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3D -> 2D reduction = T

2h

Dynamic equations in linear elasticity for thin elastic plates

Lu+ Au=0.

Neumann boundary conditions at faces x; = +h

fu %z = +h P+(x1,x3),

where ¢ - first-order differential operator and p, (x4, x,) are prescribed functions.



2D equations of plate bending (l.o. in low-frequency thin plate limit)

DA*w — Aw = q (x4, x3),

where

X3 = 0 ~ W (Xl,xz)

and

q = P3+ — P3--



More general boundary conditions along the faces
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Winkler foundation

/

Mixed boundary conditions

033 = 8U3

x3=_h X3=_h

Engineering approach

q(x1,%x3) = —0w(xq, x3),

which contradicts the original assumption of Neumann boundary conditions!



Thin plate on a Winkler foundation

In this case
DA*w + (8 — DHw = 0,

Degeneration near the cut-off frequency A = 6.

3D asymptotic near cut-off analysis at % K 1, see [1]
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Statement of the problem for an immersed elastic layer

Consider free vibrations of an isotropic elastic layer of thickness 2A immersed in a
non-viscous compressible fluid, specifying Cartesian coordinates —oo < x1, 22 <
00, —h < x3 < h, see Figure ; the axes xo, perpendicular to the plane (z1,z3),
is not shown in the figure. Throughout the paper we use the following notation:
p and pg are solid and fluid densities, respectively; F is Young’s modulus, v is
the Poisson’s ratio, co = v/E/2p(1 + v) is the shear wave speed in solid and cg
is the wave speed in fluid.




Statement of the problem for an immersed elastic layer

We restrict ourselves to a plane strain problem in the coordinates (zq,z3).
Then, the equations of motion in linear elasticity may be written as

do11 dos3y 821’1

o1 | ozs o =V )
doi1z  Odosg 024 _0 (1)
dxq dxs Ot2 '

Here and below oy (k,l = 1,2,3) are stresses, vy, (m = 1,3) are displacements

and t 1s time. In these equations the stresses

and displacements satisfy the

relations
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Statement of the problem for an immersed elastic layer

In addition, we have the wave equation for the fluid displacement potential

k'1":”\("1-"1*. L3, t:]
Pp e 1 0%

+ — = 0. 3
dr?  Ox3 3 Ot? (3)
The interfacial conditions at x5 = +h are
9% dp
o931 =0, 033 = . U3 = : 4
n =0 T =pgE. = Fe (4)

The aim of the paper is to derive asymptotic models of the formulated prob-
lem over long-wave low-frequency region, where h < L and h/co < T with L
and T denoting a typical wavelength and time scale, respectively. The focus is
on higher order approximations.



Scaling and dimensionless equations

Let us scale the independent variables specified in the previous section by

LnC, if |xa| < h,
t="1TT, r1 = L&, Trq = 16, it fes] < h. (5)

L~, otherwise,

where 1 = h/L < 1 is a small geometric parameter. In addition, we assume

that
L

: 6
73/ 2cq’ (6)

T =

C : . 5/2
which is motivated by the relation wh/co ~ (kh) /2 hetween angular frequency
w and wave number k discovered for a fluid-borne bending wave from the asymp-
totic analysis of the dispersion relation for an immersed layer. see [2] .



Scaling and dimensionless equations

Now, we introduce the dimensionless stresses, displacements and fluid po-
tential setting

* *
o011 = Enoyy, 092 = Enos,,
2 = 3 =
o31 = Enoys, o33 = En o3;, (7)
vy = Lnuy, vy = Loy,
o~ — T2, %
w = L°p~™.

Here all the starred guantities are assumed to be the same asymptotic order,
i.e. of order unity. The asymptotic orders of the displacements and stresses in
(7) are the same as for a bending wave on a ‘dry’, i.e. not contacting fluid,

elastic plate, e.g. see [3] . At the same time. for the latter. a typical time scale

L
is 1 = 5
H=c2

instead of (6).



Scaling and dimensionless equations

Thus, equations (1)-(2) in the last section, taking into account relations (5)
and (7), can be written in dimensionless form as

and
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Scaling and dimensionless equations

Similarly, the dimensionless form of equations (3)-(4) can be obtained using
(5)-(7), which gives the following
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Scaling and dimensionless equations

Now, expand the starred stress and displacement components in an asymp-
totic series as

v] = -UED] + n-tzil} - -rpz-ui?} + ...
vy = 'E.-*gj] — ??'IJ__.E'I} + -rpg-vé?} + ...
o =01y +nony +ifory + ..
08, = 045 + 105 + 105 + .. (13)
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Leading order approximation

We consider the leading order approximation of the problem formulated in the
previous subsection, keeping only the terms with the suffix (0) in the asymptotic
series (13). Firstly, integrating (9)s - (9)4 along the thickness variable ¢, we
obtain, respectively

VY
a¢

'Uém = Ifg(ﬂ}(ﬁ','r) and -vinj = —( (14)

Substituting the displacements (14) into (9); - (9)2, we obtain

~(0)
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R T
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0 v 0%V _
and Jéz) = T2 3532 (15)

Next, integrating (8); along (, taking into account (14)-(15), gives

TR A
(1—v?) 03

(0)

T31 :CEQ + A7), (16)

where A is an arbitrary function. Finally, inserting (14)-(16) into (8); and
integrating along (., we obtain

O__p L oY 9A0

O33 = 6(1 B ,7_/2) {954 T C 85 . (17)



Leading order approximation

Now, the fluid potential at leading order can be determined by inserting
(13)7 into (10), giving the Laplace equation

9?0 N %0
DE2 D2
coverning incompressible fluid. Further, the boundary conditions, obtained by
inserting (13) into (11), are

=0, (18)
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By applying (19); and (19)5 to (16) and (17), respectively, we obtain
R A
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Y=n



First order approximation

Now we have
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First order approximation
where A1) is an arbitrary function, and the boundary conditions are

r 82@[1)
. 2(14v) or2

(1) otV
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= v (24)

= Y=

; : , 1) . :
Note that the last term in the expression for {Tég) in (23) corresponds to elastic

plate inertia which does not affect the leading order approximation.
Next, applying (24); and (24)5 to (23)g and (23)7, respectively, we obtain

: 37 (1
G AR

AL —
2(1 —v?) 083

(25)

and
2 04L§1>_+ 20 920 ) (26)
—r = 0.
3(1—v) 0& T2 or2

Y=n

The derived equation corresponds to a fluid-loaded Kirchhoft plate.



Second order approximation

In this case we have as above
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Second order approximation
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Applying (29); and (29)5 to (28)g and (28)7, respectively, we derive
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Eliminating the 6th order derivative in (31) using (21), see [3] and [4] for more
detail, we arrive at
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Third order approximation
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Third order approximation

{T‘.{;i) —0 Uégg} . r 82{19{3) 8.{#{}(3} B UE’} (35)
’ _, 2(1+v) Or2 T Oy B
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Applying (35); and (35)5 to (34)g and (34)-, respectively, we have
1 3 A37/(0
A _ 2 —5 T A 1 v 1 8V (36)

20 —v)(1—v2) 06  21—12) 9 ' 4102 ogore

Also, after eliminating the term with a 6th order derivative in the same manner
as in the previous subsection, we arrive at
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Hierarchy of asymptotic models

At leading order, we have from (18), (19)3 and (21)

1 ot r 0%p*

3(1—v?) 96t 2(1+v) 972

—I_ :03

and

7y

Y=

where v3(£,0,7) = VE_{D}(ﬁ, 7) and p*(&,7,7) = % (&,7,7). In terms of original



Hierarchy of asymptotic models

In terms of original variables

Eh? 0%, 9%
3(1 —v2) dx} 0 52

’.}33=h-

9%p  02%p

S+ = =0,
dr{  Or3

and
a 'a ]
. d — V3.
C}Ig
.'1’3:]1

(41)

(42)

(43)

Here and below in this section the transverse displacement vz is taken at the

mid plane z3 =0, i.e. v3 = v3(x,0,1).



Hierarchy of asymptotic models

Fwstorder

Now, we consider the sum of equation (21) and equation (26), multiplied by
the small parameter 7, to obtain

2 o* 5?2

1
B T}.E SEVS{ )
OT2

v=1 (44)

9 0 1
+nw (ng }+-T}V3': )) = 0.

Below, 7?2 term in the last equation is neglected. Similarly, we have from (18) ,
(22) and (19)3, (24), respectively
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Hierarchy of asymptotic models

Formulae (44)-(46) can be re-written as

9 ot 0?3 0% p*
_r

31—v)0et " Tarz "o (47)

v=n

where v; = VS{D] + ?}VE{U and ¢* = ©® + neM. In original variables (47)
becomes
ER? 0% 0% 9%
2\ 43 + ph 23 —Po ‘:
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Hierarchy of asymptotic models

Second order

Next, similarly to the derivation above, we have from (21), (26) and (32)
neglecting O(n?) terms

2 9t L2 (8 —3v) 8%\ 9%¢p*
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(49)

)

where v = V;U} + ?}VS{” + T}ZVE_(E} and ©* = @ + o) + 22 In this case
the impenetrability condition to within the same truncation error becomes, see
(13), (23) and (28),
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In terms of original variables, (49) and (50) are given by
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Hierarchy of asymptotic models
Third order

Finally, we deduce from (21), (26), (32) and (37), neglecting O(n*) terms

2 oW (1 (8 —3v) 9%\ 0%p*
3(1 —v) o¢t 10(1 —v) 0&2 ) or?

o Tv—17 9%\ 0%*v
0 (1 T A=) 9 ) a2

where v = Vy* +nV3 402V 40V and o = 0O 4o 4720 4P @),
Now, the equation governing fluid motion, taking into account formulae (18),
(22), (27) and (33) and neglecting O(n*) terms, can be written as
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In original variables, (53) takes the form
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Dispersion relations for derived asymptotic models

Let us begin with the travelling wave solution of the problem (41)-(43),
setting

i(kr1—wt)
L

U3 = e

k(zs—h)+i(kr, —wt) (56)

where k and w are wavenumber and angular frequency, respectively. On sub-
stituting (56) into the aforementioned formulae, we arrive at the dispersion

relation 5
0° = K>, 57
3r(l—v) (57)
where K and {2 are dimensionless wavenumber and frequency, respectively, with
h
K=kh Q=2 (58)

C2



Dispersion relations for derived asymptotic models

Next, substituting (56) into (42), (43) and (48), we arrive at the dispersion
relation, corresponding to the first order asymptotic model

2 K®
0° = . 59
30—+ K (59)
Now, we set
‘Ug(ﬂ.?l?ﬂ) — ’i{krj—wt}ﬂ
oo L YRR\ ke myite—wt) (60)
¥ = € s
k 2(1 —v)

in the equations (42), (51) and (52), resulting in the dispersion relation for the
second order model, given by
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Dispersion relations for derived asymptotic models

Similarly, insert

’Ug(ﬂll., D) — E:-E(k:ﬁ—wt]ﬁ

1
o=— (k2 '1**_2 : 1 _ vhk? p—k(za—h)+i(ke;—wt) (62)
c? 2(1 —v)

into the equations of the third order approximation, given by (3), (52) and (55).
As a result, we have

0 (60(1 —v)*H +3r(3v —8)(2(v — 1) + vK*)K?* + 4(1 —v)(17 — T7v)K*H

—30r(1 —v)(2(r — 1) + HKZ)) =40(1 —v)K*H,
(63)

where

H=+K?— 0252 (64)



Exact dispersion relation

(2K?% — Q%)% tanh A — 4K?AB tanh B + ijr = 0, (65)
where
A=vVEK2-02:2 B=+vVK2-02 H=+vK2-022 (66)
with

1 — 2
T = . 67
A VS W (67)



Numerical results

The problem parameters are co = 1480ms~!, v =0.2, ¢y = 3156ms—!,
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Figure 2: Comparison of the full dispersion relation (65) (solid black line) with
the leading (57) (dashed orange line), first (59) (dashed green line), second (61)
(dashed blue line) and third order (63) (dashed red line) shortened dispersion

relations.

p = 2710kgm = and pg = 1000kgm 3.
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