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Goals

1. Explain an operator-asymptotic approach for homogenization.
2. State some extra results that we have obtained via this approach.

3. Discuss connections with other approaches.




Origins of the method

= Due to Kirill Cherednichenko and Igor Velcic.

Applied to thin elastic plates (2022).

= Later applied to thin elastic rods (2023).

Cherednichenko, Velci¢, and Zubrinic

https://arxiv.org/abs/2112.06265v3

= Dimension reduction + Homogenization.
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Abstract

We analyse a system of partial differential equations
describing the behaviour of an elastic plate with periodic
moduli in the two planar directions, in the asymptotic
regime when the period and the plate thickness are
of the same order. Assuming that the displacement
gradients of the points of the plate are small enough
for the equations of linearised elasticity to be a suitable
approximation of the material response, such as the case
in, for example, acoustic wave propagation, we derive a
class of ‘hybrid’, homogenisation dimension-reduction,
norm-resolvent estimates for the plate, under different
energy scalings with respect to the plate thickness.
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m Setup

Linearized elasticity in 3D. Periodic + moderate contrast regime



Coefficient tensor

= Assumptions on the tensor A = A(y) of material coefficients

* (Uniformly pos. def. on RZ;5;) There exist v > 0 such that

1
VISP S AS:E <181 VEERG, and y €Y =[0,1)%
= (Symmetry) For i,j, k,l € {1,2,3},
ik _ nJE _ nki
Ajl'l =Ay = Aljl'

= (Boundedness)Fori,j, k, 1 € {1,2,3}, Aﬁ‘ € L®(Y;R3).




Key operators under study

= LetA, = A(Y). A, is eZ3 —periodic

= Define A, = (symV)*A. (symV) as the op. on L?(R3; C3) corresponding to the

sesquilinear form:

a. (u,v) = f AX(%) symVu(x): symVv(x)dx,

R

where u,v € D(a.) = H}(R3; C3).

= A, is self-adjoint, non-negative.




Key operators under study Loy

Set C° (Y;C3) = {u:R3 - C3:u smooth and Z3 — periodic}, and define —
Periodic Sobolev space

H;(Y, @3) — C;;O (Y, @3)””1_11
For y € Y' define X,,: L*(Y; C3) — L*(Y; C3*3) by

clxlllullz < || Xpul , < Clxlllull
Xyu = sym(u @ x) = sym(ux") —

For y €Y', define A, = (symV + iXX)*AXS (symV i iXX) as the op. on

L#(Y; C3) corresponding to the sesquilinear form:

a, (u,v) = j]R?’ A(y) (symV + iXX)u(y): (symV + iXX)v(y)dy,

where u, v € D(ax) = H;(Y; C3).




Relation between A, and A, Bl

Define the scaled Gelfand transform G,

©)
G.: L*(R3;C3) » L2(Y; L2(Y; C3)) = f L*(Y; C3)dy
Y/
£/ .
Gew (W, x) = (E) i z e~ X+ y(e(y + n)) y€Yand y €Y’
nez3

Proposition (Passing to the unit cell for A,)

D1
qu=g;(f g_qu)(d)()ge

Y/

(A _Z)—1=Q*<f®<ldq _Z)_ld)(>g for z € p(A,).
£ £ o2 X £

Y7
\ Look to obtain uniform-in-y

estimates in the operator norm



The homogenized operator 4™

Define the homogenized tensor A"°™ through a symm bilinear form
« APom gatisfies the same

ahom(¢, ¢) = fy A(& + symVut): { dy, V¢, { € R symmetries as A.

1 3  APOM i ynif. pos. def. on
where the corrector term u® € Hi(Y; R3) solves the cell-problem

3X3
( Rsym-

L A(E + SymVuf): symVvdy = 0, vv € H;(Y; R3). . ghom(g 7) = ghomg. ¢

j ué = 0.
\ Y

Define AM™ = (symV)*AM™ (symV) as the op on L?(R3; C3)
corresponding to the form + D(A"M) = H2(R3;C?).

H'(R3;C3) x HY(R3;C3) 3 (w,v) » | A"™ symVu: symVv dy

[RS
()



Key operators under study (summary)
= A = (symV)*A, (symV) on L*(R?)

A, = (symV +iX,) A, (symV + iX,) on L*(Y)

= AMOM = (symV)* A" (symV) on L?(R3)

=aho™(§,0) = [ A(E+symVut): ¢ dy = A"7E:
where &, € R33, and u® solves the cell-problem.

= AO™ gatisfies the same assumptions as A.




Main result

Theorem There exists C > 0, independent of &, such that
Result extends to (¢ YA, + )71,

)4 € [_Zr OO)

|(Ae + D = (At + 1)~ < Ce

L L2

|(Ae+ D7t = (Arom + 1) = RS, 4 < Ce

L?>H?

< Ce?
1212

H (qu + I)_l — (dqhom + 1)_1 o :Riorr,l - :Rgorr,z

e Reorr1f = first-order term

where R:,, 1 and R, , are the corrector operators defined through
' ' of the usual 2-scale

the asymptotic procedure. expansion

=

€
N4



Method

PR CIREEL by S

/«Ag

Spectral analysis of A,

Gelfand Transform

Fibrewise (= for each y) asymptotic expansion

Back to full space via functional calculus



Spectrai analysis of A, R =

Proposition There exist constants C,; > ¢,; > 0 s.t.

crlxl* < R, (u) vu € Hz (Y; C3)\{0}
0<R,(w) <Culyl?  VHECNO
ey < R, (W) vu € (C3)1 n Hi(Y; C3H\{0}

The proof follows from assumptions on A and
o lullz < f"““er”(symv + iX )u”

o |[Vull,2 < Cfourier“(symv + iXX)u“L2 where u € Hj \ {0}

° u— fu”Lz < Cfourier”(SyTnV + iXX)u”LZ

u € Hy \ {0}

o




Spectrai analysis of A,

= Theorem The spectrum o (A,) contains 3 eigenvalues of order v, as x| 40,

while the remaining eigenvalues are of order 1.

= We focus on small y, as large y will not contribute to the overall estimate.

= The space C3 is of key importance:
-« C3 = Eig(13; Ap) @ Eig(A3; Ap) @ Eig(A3; Ap) = Eig(0; Ap) = ker(A,).

- € = ker(symVyeumann) N H# (Y; C°)

N

This is the set of rigid displacements w = Ax + c,

by Korn’s inequality. (4 € C3*3,4T = —A,c € C3)

®




Spectrai analysis of A,

The averaging operator Pgz = S: L*(Y; C3) — €3 © L*(Y; C3) is given by

Su=J u
Y

For € > 0, the smoothing operator Z,: L*(R3; C3) - L*(R3; C3) is given by

@D
f S d)() G. =G (f (qu)(y,-)dy)
Y/ Y

\

“Smoothing” because Z; can viewed as a function

be written as a Fourier cutoff iny€eYandy eY’ @

= — r—1
EcU = §g (



Assume y # 0.

Definition of A7°™

= Instead of (giz A, — z)_l, look at (Ix% A, — z)_l

» We have defined A, A,, and Ahom Now let us define cfl?(om e C3%3:

(ﬂ?omc,d)cg = f A(symVuC + iXXc): iX,d, Vc,d € C3.
Y

These problems

Where the corrector term u,. € Hx(Y; C3) solves the (y-dependent)

Cell-prob]em appear naturally in the

asymptotic expansion.

.
j A(symVuC + iXXc): symVvdy = 0, vv € Hy(Y; C3).
Y

f u. = 0.
\ Y

€



(Ax°™c,d) 5 = [, A(symVu, +iX,c): iX,d

Pfopefﬁés Of C/qgl(()ﬂl  u, € Hj solves the y-dep. cell-problem

hom 3X3 ; p
Ay € C is Hermitian. S e
h *ah / definitions of c,q}l(om and Abom
om __ . omy:
ARM = (iX, ) AMOM(iX,).

There exist v; > 0, indep of y, such that

1
vilxlPlel? < {AR°™c, d) 5 < 5-xl?lel? Ve e

Proposition (passing to the unit cell for A1°™):

hom~— * EB]‘ * aghom
Ahomz = ¢ — S* ARMSdy | ..

yr G

Proof of 4 go through key ingredients if time permits.

o




® ) @
Key steps In proving .homz, =g ( f —S*AhodeX) Ge.
AN = (5ymV)*Al°™ (5ymV) has the same form as A, = (symV)*A (symV), thus

dqhom — gék (fy, 82 dqhom fulld)() gg’

where AOM-tUll = (gymy + iX )*Ahom(symv +iX,), with D[Abem-full] = Hi(y;C3).
Apply the smoothing op Z; to both sides, on the right:

hommg _ rx r@ 1 hom-full ®
A Ze = Ge | — Ay dx | GeGe Sdy | Ge

o2
Y/ € Y/

rEB
— g: (J dqhom fullSdX> ge

Yr g2
i

» €3 is an invariant subspace for AR°m=full

|
hom (because AP°™ is const. in space)
PR
f 82 qu Sd)() ge o C/qhom—fu11| — (l ) Ahom(l ) c,Clhom
Yr X c3 X X X



Asymptotic expansion of (x4, z)_l

- 1 hom 2 3
F1X)(;tOandzEp(lxlzc/lX)np(lezcﬂ )andeL(Y(C)

The resolvent equation of — P in the weak formulation is given by

7

1
—j A (SymV + iXX)u: (symV + iXX)v — Zj

P u-ﬁzj f-v VveHiY;C?
XI5y Y Y

where we have a unique solution u € D (I)(llz A ) c H;(Y; C3).

Let us expand the solution u in the following way:

U= Uy + Uy + Uy + Uppp Uj, Uerr € Hy(Y; C3)

e

0(1) O(lxD O(lx1* as |x| { 0.In the H* norm.

€



Asymp exp of (—«

| x1?

,-2) (Cycle 1)

= Plug the expansion for u into the resolvent eqn. We have: Vv € Hj; (Y; C3),

j AsymVuozsyva+J AsymVuO:iXXv+f AiXXuozsyva+f AiX,up: lX v
Y Y Y Y

+ j A symVu, : symVv +
Y

Y

[

Y

: Legend:
' O(1) terms

' O(|x|?) terms
| Error terms

f A symVu, 1 iX,v +
Jy J

r A symVu, :iX,v +
Jy J

A symVu, : symVv +

A symVugyr : symVv + j
Y

[
[

A symVuep 11X, v + f

A iX,u, :symVv + Jr A X, uy
Y

A X, uy:symVv + J
Y

Y Y

r ALX)(U’Z ]

A X Uepryr: SymVu + j A X, Uerr:

L 2 = 2 = 2 = 2 L5 — (]2 =
O |l [, wor o=t [ wn-o el | wp vzl | e o= 1xl? [ fo0

U=Uyg+ U + Uy + Ugpr
uj = O(|x|’) in the H! norm

lXXU

€



Asymp exp of (L4, -z) (Cycle 1) &5 ne s nom

| x 12
= 0(1) terms gives us the problem: Seek 1, € Hj(V; C?) that solves
f A symVug : symVv = 0, Vv € Hy
Y
= By Korn'’s inequality (or C3 = ker(Ay)), uy € C>.

= Additional constraint needed to fix this const.




Asymp exp of (L4, -z) (Cycle 1) &5 ne s nom

x!?
= O(1) terms gives us: uy € C>.

= O(|x|) terms gives us: Seek 1, € H} (= H; with mean zero), that solves

f A symVu, : symVv = —j — j A X, ug:symvu, Vv € Hy
Y Y Y

This is zero
as u, € C5.

= Use Lax-Milgram to conclude existence + uniqueness of the prob for .

= (This is the y-dependent cell-problem with ¢ = ug)




Asymp exp of (L4, -z) (Cycle 1) &5 ne s nom

X 12
= O(|x|?) terms gives us: Seek u, € H; that solves

j A symVu, : symVv = —J AiX,uq:symvVv — j A symVu, 1 iX,v — f A X ug:iX,v
Y Y Y

Y

A

+Z|)(|2J u0-17+|)(lzj f-v, Vv € Hj
Y Y
= A necessary c for 3! is: The problem should hol every test fct v, = v € C3:

Then symVv, = 0. By how the y-cell-problem is defined,

we get (a‘lhomuo,vo)(C Zf Uy - Vo = j f -y, Vv, € C3.
Y Y

| x|?

1.€.
(W dqgl(om — Z) Uy = Sf —, This chooses our

constant v, € C°. With uy and u; chosen uniquely, Lax

Milgram applied to the O (|x|?) problem

gives us a unique u,.



Summary of first cycle w; = 0(|x|7) in the H' norm

= We writeu = ug + 1y + u, + Ueprr, Where

1
. . — pghom _ —
= u, € C* c Hj is given by <|X|2"4X Z) Uo =SS
" U, € H# is the unique solution to j A symVu, : symVv = —f AiX,uy:symVv, Vv € Hj
Y Y
= u, € Hj is the unique solution to e : s T
) A symVu, : symVv = — . AiXyuy :symVv — . A symVu, : iX,v
—j AXL'XXuO:iXXv+z|)(Izj u0-17+|)(|2j f-v, Vv € Hj
Y Y Y
= To justify the expansion, we need
JUStty b ’ * llugllgr =€ 1£1l,2
. . o * (C = (C(2).Butcan be chosen
estimates on u; and Ue, (in H'). We ullgr = C xl lIfll,
. u2”H1 <C |X|2 ”f”LZ independently of z, if z comes from a
iteratively prove that . uerr”[-ll < Cly| ”f”LZ compact subset of both resolvents.

* Itturns out that u,,,. is only O(|x]|) in
H?,



Second cycle (very briefly)

= We have enough to prove the L? - L? result. But we need more for L* - H! and

higher order L? - L. How to continue the expansion?

= Thus far, we have
o) odxh olxl*)
u = Uy +Uq +U,

+uerr




Second cycle (very briefly)

= Propose a refined expansion:

0(1) olxh olxl®> odxl®)
u = Ug tUy TUp ) i+
Heuristic: u;”” is O(|x|*™/)
+ul? Y P Y ‘

err

= Substitute this into the resolvent equation ... 7*5 + 1 = 36 terms!

in H-norm.

= But many terms cancel due to the problems for 1, 1, , u, in Cycle 1.

= Equate terms with same orders of | y|, something similar to Cycle 1 happens:
(1) 3
= O(|x|) terms says that u; ~ € C~.

= O(|x|?) terms gives a BVP that ugl) € H: uniquely solves.

= O(lx|?) terms chooses the constant u(()l), and in turn provides a BVP that ugl) € Hj uniquely solves. @



Second cycle + Conclusion of Step 3

Refined expansion:

o) odxh odxl> odxl®)
u= Uy +Uq +U,
+ul? Y )

Error estimates

L SCIxl IIfle

v

[ J

<
=

1)
o PR T 12
PR T 7

1
ere ] <€ Ial? f iz

Theorem Let y €Y' \ {0}and z € p (

|x12

depend on y, (and z if z is taken from a compact subset of

(p(%”q%_z)_l (|X|2‘Ah0m_ )_15

< C xlllfll 2
L2->H?!

|x1?

Ay ) Nnp (|X|2 cflhom) There exist a constant C > 0,

(Lcﬂx — Z)_1 (|X|2 dqhom — )_1 S — Rcorr,l,)((z) — :Rcorr,z,)((z)

ich does not

) such that

< CLxPf 1l e
L?—>H!

u Ug Uuq

s




) step 4 (back to the full space)

Putting everything together...



The contour T For 1 € [, k" \ {0}

Focus on small y. How small do we need y to be?

19X
Definition LetI' c {z € C: Re(z) > 0} bea | W’LP
H >
closed contour, oriented anti-clockwise, s.t. lO R
(Separation of spectrum) There exist u > 0,
s.t. T encloses the three smallest evalues of
h . { J
U(%"qx and lx%c/lxom , and nothing else. —— , :
= Po = Po = Po
(Buffer between contour and spectra)
There exist some py > 0 s.t.
1
: X
Inf |7 ME A | = Po
X€Eln.p13\{0} _ - _ e -1
i€{1,2,3,4} This gap implies that the fct g, ,: ' > C with g, ,(z) = (ﬁ—z +1) satisfies
. hom,y
inf z — —=A ‘ = Do 2 1
z€rl 271 <C ﬂ’ 1
and X€Elmu]3\{(0} 2 [9ex (@] < max{ & }
i€{1,2,3}

(ge,, connects lx%a‘lx back to 5A, )



Proof of 1.2 — L?

< Ces.
L2—>L2 -

- To show: H(CAS + )7L = (Ahom 4 )7

= Step A. Look at estimates on L?(Y) first. If y € [—u, u]® \ {0}, then

1 - 1 1 1 -
Pl\=A, +1 P, = —=A, | P = - — A, — d
x<£z X ) X ge,)((mz x) p,ﬁﬂx 2mi ). ex(2) (|X|2 X Z) z

-1
1 c/lhom ) dz

-1
idqhom+1 S = icﬂhom P :—i
2 Iy c3 Yex I 2 hom : gs,)((z) |X|2

Proj onto espace of the
first 3 evalues for A ¥

Recall previous slide: By Step 3 (resolvent expansion)

Proj onto espace of the 9ex(2) = (le + 1) ' | — l;2_2 < Clxl
evalues enclosed by T, for |ggX(Z)| < C max {u 1} (Important!) C does not depend on z and ,

1 ghom
the operator i by the properties of the contour . @



Proof of 1.2 — L?

< Ces.
2512

To show: H(CAS + )7L = (Ahom 4 )7

Step A. Estimates on L?(Y).

-1

P2, +1 _1P — (2 qtom 4 S
X\ 29 X 29X c3

Step A-I. If y € [—u, u]? \ {0}, then

L2>L?
Step A-ILIf y € Y’ \ [—p, u]°, then by Step 2 (spec analysis of A )

< Ce?
L?-L?

1 _ph -1
< Ce* and H(gcﬂxom+lcg) S

HPX (ZAy + I)_lPX

L2512

Step A-IIL. The spec analysis of A, also tells us that for all y,

< Ce?
1212 T

Overall estimate: 0(¢) in the

L*(Y; C3) - L?(Y; C3) norm

”(1 —P) (A, + 1)_1 (I - Py



Proof of 1.2 — L?

< Ces.
L2—>L2 -

- To show: H(CAS + )7L = (Ahom 4 )7

= Step B. Back to Estimates on L?(RR3). Recall the “passing to the unit cell” formulas

® /1 -1
-1 _ /% —_
(A +1)7" =G: (L, (SZ A, + I) d)()Qe Step A ”(dqg !

_ ® /1 1 C —(ghom )7
e[ e
Y/

< Ce

L2512

= Step C. Show that you can drop Z; without affecting the estimates.

|(Amom + 1) 1 - 50 < Ce?

1252

(Prove this via Fourier transform)




Additional resulis




Omitted from the talk

1. Extend the results to arbitrary spectral scaling y € [—2, o), e.g.

1 | -1
_ | - ghom
(Syaq +1) (Syaq +1)

2. Defining the full-space corrector ops Ry, j using R oy j (2), €.8-

|<
|+
N

< Ce¢

L?>L?

D

COTTl ge < corrl)(d)(> ge
Y/

©® 1 -1
=G; <j Bcorr,l,x <8y+2 c/qgl(om i I@3> Sd)() Ge.

/
For x € [—u, u] \ {0},

Beorra,y takes c € C3 to the solution of the y-

1
£ -
dependent cell-problem u; € Hj (recall defn of AR°™) Reorrix = 27rij£r e (2)Reorr,,4(2)dz

Uuq

®




Omitted from the talk

3. L? - H! and higher order L? — L?

This is somewhat tedious, many cases to

enumerate. Some care needed when

-1 -1
1 1 ry+2] : 2 2(R3
<_y<'flg 4+ I) _ (_ydqhom + I) _ iorr,l < C max {€y+1,€ > } passing from L“(Y) back to L*(R>)!
£ £ 1251 (see next slide)
-1 -1
1 1
<€_y Ae + I) - (8_)/ AT+ I) — Reorra = Reorr,2 < Ce¥*?.  «—— Thisis easy.
L?>L?

4. Connection between R¢,,  f and the O(¢) term in classical two-scale expansion.

We show that they are the same!

(Thanks Igor for the hint)




Proof structure of L% —» H?

On L2(R3; C3)

g 2 '\

Because G, is unitary

On L*(Y; C3)
X € [=p,uP\{0} | x € Y'\[—p,ul’

L? norm SVT” gy +e
L? norm of V42 V42
the gradient

\ \
| f
Proof via Deal with the

contour integral

terms individually

Treat the two terms v, and _ ® y separately:

« V, part, use to get O(e¥*1)
* _ ® x part, modify L?*-norm’s argument.

Separately get 0(e¥*1) for small and large y.

1 ! 1 !
(E—ycﬂg +1> — <€—ycﬂh0m +1(C3> Ee — Réorra

\ J ( J | J
| [

X y z @

>

o
=



Birman-Suslina (2004) spectral germ approach.

Zhikov (1989) spectral approach.

Cooper-Waurick (2019) fibre-homogenisation.
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