\mathcal{R}_{\text {corr }, 1, \chi}(z)-\mathcal{R}_{\text {corr }, 2, \chi}(z)\right\|_{L^{2} \rightarrow H^{1}} \leq C|\chi|^{2}\|f\|_{L^{2}}$.


## Step 4 (back to the full space)

Putting everything together...

## The contour $\Gamma$

$$
\text { For } \chi \in[-\mu, \mu]^{3} \backslash\{0\}
$$

- Focus on small $\chi$. How small do we need $\chi$ to be?
- Definition Let $\Gamma \subset\{z \in \mathbb{C}: \operatorname{Re}(z)>0\}$ be a closed contour, oriented anti-clockwise, s.t.
- (Separation of spectrum) There exist $\mu>0$, s.t. $\Gamma$ encloses the three smallest evalues of $\frac{1}{|\chi|^{2}} \mathcal{A}_{\chi}$ and $\frac{1}{|\chi|^{2}} \mathcal{A}_{\chi}^{\text {hom }}$, and nothing else.
- (Buffer between contour and spectra)

There exist some $\rho_{0}>0$ s.t.
and

$$
\begin{aligned}
& \inf _{\substack{z \in \Gamma \\
\chi \in[\mu, \mu]^{3} \backslash\{0\} \\
i \in\{1,2,3,4\}}}\left|z-\frac{1}{|\chi|^{2}} \lambda_{i}^{\chi}\right| \geq \rho_{0} \\
& \inf _{\substack{z \in \Gamma \\
\chi \in[\mu, \mu]^{3} \backslash\{0\} \\
i \in\{1,2,3\}}}\left|z-\frac{1}{|\chi|^{2}} \lambda_{i}^{\text {hom }, \chi}\right| \geq \rho_{0}
\end{aligned}
$$



$$
\geq \rho_{0} \quad \geq \rho_{0} \quad \geq \rho_{0}
$$

This gap implies that the fct $g_{\varepsilon, \chi}: \Gamma \rightarrow \mathbb{C}$ with $g_{\varepsilon, \chi}(z)=\left(\frac{|\chi|^{2}}{\varepsilon^{2}}+1\right)^{-1}$ satisfies

$$
\left|g_{\varepsilon, \chi}(z)\right| \leq C \max \left\{\frac{|\chi|^{2}}{\varepsilon^{2}}, 1\right\}^{-1}
$$

$\left(g_{\varepsilon, \chi}\right.$ connects $\frac{1}{|\chi|^{2}} \mathcal{A}_{\chi}$ back to $\left.\frac{1}{\varepsilon^{2}} \mathcal{A}_{\chi}\right)$

## Proof of $\mathbb{L}^{2} \rightarrow L^{2}$



- To show: $\left\|\left(\mathcal{A}_{\varepsilon}+I\right)^{-1}-\left(\mathcal{A}^{\text {hom }}+I\right)^{-1}\right\|_{L^{2} \rightarrow L^{2}} \leq C \varepsilon$.
- Step A. Look at estimates on $L^{2}(Y)$ first. If $\chi \in[-\mu, \mu]^{3} \backslash\{0\}$, then

$$
P_{\chi}\left(\frac{1}{\varepsilon^{2}} \mathcal{A}_{\chi}+I\right)^{-1} P_{\chi}=g_{\varepsilon, \chi}\left(\frac{1}{|\chi|^{2}} \mathcal{A}_{\chi}\right) P_{\Gamma, \frac{1}{|\chi|^{2}} \mathcal{A}_{\chi}}=-\frac{1}{2 \pi i} \oint_{\Gamma} g_{\varepsilon, \chi}(z)\left(\frac{1}{|\chi|^{2}} \mathcal{A}_{\chi}-z\right)^{-1} d z
$$

$$
\left(\frac{1}{\varepsilon^{2}} \mathcal{A}_{\chi}^{\mathrm{hom}}+I_{\mathbb{C}^{3}}\right)^{-1} S=g_{\varepsilon, \chi}\left(\frac{1}{|\chi|^{2}} \mathcal{A}_{\chi}^{\mathrm{hom}}\right) P_{\Gamma, \frac{1}{|\chi|^{2^{2}}} \mathcal{A}_{\chi}^{\text {hom }}}=-\frac{1}{2 \pi i} \oint_{\Gamma} g_{\varepsilon, \chi}(z)\left(\frac{1}{|\chi|^{2}} \mathcal{A}_{\chi}^{\mathrm{hom}}-z\right)^{-1} d z
$$

Proj onto espace of the first 3 evalues for $\mathcal{A}_{\chi}$

Recall previous slide:

$$
\begin{gathered}
g_{\varepsilon, \chi}(z)=\left(\frac{|\chi|^{2}}{\varepsilon^{2}}+1\right)^{-1} \\
\left|g_{\varepsilon, \chi}(z)\right| \leq C \max \left\{\frac{|\chi|^{2}}{\varepsilon^{2}}, 1\right\}^{-1}
\end{gathered}
$$

- By Step 3 (resolvent expansion)

$$
\|\quad-\quad\|_{L^{2} \rightarrow L^{2}} \leq C|\chi|
$$

- (Important!) $C$ does not depend on $z$ and $\chi$, by the properties of the contour $\Gamma$.


## Proof of $\mathbb{L}^{2} \rightarrow L^{2}$

- To show: $\left\|\left(\mathcal{A}_{\varepsilon}+I\right)^{-1}-\left(\mathcal{A}^{\text {hom }}+I\right)^{-1}\right\|_{L^{2} \rightarrow L^{2}} \leq C \varepsilon$.
- Step A. Estimates on $L^{2}(Y)$.
- Step A-I. If $\chi \in[-\mu, \mu]^{3} \backslash\{0\}$, then $\left\|P_{\chi}\left(\frac{1}{\varepsilon^{2}} \mathcal{A} \mathcal{A}_{\chi}+I\right)^{-1} P_{\chi}-\left(\frac{1}{\varepsilon^{2}} \mathcal{A}_{\chi}^{\text {hom }}+I_{\mathbb{C}^{3}}\right)^{-1} S\right\|_{L^{2} \rightarrow L^{2}} \leq C \max \left\{\frac{|\chi|^{2}}{\varepsilon^{2}}, 1\right\}^{-1}|\chi| \leq C \varepsilon$.
- Step A-II. If $\chi \in Y^{\prime} \backslash[-\mu, \mu]^{3}$, then by Step 2 (spec analysis of $\mathcal{A}_{\chi}$ )

$$
\left\|P_{\chi}\left(\frac{1}{\varepsilon^{2}} \mathcal{A}_{\chi}+I\right)^{-1} P_{\chi}\right\|_{L^{2} \rightarrow L^{2}} \leq C \varepsilon^{2} \quad \text { and }\left\|\left(\frac{1}{\varepsilon^{2}} \mathcal{A}_{\chi}^{\mathrm{hom}}+I_{\mathbb{C}^{3}}\right)^{-1} S\right\|_{L^{2} \rightarrow L^{2}} \leq C \varepsilon^{2}
$$

- Step A-III. The spec analysis of $\mathcal{A}_{\chi}$ also tells us that for all $\chi$,

$$
\left\|\left(I-P_{\chi}\right)\left(\frac{1}{\varepsilon^{2}} \mathcal{A}_{\chi}+I\right)^{-1}\left(I-P_{\chi}\right)\right\|_{L^{2} \rightarrow L^{2}} \leq C \varepsilon^{2}
$$



## Proof of $\mathbb{L}^{2} \rightarrow L^{2}$

- To show: $\left\|\left(\mathcal{A}_{\varepsilon}+I\right)^{-1}-\left(\mathcal{A}^{\mathrm{hom}}+I\right)^{-1}\right\|_{L^{2} \rightarrow L^{2}} \leq C \varepsilon$.

- Step B. Back to Estimates on $L^{2}\left(\mathbb{R}^{3}\right)$. Recall the "passing to the unit cell" formulas

$$
\begin{array}{rlr}
\left(\mathcal{A}_{\varepsilon}+I\right)^{-1} & =\mathcal{G}_{\varepsilon}^{*}\left(\int_{Y^{\prime}}^{\oplus}\left(\frac{1}{\varepsilon^{2}} \mathcal{A}_{\chi}+I\right)^{-1} d \chi\right) \mathcal{G}_{\varepsilon} & \text { Step A } \\
\left(\mathcal{A}^{\mathrm{hom}}+I\right)^{-1} \Xi_{\varepsilon} & =\mathcal{G}_{\varepsilon}^{*}\left(\int_{Y^{\prime}}^{\oplus}\left(\frac{1}{\varepsilon^{2}} \mathcal{A}_{\chi}^{\mathrm{hom}}+I_{\mathbb{C}^{3}}\right)^{-1} S d \chi\right) \mathcal{G}_{\varepsilon} & \\
& -\left(\mathcal{A}_{\varepsilon}+I\right)^{-1} \\
\left.\mathcal{A}^{\mathrm{hom}}+I\right)^{-1} \Xi_{\varepsilon} \|_{L^{2} \rightarrow L^{2}} \leq C \varepsilon
\end{array}
$$

- Step C. Show that you can drop $\Xi_{\varepsilon}$ without affecting the estimates.

$$
\left\|\left(\mathcal{A}^{\mathrm{hom}}+I\right)^{-1}\left(I-\Xi_{\varepsilon}\right)\right\|_{L^{2} \rightarrow L^{2}} \leq C \varepsilon^{2}
$$

(Prove this via Fourier transform)

Additional results

## Omitted from the talk

1. Extend the results to arbitrary spectral scaling $\gamma \in[-2, \infty)$, e.g.

$$
\left\|\left(\frac{1}{\varepsilon^{\gamma}} \mathcal{A}_{\varepsilon}+I\right)^{-1}-\left(\frac{1}{\varepsilon^{\gamma}} \mathcal{A}^{\mathrm{hom}}+I\right)^{-1}\right\|_{L^{2} \rightarrow L^{2}} \leq C \varepsilon^{\frac{\gamma+2}{2}} .
$$

2. Defining the full-space corrector ops $\mathcal{R}_{\text {corr, } j}^{\varepsilon}$ using $\mathcal{R}_{\text {corr, } j, \chi}(z)$, e.g.

$$
\begin{aligned}
& \mathcal{R}_{\text {corr }, 1}^{\varepsilon}=\mathcal{G}_{\varepsilon}^{*}\left(\int_{Y^{\prime}}^{\oplus} \mathcal{R}_{c o r r, 1, \chi}^{\varepsilon} d \chi\right) \mathcal{G}_{\varepsilon} \\
& \quad=\mathcal{G}_{\varepsilon}^{*}\left(\int_{Y^{\prime}}^{\oplus} \mathcal{B}_{c o r r, 1, \chi}\left(\frac{1}{\varepsilon^{\gamma+2}} \mathcal{A}_{\chi}^{\text {hom }}+I_{\mathbb{C}^{3}}\right)^{-1} S d \chi\right) \mathcal{G}_{\varepsilon} \\
& \mathcal{B}_{\text {corr, } 1, \chi} \text { takes } c \in \mathbb{C}^{3} \text { to the solution of the } \chi-\quad \text { For } \chi \in[-\mu, \mu] \backslash\{0\}, \\
& \text { dependent cell-problem } u_{1} \in H_{\#}^{1}\left(\text { recall defn of } \mathcal{A}_{\chi}^{\text {hom }}\right)
\end{aligned} \quad \mathcal{R}_{c o r r, 1, \chi}^{\varepsilon}=-\frac{1}{2 \pi i} \oint_{\Gamma} g_{\varepsilon, \chi}(z) \mathcal{R}_{\text {corr }, 1, \chi}(z) d z \quad .
$$

## Omitted from the talk

$$
\begin{aligned}
& \text { 3. } L^{2} \rightarrow H^{1} \text { and higher order } L^{2} \rightarrow L^{2} \\
& \left\|\left(\frac{1}{\varepsilon^{\gamma}} \mathcal{A}_{\varepsilon}+I\right)^{-1}-\left(\frac{1}{\varepsilon^{\gamma}} \mathcal{A}^{\text {hom }}+I\right)^{-1}-\mathcal{R}_{\text {corr, } 1}^{\varepsilon}\right\|_{L^{2} \rightarrow H^{1}} \leq C \max \left\{\varepsilon^{\gamma+1}, \varepsilon^{\frac{\gamma+2}{2}}\right\} . \begin{array}{l}
\text { This is somew } \\
\text { enumerate. So } \\
\text { passing from } L \\
\text { (see next slide }
\end{array} \\
& \left\|\left(\frac{1}{\varepsilon^{\gamma}} \mathcal{A}_{\varepsilon}+I\right)^{-1}-\left(\frac{1}{\varepsilon^{\gamma}} \mathcal{A}^{\mathrm{hom}}+I\right)^{-1}-\mathcal{R}_{\text {corr }, 1}^{\varepsilon}-\mathcal{R}_{\text {corr }, 2}^{\varepsilon}\right\|_{L^{2} \rightarrow L^{2}} \leq C \varepsilon^{\gamma+2} . \longleftarrow \text { This is easy. }
\end{aligned}
$$

4. Connection between $\mathcal{R}_{\text {corr, } 1}^{\varepsilon} f$ and the $\mathcal{O}(\varepsilon)$ term in classical two-scale expansion.

We show that they are the same!
(Thanks Igor for the hint)

## Proof structure of $L^{2} \rightarrow H^{1}$

|  | On $L^{2}\left(Y ; \mathbb{C}^{3}\right)$ |  |
| :---: | :---: | :---: |
|  | $\chi \in[-\mu, \mu]^{3} \backslash\{0\}$ | $\chi \in Y^{\prime} \backslash[-\mu, \mu]^{3}$ |
| $L^{2}$ norm | $\varepsilon^{\frac{\gamma+2}{2}}$ | $\varepsilon^{\gamma+2}$ |
| $L^{2}$ norm of the gradient | $\varepsilon^{\gamma+2}$ | $\varepsilon^{\gamma+2}$ |
|  | Proof via contour integral | Deal with the terms individually |



Treat the two terms $\nabla_{y}$ and $\ldots \chi$ separately:

- $\nabla_{y}$ part, use
 to get $\mathcal{O}\left(\varepsilon^{\gamma+1}\right)$
- $\quad-\otimes \chi$ part, modify $L^{2}$-norm's argument.

Separately get $\mathcal{O}\left(\varepsilon^{\gamma+1}\right)$ for small and large $\chi$.


## Connections to existing approaches

Birman-Suslina (2004) spectral germ approach.
Zhikov (1989) spectral approach.
Cooper-Waurick (2019) fibre-homogenisation.


## Thank you!

