Gauge transformations and symmetries of evolution equations

Saša Krešić-Jurić

Faculty of Science, University of Split

Recent progress in quantitative analysis of multiscale media
Split, May 29 - June 22023

Outline of the talk

1 General properties of integrable systems
® Riemann-Hilbert factorization probem on loop groups
(3) Gauge equivalent systems

Outline of the talk

1 General properties of integrable systems
2 Riemann－Hilbert factorization probem on loop groups
⿴囗木 Gauge equivalent systems
airidual gauge transformations and conservation laws

Outline of the talk

1 General properties of integrable systems
2 Riemann-Hilbert factorization probem on loop groups
3 Gauge equivalent systems

Outline of the talk

1 General properties of integrable systems
2 Riemann-Hilbert factorization probem on loop groups
3 Gauge equivalent systems
4 Residual gauge transformations and conservation laws

Evolution equations in zero-curvature form

Many physically interesting evolution equations

$$
\frac{\partial u}{\partial t}=K\left(u, u_{x}, \ldots, u^{(n)}\right), \quad u=u(x, t)
$$

where K is a nonlinear function can be written in zero-curvature form

$$
\frac{\partial A_{1}}{\partial x}-\frac{\partial A_{2}}{\partial t}+\left[A_{1}, A_{2}\right]=0, \quad A_{1}, A_{2} \in \mathfrak{g}
$$

where \mathfrak{g} is a finite or inifinite dimensional Lie algebra.
Such equations, known as integrable systems, have many special properties in common:

- admit soliton solutions,
wil solvable by the inverse scattering transform,

Evolution equations in zero-curvature form

Many physically interesting evolution equations

$$
\frac{\partial u}{\partial t}=K\left(u, u_{x}, \ldots, u^{(n)}\right), \quad u=u(x, t)
$$

where K is a nonlinear function can be written in zero-curvature form

$$
\frac{\partial A_{1}}{\partial x}-\frac{\partial A_{2}}{\partial t}+\left[A_{1}, A_{2}\right]=0, \quad A_{1}, A_{2} \in \mathfrak{g}
$$

where \mathfrak{g} is a finite or inifinite dimensional Lie algebra.
Such equations, known as integrable systems, have many special properties in common:

- admit soliton solutions,
w solvable by the inverse scattering transform,
- posses Hamiltonian structure (on an infinite dimensional phase space),

Evolution equations in zero-curvature form

Many physically interesting evolution equations

$$
\frac{\partial u}{\partial t}=K\left(u, u_{x}, \ldots, u^{(n)}\right), \quad u=u(x, t)
$$

where K is a nonlinear function can be written in zero-curvature form

$$
\frac{\partial A_{1}}{\partial x}-\frac{\partial A_{2}}{\partial t}+\left[A_{1}, A_{2}\right]=0, \quad A_{1}, A_{2} \in \mathfrak{g}
$$

where \mathfrak{g} is a finite or inifinite dimensional Lie algebra.
Such equations, known as integrable systems, have many special properties in common:

- admit soliton solutions,
- solvable by the inverse scattering transform,
- posses Hamiltonian structure (on an infinite dimensional phase space)
- admit an infinite hierarchy of conservation laws (related to inifinitesial

Evolution equations in zero-curvature form

Many physically interesting evolution equations

$$
\frac{\partial u}{\partial t}=K\left(u, u_{x}, \ldots, u^{(n)}\right), \quad u=u(x, t)
$$

where K is a nonlinear function can be written in zero-curvature form

$$
\frac{\partial A_{1}}{\partial x}-\frac{\partial A_{2}}{\partial t}+\left[A_{1}, A_{2}\right]=0, \quad A_{1}, A_{2} \in \mathfrak{g}
$$

where \mathfrak{g} is a finite or inifinite dimensional Lie algebra.
Such equations, known as integrable systems, have many special properties in common:

- admit soliton solutions,
- solvable by the inverse scattering transform,
- posses Hamiltonian structure (on an infinite dimensional phase space),

Evolution equations in zero-curvature form

Many physically interesting evolution equations

$$
\frac{\partial u}{\partial t}=K\left(u, u_{x}, \ldots, u^{(n)}\right), \quad u=u(x, t)
$$

where K is a nonlinear function can be written in zero-curvature form

$$
\frac{\partial A_{1}}{\partial x}-\frac{\partial A_{2}}{\partial t}+\left[A_{1}, A_{2}\right]=0, \quad A_{1}, A_{2} \in \mathfrak{g}
$$

where \mathfrak{g} is a finite or inifinite dimensional Lie algebra.
Such equations, known as integrable systems, have many special properties in common:

- admit soliton solutions,
- solvable by the inverse scattering transform,
- posses Hamiltonian structure (on an infinite dimensional phase space),
- admit an infinite hierarchy of conservation laws (related to inifinitesial symmetries),

Evolution equations in zero-curvature form

Many physically interesting evolution equations

$$
\frac{\partial u}{\partial t}=K\left(u, u_{x}, \ldots, u^{(n)}\right), \quad u=u(x, t)
$$

where K is a nonlinear function can be written in zero-curvature form

$$
\frac{\partial A_{1}}{\partial x}-\frac{\partial A_{2}}{\partial t}+\left[A_{1}, A_{2}\right]=0, \quad A_{1}, A_{2} \in \mathfrak{g}
$$

where \mathfrak{g} is a finite or inifinite dimensional Lie algebra.
Such equations, known as integrable systems, have many special properties in common:

- admit soliton solutions,
- solvable by the inverse scattering transform,
- posses Hamiltonian structure (on an infinite dimensional phase space),
- admit an infinite hierarchy of conservation laws (related to inifinitesial symmetries),
- can be solved by the Riemann-Hilbert factorization problem on Lie groups,

Examples of integrable systems

al Kortweg-de Vries (KdV) equation
$\bar{u}_{t}=\bar{u}_{x x x}+3 u u_{x}$
has applications in fiber optics.

Examples of integrable systems

■ Kortweg-de Vries (KdV) equation

$$
u_{t}=u_{x x x}+3 u u_{x}
$$

describes propagation of water waves in a shallow canal.
a Nonlinear Shrödinger (NLS) equation describes distribution of mangetic moments $S=\left(S_{1}, S_{2}, S_{3}\right)$ in a ferromangetic chain.

Examples of integrable systems

\llbracket Kortweg-de Vries (KdV) equation

$$
u_{t}=u_{x x x}+3 u u_{x}
$$

describes propagation of water waves in a shallow canal.
巴 Nonlinear Shrödinger (NLS) equation

$$
i u_{t}-\frac{1}{2} u_{x x}-4 u|u|^{2}=0
$$

has applications in fiber optics.

© Heisenberg magnet (HM) equation

\qquad
ferromangetic chain.

- Tandaur Tisslitz (TT) equation
generalizes the HM equation to nonisotropic interaction of magnetic moments

Examples of integrable systems

\llbracket Kortweg-de Vries (KdV) equation

$$
u_{t}=u_{x x x}+3 u u_{x}
$$

describes propagation of water waves in a shallow canal.
■ Nonlinear Shrödinger (NLS) equation

$$
i u_{t}-\frac{1}{2} u_{x x}-4 u|u|^{2}=0
$$

has applications in fiber optics.
3 Heisenberg magnet (HM) equation

$$
S_{t}=S_{x x} \times S, \quad\|S\|=1,
$$

describes distribution of mangetic moments $S=\left(S_{1}, S_{2}, S_{3}\right)$ in a ferromangetic chain.

Examples of integrable systems

\llbracket Kortweg-de Vries (KdV) equation

$$
u_{t}=u_{x x x}+3 u u_{x}
$$

describes propagation of water waves in a shallow canal.
■ Nonlinear Shrödinger (NLS) equation

$$
i u_{t}-\frac{1}{2} u_{x x}-4 u|u|^{2}=0
$$

has applications in fiber optics.
s Heisenberg magnet (HM) equation

$$
S_{t}=S_{x x} \times S, \quad\|S\|=1,
$$

describes distribution of mangetic moments $S=\left(S_{1}, S_{2}, S_{3}\right)$ in a ferromangetic chain.

〔 Landau-Lifshitz (LL) equation

$$
S_{t}=S_{x x} \times S+S \times J S, \quad\|S\|=1,
$$

generalizes the HM equation to nonisotropic interaction of magnetic moments with coupling $J=\operatorname{diag}\left(J_{1}, J_{2}, J_{3}\right)$.

Riemann-Hilbert factorization on Lie groups

Integrable systems in zero-curvature form can be constructed by the Riemann-Hilbert factorization problem on loop groups.

Definition
Int C hon E Eanach-Lie group. We say that G admits a Riemann-Wilbert factorization if G contains closed subgroups G_{-}and G_{+}such that

Remark

where $\mathfrak{g}=T_{e} G$ and $\mathfrak{g}_{ \pm}=T_{e} G_{ \pm}$

Riemann-Hilbert factorization on Lie groups

Integrable systems in zero-curvature form can be constructed by the Riemann-Hilbert factorization problem on loop groups.

Definition

Let G be a Banach-Lie group. We say that G admits a Riemann-Hilbert factorization if G contains closed subgroups G_{-}and G_{+}such that

$$
G_{-} \cap G_{+}=\{e\}, \quad \text { the set } G_{-} G_{+} \text {is open in } G
$$

Remark

Riemann-Hilbert factorization on Lie groups

Integrable systems in zero-curvature form can be constructed by the Riemann-Hilbert factorization problem on loop groups.

Definition

Let G be a Banach-Lie group. We say that G admits a Riemann-Hilbert factorization if G contains closed subgroups G_{-}and G_{+}such that

$$
G_{-} \cap G_{+}=\{e\}, \quad \text { the set } G_{-} G_{+} \text {is open in } G
$$

Remark

$$
G_{-} G_{+} \text {is open in } G \Longleftrightarrow \mathfrak{g}=\mathfrak{g}-\oplus \mathfrak{g}_{+}
$$

where $\mathfrak{g}=T_{e} G$ and $\mathfrak{g}_{ \pm}=T_{e} G_{ \pm}$.

Riemann-Hilbert factorization on Lie groups

Integrable systems in zero-curvature form can be constructed by the Riemann-Hilbert factorization problem on loop groups.

Definition

Let G be a Banach-Lie group. We say that G admits a Riemann-Hilbert factorization if G contains closed subgroups G_{-}and G_{+}such that

$$
G_{-} \cap G_{+}=\{e\}, \quad \text { the set } G_{-} G_{+} \text {is open in } G
$$

Remark

$$
G_{-} G_{+} \quad \text { is open in } \quad G \quad \Longleftrightarrow \quad \mathfrak{g}=\mathfrak{g}_{-} \oplus \mathfrak{g}_{+}
$$

where $\mathfrak{g}=T_{e} G$ and $\mathfrak{g}_{ \pm}=T_{e} G_{ \pm}$.
Choose $X_{1}, X_{2}, \ldots, X_{n} \in \mathfrak{g}_{+}$such that $\left[X_{k}, X_{l}\right]=0$ and define the action of \mathbb{R}^{n} on G by

$$
\mathbf{t} * g=\exp \left(\sum_{i=1}^{n} t_{i} X_{i}\right) g, \quad \mathbf{t}=\left(t_{i}\right) \in \mathbb{R}^{n}
$$

For $g \in G_{-} G_{+}$we have unique factorization

$$
\begin{equation*}
\exp \left(\sum_{i=1}^{n} t_{i} X_{i}\right) g=g_{-}(\mathbf{t}) g_{+}(\mathbf{t}), \quad \mathbf{t} \in B_{\epsilon}(0) \quad \text { (R-H factorization). } \tag{1}
\end{equation*}
$$

The flow $g_{-}(\mathbf{t}) \in G_{-}$represents solutions to a hierarchy of nonlinear evolution equations written in zero-curvature form on the Lie algebra \mathfrak{g}_{+}.
$t_{1}=x \quad$ space variable, $\quad t_{k}=t \quad$ time variable of the k-th flow
$X_{k} \in \mathfrak{g}_{+} \quad$ inifinitesimal generator of the k-th flow

For $g \in G_{-} G_{+}$we have unique factorization

$$
\begin{equation*}
\exp \left(\sum_{i=1}^{n} t_{i} X_{i}\right) g=g_{-}(\mathbf{t}) g_{+}(\mathbf{t}), \quad \mathbf{t} \in B_{\epsilon}(0) \quad \text { (R-H factorization). } \tag{1}
\end{equation*}
$$

The flow $g_{-}(\mathbf{t}) \in G_{-}$represents solutions to a hierarchy of nonlinear evolution equations written in zero-curvature form on the Lie algebra \mathfrak{g}_{+}.

$$
\begin{array}{ll}
t_{1}=x & \text { space variable, } t_{k}=t \text { time variable of the } k \text {-th flow } \\
X_{k} \in \mathfrak{g}_{+} & \text {inifinitesimal generator of the } k \text {-th flow }
\end{array}
$$

By taking derivatives Eq. (1) we find

$$
g_{-}(\mathbf{t})^{-1} X_{k} g_{-}(\mathbf{t})=g_{-}^{-1} \frac{\partial g_{-}}{\partial t_{k}}+\frac{\partial g_{+}}{\partial t_{k}} g_{+}^{-1} \in \mathfrak{g}_{-} \oplus \mathfrak{g}_{+}
$$

and projecting to \mathfrak{g}_{+}we have

$$
\frac{\partial g_{+}}{\partial t_{k}}=p_{+}\left(g_{-}^{-1}(\mathbf{t}) X_{k} g_{-}(\mathbf{t})\right) g_{+}, \quad p_{+}: \mathfrak{g} \rightarrow \mathfrak{g}_{+} \quad \text { projection. }
$$

This yields a system of linear PDE's for g_{+}:

$$
\frac{\partial g_{+}}{\partial t_{k}}=M_{k} g_{+}, \quad M_{k}=p_{+}\left(g_{-}^{-1}(\mathbf{t}) X_{k} g_{-}(\mathbf{t})\right), \quad k=1,2, \ldots, n
$$

Remarks

- En. (2) represents a hierarchy of evolution PDE's in the space variable $x=t$ and time variable $t=t_{k}, k \geq 2$ (other variables fixed).

This yields a system of linear PDE's for g_{+}:

$$
\frac{\partial g_{+}}{\partial t_{k}}=M_{k} g_{+}, \quad M_{k}=p_{+}\left(g_{-}^{-1}(\mathbf{t}) X_{k} g_{-}(\mathbf{t})\right), \quad k=1,2, \ldots, n
$$

Since $\left[X_{k}, X_{l}\right]=0$ the k and l flows commute, hence

$$
\begin{gather*}
\left(g_{+}\right) t_{t_{k} t_{l}}=\left(g_{+}\right) t_{t_{l} t_{k}} \quad \Rightarrow \quad M_{k} \text { and } M_{l} \text { satisfy } \\
\frac{\partial M_{k}}{\partial t_{l}}-\frac{\partial M_{l}}{\partial t_{k}}+\left[M_{k}, M_{l}\right]=0 \quad\left(\text { zero-curvature equation on } \mathfrak{g}_{+}\right) . \tag{2}
\end{gather*}
$$

Remarks

This yields a system of linear PDE's for g_{+}:

$$
\frac{\partial g_{+}}{\partial t_{k}}=M_{k} g_{+}, \quad M_{k}=p_{+}\left(g_{-}^{-1}(\mathbf{t}) X_{k} g_{-}(\mathbf{t})\right), \quad k=1,2, \ldots, n
$$

Since $\left[X_{k}, X_{l}\right]=0$ the k and l flows commute, hence

$$
\begin{gather*}
\left(g_{+}\right) t_{t_{k} t_{l}}=\left(g_{+}\right) t_{t_{l} t_{k}} \quad \Rightarrow \quad M_{k} \text { and } M_{l} \text { satisfy } \\
\frac{\partial M_{k}}{\partial t_{l}}-\frac{\partial M_{l}}{\partial t_{k}}+\left[M_{k}, M_{l}\right]=0 \quad\left(\text { zero-curvature equation on } \mathfrak{g}_{+}\right) \tag{2}
\end{gather*}
$$

Remarks

■ Eq. (2) represents a hierarchy of evolution PDE's in the space variable $x=t_{1}$ and time variable $t=t_{k}, k \geq 2$ (other variables fixed).

This yields a system of linear PDE's for g_{+}:

$$
\frac{\partial g_{+}}{\partial t_{k}}=M_{k} g_{+}, \quad M_{k}=p_{+}\left(g_{-}^{-1}(\mathbf{t}) X_{k} g_{-}(\mathbf{t})\right), \quad k=1,2, \ldots, n
$$

Since $\left[X_{k}, X_{l}\right]=0$ the k and l flows commute, hence

$$
\begin{gather*}
\left(g_{+}\right) t_{t_{k} t_{l}}=\left(g_{+}\right) t_{t_{l} t_{k}} \quad \Rightarrow \quad M_{k} \text { and } M_{l} \text { satisfy } \\
\frac{\partial M_{k}}{\partial t_{l}}-\frac{\partial M_{l}}{\partial t_{k}}+\left[M_{k}, M_{l}\right]=0 \quad\left(\text { zero-curvature equation on } \mathfrak{g}_{+}\right) \tag{2}
\end{gather*}
$$

Remarks

\llbracket Eq. (2) represents a hierarchy of evolution PDE's in the space variable $x=t_{1}$ and time variable $t=t_{k}, k \geq 2$ (other variables fixed).

■ Solutions of the hierarchy are determined by the group element $g_{-}(\mathbf{t}) \in G_{-}$.

This yields a system of linear PDE's for g_{+}:

$$
\frac{\partial g_{+}}{\partial t_{k}}=M_{k} g_{+}, \quad M_{k}=p_{+}\left(g_{-}^{-1}(\mathbf{t}) X_{k} g_{-}(\mathbf{t})\right), \quad k=1,2, \ldots, n
$$

Since $\left[X_{k}, X_{l}\right]=0$ the k and l flows commute, hence

$$
\begin{gather*}
\left(g_{+}\right) t_{k} t_{l}=\left(g_{+}\right) t_{l} t_{k} \quad \Rightarrow \quad M_{k} \text { and } M_{l} \text { satisfy } \\
\frac{\partial M_{k}}{\partial t_{l}}-\frac{\partial M_{l}}{\partial t_{k}}+\left[M_{k}, M_{l}\right]=0 \quad\left(\text { zero-curvature equation on } \mathfrak{g}_{+}\right) \tag{2}
\end{gather*}
$$

Remarks

■ Eq. (2) represents a hierarchy of evolution PDE's in the space variable $x=t_{1}$ and time variable $t=t_{k}, k \geq 2$ (other variables fixed).

- Solutions of the hierarchy are determined by the group element $g_{-}(\mathbf{t}) \in G_{-}$.
s If G is the loop group of a matrix Lie group, then Eq. (2) is equivalent with a system of nonlinear PDE's for matrix elements of M_{k} and M_{l}.

Integrable systems on loop algebras

Concrete examples of integrable systems are obtained by taking G to be a matrix group with elements in the Wienner algebra of functions

$$
\begin{aligned}
& \mathcal{A}=\left\{f: S^{1} \rightarrow \mathbb{C}\left|f(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}, \sum_{n=-\infty}^{\infty}\right| a_{n} \mid<\infty\right\} . \\
& \left(\mathcal{A},\|\cdot\|_{1}\right) \quad \text { Banach algebra with norm }\|f\|_{1}=\sum_{n=-\infty}^{\infty}\left|a_{n}\right|
\end{aligned}
$$

Introduce the algebra of $n \times n$ matrices with elements in $\mathcal{A}, M(n, \mathcal{A})$, and define

Remarks

[1] (n, A) is a Banach algebra with norm $\|g\|=\sum_{i, j=1}^{n}\left\|g_{i j}\right\|$
(3 $G L(n, \mathcal{A})$ is an open subgroup of $M(n, \mathcal{A})$

Integrable systems on loop algebras

Concrete examples of integrable systems are obtained by taking G to be a matrix group with elements in the Wienner algebra of functions

$$
\mathcal{A}=\left\{f: S^{1} \rightarrow \mathbb{C}\left|f(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}, \sum_{n=-\infty}^{\infty}\right| a_{n} \mid<\infty\right\}
$$

$$
\left(\mathcal{A},\|\cdot\|_{1}\right) \quad \text { Banach algebra with norm }\|f\|_{1}=\sum_{n=-\infty}^{\infty}\left|a_{n}\right|
$$

Introduce the algebra of $n \times n$ matrices with elements in $\mathcal{A}, M(n, \mathcal{A})$, and define

$$
G L(n, \mathcal{A})=\left\{g \in M(n, \mathcal{A}) \mid \operatorname{det}(g(z)) \neq 0 \forall z \in S^{1}\right\}
$$

Remarks

【 $M(n, \mathcal{A})$ is a Banach algebra with norm $\|g\|=\sum_{i, j=1}^{n}\left\|g_{i j}\right\|_{1}$.
■ By Wienner's lemma, $\operatorname{det}(g(z)) \neq 0 \forall z \in S^{1} \Rightarrow g^{-1} \in M(n, \mathcal{A})$.
3 $G L(n, \mathcal{A})$ is an open subgroup of $M(n, \mathcal{A})$.
$\boxed{4}$ The Banach-Lie group G is constructed as a closed subgroup of $G L(n, \mathcal{A})$.

The Wienner algebra splits into subalgebras

$$
\mathcal{A}_{+}=\left\{f \in \mathcal{A} \mid f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}\right\} \quad \text { and } \quad \mathcal{A}_{-}=\left\{f \in \mathcal{A} \mid f(z)=\sum_{n=-\infty}^{0} a_{n} z^{n}\right\} .
$$

The splitting allows us to

- define subgroups G_{-}, G_{+}of G,
- and the corresponding Riemann-Hilbert factorization on G.

Nonlinear Schrödinger equation

Consider the subgroup of $G L(2, \mathcal{A})$ defined by

$$
G=\left\{g(z) \in G L(2, \mathcal{A}) \left\lvert\, g(z)=\left[\begin{array}{cc}
a(z) & b(z) \\
-\bar{b}(z) & \bar{a}(z)
\end{array}\right]\right.\right\}
$$

where $a(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}, \quad \bar{a}(z) \equiv \sum_{n=-\infty}^{\infty} \bar{a}_{n} z^{n}$, etc.
The Lie algebra of G is given by

$$
\mathfrak{g}=\left\{X(z) \in M(n, \mathcal{A}) \left\lvert\, X(z)=\left[\begin{array}{cc}
a(z) & b(z) \\
-\bar{b}(z) & \bar{a}(z)
\end{array}\right]\right.\right\}
$$

Define subgroups

Nonlinear Schrödinger equation

Consider the subgroup of $G L(2, \mathcal{A})$ defined by

$$
G=\left\{g(z) \in G L(2, \mathcal{A}) \left\lvert\, g(z)=\left[\begin{array}{cc}
a(z) & b(z) \\
-\bar{b}(z) & \bar{a}(z)
\end{array}\right]\right.\right\}
$$

where $a(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}, \quad \bar{a}(z) \equiv \sum_{n=-\infty}^{\infty} \bar{a}_{n} z^{n}$, etc.
The Lie algebra of G is given by

$$
\mathfrak{g}=\left\{X(z) \in M(n, \mathcal{A}) \left\lvert\, X(z)=\left[\begin{array}{cc}
a(z) & b(z) \\
-\bar{b}(z) & \bar{a}(z)
\end{array}\right]\right.\right\}
$$

Define subgroups

$$
G_{-}=\left\{g(z) \in G \mid g(z)=I+\sum_{n=1}^{\infty} A_{n} z^{-n}\right\}, \quad G_{+}=\left\{g(z) \in G \mid g(z)=\sum_{n=0}^{\infty} B_{n} z^{n}\right\}
$$

Then

- G_{-}and G_{+}are closed subgroups of G,

2 $G_{-} \cap G_{+}=\{I\}$.

The Lie algebras of G_{-}and G_{+}satisfy

$$
\mathfrak{g}=\mathfrak{g}_{-} \oplus \mathfrak{g}_{+} \quad \Rightarrow \quad G_{-} G_{+} \quad \text { is open in } G .
$$

Define

and consider the Riemann-Hilbert factorization

If the group element

solves the Riemann-Hilbert factorization (3), then u satifes the NLS equation

The Lie algebras of G_{-}and G_{+}satisfy

$$
\mathfrak{g}=\mathfrak{g}_{-} \oplus \mathfrak{g}_{+} \quad \Rightarrow \quad G_{-} G_{+} \quad \text { is open in } G
$$

Define

$$
X_{k}(z)=\sigma z^{k} \in \mathfrak{g}_{+}, \quad \sigma=\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right], \quad k=1,2
$$

and consider the Riemann-Hilbert factorization

$$
\begin{equation*}
\exp \left(x X_{1}(z)+t X_{2}(z)\right) g=g_{-}(x, t) g_{+}(x, t), \quad g \in G_{-} . \tag{3}
\end{equation*}
$$

solves the Riemann-Hilbert factorization (3), then u satifes the NLS equation

The Lie algebras of G_{-}and G_{+}satisfy

$$
\mathfrak{g}=\mathfrak{g}_{-} \oplus \mathfrak{g}_{+} \quad \Rightarrow \quad G_{-} G_{+} \quad \text { is open in } G
$$

Define

$$
X_{k}(z)=\sigma z^{k} \in \mathfrak{g}_{+}, \quad \sigma=\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right], \quad k=1,2
$$

and consider the Riemann-Hilbert factorization

$$
\begin{equation*}
\exp \left(x X_{1}(z)+t X_{2}(z)\right) g=g_{-}(x, t) g_{+}(x, t), \quad g \in G_{-} \tag{3}
\end{equation*}
$$

Theorem

If the group element

$$
g_{-}(x, t)=I+\left[\begin{array}{cc}
* & u(x, t) \\
* & *
\end{array}\right] z^{-1}+o\left(z^{-2}\right)
$$

solves the Riemann-Hilbert factorization (3), then u satifes the NLS equation

$$
\begin{equation*}
i u_{t}-\frac{1}{2} u_{x x}-4 u|u|^{2}=0 \tag{4}
\end{equation*}
$$

Sketch of proof. According to the general theory, the matrices

$$
M_{1}=p_{+}\left(g_{-}^{-1} \sigma z g_{-}\right), \quad M_{2}=p_{+}\left(g_{-}^{-1} \sigma z^{2} g_{-}\right)
$$

satisfy the ZCE

$$
\begin{equation*}
\frac{\partial M_{1}}{\partial t}-\frac{\partial M_{2}}{\partial x}+\left[M_{1}, M_{2}\right]=0 . \tag{5}
\end{equation*}
$$

where $v=i\left(b_{2}-a_{1} b_{1}\right)$. If we denote $u=b_{1}$, then Eq. (5) implies

Sketch of proof. According to the general theory, the matrices

$$
M_{1}=p_{+}\left(g_{-}^{-1} \sigma z g_{-}\right), \quad M_{2}=p_{+}\left(g_{-}^{-1} \sigma z^{2} g_{-}\right)
$$

satisfy the ZCE

$$
\begin{equation*}
\frac{\partial M_{1}}{\partial t}-\frac{\partial M_{2}}{\partial x}+\left[M_{1}, M_{2}\right]=0 \tag{5}
\end{equation*}
$$

Let $g_{-}=I+\sum_{n=1}^{\infty} A_{n} z^{-n}$. Then $g_{-}^{-1}=I-A_{1} z^{-1}+\left(A_{1}^{2}-A_{2}\right) z^{-2}+o\left(z^{-3}\right)$, hence

$$
M_{1}=\sigma z+\left[\sigma, A_{1}\right], \quad M_{2}=\sigma z^{2}+\left[\sigma, A_{1}\right] z+\left[\sigma, A_{2}\right]-A_{1}\left[\sigma, A_{1}\right] .
$$

Sketch of proof. According to the general theory, the matrices

$$
M_{1}=p_{+}\left(g_{-}^{-1} \sigma z g_{-}\right), \quad M_{2}=p_{+}\left(g_{-}^{-1} \sigma z^{2} g_{-}\right)
$$

satisfy the ZCE

$$
\begin{equation*}
\frac{\partial M_{1}}{\partial t}-\frac{\partial M_{2}}{\partial x}+\left[M_{1}, M_{2}\right]=0 \tag{5}
\end{equation*}
$$

Let $g_{-}=I+\sum_{n=1}^{\infty} A_{n} z^{-n}$. Then $g_{-}^{-1}=I-A_{1} z^{-1}+\left(A_{1}^{2}-A_{2}\right) z^{-2}+o\left(z^{-3}\right)$, hence

$$
M_{1}=\sigma z+\left[\sigma, A_{1}\right], \quad M_{2}=\sigma z^{2}+\left[\sigma, A_{1}\right] z+\left[\sigma, A_{2}\right]-A_{1}\left[\sigma, A_{1}\right] .
$$

Since $A_{n}=\left[\begin{array}{cc}a_{n} & b_{n} \\ -\bar{b}_{n} & \bar{a}_{n}\end{array}\right]$ for some real valued functions a_{n} and b_{n}, we find
$M_{1}=\sigma z+2\left[\begin{array}{cc}0 & i b_{1} \\ -\overline{\left(i b_{1}\right)} & 0\end{array}\right], \quad M_{2}=\sigma z^{2}+2\left[\begin{array}{cc}0 & i b_{1} \\ -\overline{\left(i b_{1}\right)} & 0\end{array}\right] z+2\left[\begin{array}{cc}-\left|b_{1}\right|^{2} & v \\ -\bar{v} & i\left|b_{1}\right|^{2}\end{array}\right]$,
where $v=i\left(b_{2}-a_{1} b_{1}\right)$. If we denote $u=b_{1}$, then Eq. (5) implies

$$
v=\frac{1}{2} u_{x}, \quad i u_{t}-\frac{1}{2} u_{x x}-4 u|u|^{2}=0 .
$$

One-soliton solution

Consider the initial data $g \in G_{-}$,

$$
g=I+\left[\begin{array}{cc}
-\alpha & i \beta \\
i \beta & -\alpha
\end{array}\right] z^{-1}, \quad \alpha, \beta \in \mathbb{R}
$$

Solution of the Riemann-Hilbert factorization problem (3) yields

$$
g_{-}(x, t)=I+\left[\begin{array}{cc}
a_{1}(x, t) & b_{1}(x, t) \\
-\bar{b}_{1}(x, t) & \bar{a}_{1}(x, t)
\end{array}\right] z^{-1}
$$

where

$$
\begin{aligned}
a_{1}(x, t) & =-\alpha+i \beta \operatorname{tahn}(2 \beta(x+\alpha t)) \\
b_{1}(x, t) & =i \beta \exp \left(2 i\left(\alpha x+\left(\alpha^{2}-\beta^{2}\right) t\right) \operatorname{sech}(2 \beta(x+\alpha t)) .\right.
\end{aligned}
$$

By the previous theorem, the function $u=b_{1}$ is a solution of the NLS equation (one-soliton solution).

Remark
If the initial data $g \in G$ - has a pole or order N at $z=0$, then the RH
factorization problem leads to N-soliton solution of the NLS ecuation.

One-soliton solution

Consider the initial data $g \in G_{-}$,

$$
g=I+\left[\begin{array}{cc}
-\alpha & i \beta \\
i \beta & -\alpha
\end{array}\right] z^{-1}, \quad \alpha, \beta \in \mathbb{R}
$$

Solution of the Riemann-Hilbert factorization problem (3) yields

$$
g_{-}(x, t)=I+\left[\begin{array}{cc}
a_{1}(x, t) & b_{1}(x, t) \\
-\bar{b}_{1}(x, t) & \bar{a}_{1}(x, t)
\end{array}\right] z^{-1}
$$

where

$$
\begin{aligned}
a_{1}(x, t) & =-\alpha+i \beta \operatorname{tahn}(2 \beta(x+\alpha t)) \\
b_{1}(x, t) & =i \beta \exp \left(2 i\left(\alpha x+\left(\alpha^{2}-\beta^{2}\right) t\right) \operatorname{sech}(2 \beta(x+\alpha t)) .\right.
\end{aligned}
$$

By the previous theorem, the function $u=b_{1}$ is a solution of the NLS equation (one-soliton solution).

Remark

If the initial data $g \in G_{-}$has a pole or order N at $z=0$, then the RH factorization problem leads to N-soliton solution of the NLS equation.

Heisenberg magnet equation

By choosing different subgroups of G one obtains a Riemann-Hibert factorization that solves the Heisenberg magnet equation

$$
\begin{equation*}
S_{t}=S_{x x} \times S, \quad\|S\|=1 \tag{6}
\end{equation*}
$$

$S=\left(S_{1}, S_{2}, S_{3}\right)$ magnetic moment in a ferromagnetic material with isotropic interaction

Define closed subgroups

Consider the Riemann-Hilbert factorization

Heisenberg magnet equation

By choosing different subgroups of G one obtains a Riemann-Hibert factorization that solves the Heisenberg magnet equation

$$
\begin{equation*}
S_{t}=S_{x x} \times S, \quad\|S\|=1 \tag{6}
\end{equation*}
$$

$S=\left(S_{1}, S_{2}, S_{3}\right)$ magnetic moment in a ferromagnetic material with isotropic interaction

Define closed subgroups

$$
H_{-}=\left\{h(z) \in G \mid h(z)=\sum_{n=0}^{\infty} A_{n} z^{-1}\right\}, \quad H_{+}=\left\{h(z) \in G \mid h(z)=I+\sum_{n=1}^{\infty} B_{n} z^{n}\right\}
$$

Consider the Riemann-Hilbert factorization

Heisenberg magnet equation

By choosing different subgroups of G one obtains a Riemann-Hibert factorization that solves the Heisenberg magnet equation

$$
\begin{equation*}
S_{t}=S_{x x} \times S, \quad\|S\|=1 \tag{6}
\end{equation*}
$$

$S=\left(S_{1}, S_{2}, S_{3}\right)$ magnetic moment in a ferromagnetic material with isotropic interaction

Define closed subgroups

$$
H_{-}=\left\{h(z) \in G \mid h(z)=\sum_{n=0}^{\infty} A_{n} z^{-1}\right\}, \quad H_{+}=\left\{h(z) \in G \mid h(z)=I+\sum_{n=1}^{\infty} B_{n} z^{n}\right\} .
$$

Then
(1) $H_{-} \cap H_{+}=\{I\}$,

ฮ $H_{-} H_{+}$is open in G.
Consider the Riemann-Hilbert factorization

$$
\begin{equation*}
\exp \left(x X_{1}(z)+t X_{2}(z)\right) h=h_{-}(z) h_{+}(z), \quad h \in H_{-} . \tag{7}
\end{equation*}
$$

The matrices

$$
\begin{aligned}
& \tilde{M}_{1}=\tilde{p}_{+}\left(h_{-}^{-1} \sigma z h_{-}\right)=\left(A_{0}^{-1} \sigma A_{0}\right) z \\
& \tilde{M}_{2}=\tilde{p}_{+}\left(h_{-}^{-1} \sigma z^{2} h_{-}\right)=\left(A_{0}^{-1} \sigma A_{0}\right) z^{2}+\left[A_{0}^{-1} \sigma A_{0}, A_{0}^{-1} A_{1}\right] z
\end{aligned}
$$

satisfy the ZCE

$$
\begin{equation*}
\frac{\tilde{M}_{1}}{\partial t}-\frac{\tilde{M}_{2}}{\partial x}+\left[\tilde{M}_{1}, \tilde{M}_{2}\right]=0 \tag{8}
\end{equation*}
$$

The matrices

$$
\begin{aligned}
& \tilde{M}_{1}=\tilde{p}_{+}\left(h_{-}^{-1} \sigma z h_{-}\right)=\left(A_{0}^{-1} \sigma A_{0}\right) z, \\
& \tilde{M}_{2}=\tilde{p}_{+}\left(h_{-}^{-1} \sigma z^{2} h_{-}\right)=\left(A_{0}^{-1} \sigma A_{0}\right) z^{2}+\left[A_{0}^{-1} \sigma A_{0}, A_{0}^{-1} A_{1}\right] z
\end{aligned}
$$

satisfy the ZCE

$$
\begin{equation*}
\frac{\tilde{M}_{1}}{\partial t}-\frac{\tilde{M}_{2}}{\partial x}+\left[\tilde{M}_{1}, \tilde{M}_{2}\right]=0 \tag{8}
\end{equation*}
$$

Define

$$
S=\frac{1}{i}\left(A_{0}^{-1} \sigma A_{0}\right)=\left[\begin{array}{cc}
S_{3} & S_{1}-i S_{2} \\
S_{1}+i S_{2} & -S_{3}
\end{array}\right]=\sum_{i=1}^{3} S_{i} \sigma_{i}
$$

where

$$
\sigma_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \sigma_{2}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], \quad \sigma_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \quad \text { are Pauli spin matrices. }
$$

Note that $S^{2}=I \Rightarrow \quad \sum_{i=1}^{3} S_{i}^{2}=1$.

The zero-curvature equation for \tilde{M}_{1} and \tilde{M}_{2} is equivalent with the matrix equation

$$
\begin{equation*}
\frac{\partial S}{\partial t}=\frac{1}{4 i}\left[S, S_{x x}\right] \tag{9}
\end{equation*}
$$

which is the Heisenberg magnet equation (6) for the unit vector $S=\left(S_{1}, S_{2}, S_{3}\right)$ after rescaling $t \mapsto \frac{1}{2} t$.

Gauge transformations

Let G be a Lie group with Lie algebra \mathfrak{g}. Assume $A_{1}, A_{2} \in \mathfrak{g}$ satisfy the zero-curvature equation

$$
\frac{\partial A_{1}}{\partial x_{2}}-\frac{\partial A_{2}}{\partial x_{1}}+\left[A_{1}, A_{2}\right]=0
$$

Definition

A gauge transformation $\Gamma_{g}: \mathfrak{g} \rightarrow \mathfrak{g}$ on a pair of matrices $\left(A_{1}, A_{2}\right)$ by an element $g \in G$ is defined by

$$
\begin{equation*}
\Gamma_{g}\left(A_{k}\right)=g A_{k} g^{-1}+\frac{\partial g}{\partial x_{k}} g^{-1}, \quad k=1,2 . \tag{10}
\end{equation*}
$$

Gauge transformations

Let G be a Lie group with Lie algebra \mathfrak{g}. Assume $A_{1}, A_{2} \in \mathfrak{g}$ satisfy the zero-curvature equation

$$
\frac{\partial A_{1}}{\partial x_{2}}-\frac{\partial A_{2}}{\partial x_{1}}+\left[A_{1}, A_{2}\right]=0
$$

Definition

A gauge transformation $\Gamma_{g}: \mathfrak{g} \rightarrow \mathfrak{g}$ on a pair of matrices $\left(A_{1}, A_{2}\right)$ by an element $g \in G$ is defined by

$$
\begin{equation*}
\Gamma_{g}\left(A_{k}\right)=g A_{k} g^{-1}+\frac{\partial g}{\partial x_{k}} g^{-1}, \quad k=1,2 \tag{10}
\end{equation*}
$$

- Γ_{g} defines an action of the group G on the associated Lie algebra \mathfrak{g}.
- The zero-curvature equation is invariant under the gauge transformation:

$$
\text { if } B_{k}=\Gamma_{g}\left(A_{k}\right) \text {, then } \operatorname{ZCE}\left(A_{1}, A_{2}\right) \quad \Leftrightarrow \quad \operatorname{ZCE}\left(B_{1}, B_{2}\right)
$$

Remarks

\leq A gauge transformation generally changes the type of equation represented by ZCE. Such equations are called gauge equivalent (e.g. the nonlinear Schrödinger and Heisenberg magnet equation).

Q Residual gauge transformations leave a particular equation invariant Such transformations preserve the particular shape of A_{1} and A_{2}, and lead to a hierarchy of infinitesimal svmmetries of the equation and associated conservation laws.

Remarks

\leq A gauge transformation generally changes the type of equation represented by ZCE. Such equations are called gauge equivalent (e.g. the nonlinear Schrödinger and Heisenberg magnet equation).

■ Residual gauge transformations leave a particular equation invariant. Such transformations preserve the particular shape of A_{1} and A_{2}, and lead to a hierarchy of infinitesimal symmetries of the equation and associated conservation laws.

Gauge transformation between the NLS and HM equations

The well known gauge equivalence between the NLS and HM equations can be interpreted in terms of different Riemann-Hilbert factorization of the group G.

Suppose is a solution of the RH factorization for the NLS equation, and let

If $g_{+}(x, t)=\sum_{n=0}^{\infty} B_{n}(x, t) z^{n}$, then the matrices defined by the gauge
transformation
satisfy the ZCE which is equivalent with the HM equation (6).

Gauge transformation between the NLS and HM equations

The well known gauge equivalence between the NLS and HM equations can be interpreted in terms of different Riemann-Hilbert factorization of the group G.

Theorem

Suppose

$$
\exp \left(x X_{1}(z)+t X_{2}(z)\right)=g_{-}(x, t) g_{+}(x, t), \quad g \in G_{-}
$$

is a solution of the RH factorization for the NLS equation, and let

$$
M_{k}=p_{+}\left(g_{-}^{-1} \sigma z^{k} g_{-}\right), \quad k=1,2 .
$$

If $g_{+}(x, t)=\sum_{n=0}^{\infty} B_{n}(x, t) z^{n}$, then the matrices defined by the gauge transformation

$$
\tilde{M}_{k} \equiv \Gamma_{B_{0}^{-1}}\left(M_{k}\right)=B_{0}^{-1} M_{k} B_{0}-B_{0}^{-1} \frac{\partial B_{0}}{\partial x}, \quad k=1,2
$$

satisfy the ZCE which is equivalent with the HM equation (6).

Example

Suppose $g_{-}(x, t)=I+\sum_{k=1}^{N} A_{k}(x, t) z^{-k}$. Then $B_{0}(x, t)$ can be found explicitly from

$$
B_{0}(x, t)=A_{N}^{-1}(x, t) A_{N}(0,0)
$$

and the matrix

$$
S=\frac{1}{i} B_{0}^{-1} \sigma B_{0}=\left[\begin{array}{cc}
S_{3} & S_{1}-i S_{2} \\
S_{1}+i S_{2} & -S_{3}
\end{array}\right]
$$

represents solution of the HM equation.

Example

Suppose $g_{-}(x, t)=I+\sum_{k=1}^{N} A_{k}(x, t) z^{-k}$. Then $B_{0}(x, t)$ can be found explicitly from

$$
B_{0}(x, t)=A_{N}^{-1}(x, t) A_{N}(0,0)
$$

and the matrix

$$
S=\frac{1}{i} B_{0}^{-1} \sigma B_{0}=\left[\begin{array}{cc}
S_{3} & S_{1}-i S_{2} \\
S_{1}+i S_{2} & -S_{3}
\end{array}\right]
$$

represents solution of the HM equation.
If we denote

$$
A_{N}(x, t)=\left[\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right], \quad A_{N}(0,0)=\left[\begin{array}{cc}
a_{0} & b_{0} \\
-\bar{b}_{0} & \bar{a}_{0}
\end{array}\right]
$$

then

$$
\begin{align*}
S_{3} & =1+\frac{4 \operatorname{Re}\left(a b \overline{a_{0} b_{0}}\right)}{\left(|a|^{2}-|b|^{2}\right)\left(\left|a_{0}\right|^{2}-\left|b_{0}\right|^{2}\right)} \tag{11}\\
S_{1}+i S_{2} & =2 \frac{\left(|a|^{2}-|b|^{2}\right) a_{0} \bar{b}_{0}+a b \overline{b_{0}^{2}}-\overline{a b} a_{0}^{2}}{\left(|a|^{2}-|b|^{2}\right)\left(\left|a_{0}\right|^{2}-\left|b_{0}\right|^{2}\right)} \tag{12}
\end{align*}
$$

Consider the solution of the RH problem for the NLS equation

$$
g_{-}(x, t)=I+\left[\begin{array}{cc}
-i \alpha \tanh (2 \alpha x) & -i \alpha e^{-i \alpha^{2} t} \operatorname{sech}(2 \alpha x) \\
-i \alpha e^{i 2 \alpha^{2} t} \operatorname{sech}(2 \alpha x) & i \alpha \tanh (2 \alpha x)
\end{array}\right] z^{-1}
$$

Then Eqs. (11) and (12) yield the solution

$$
\begin{aligned}
& S_{1}(x, t)=2 \cos \left(2 \alpha^{2} t\right) \tanh (2 \alpha x) \operatorname{sech}(2 \alpha x), \\
& S_{2}(x, t)=-2 \sin \left(2 \alpha^{2} t\right) \tanh (2 \alpha x) \operatorname{sech}(2 \alpha x), \\
& S_{3}(x, t)=2 \operatorname{sech}^{2}(2 \alpha x)-1 .
\end{aligned}
$$

$S=\left(S_{1}, S_{2}, S_{3}\right)$ magnetization vector which rotates about the z-axis.

Residual gauge transformations

Many evolution equations can be written in zero-curvature form on finite dimensional Lie algebras.

Examples

(1) The Kortweg-de Vries (KdV) equation

$$
u_{t}=u_{x x x}+3 u u_{x}
$$

is equivalent with the ZCE for $A_{1}, A_{2} \in \operatorname{sl}(2, \mathbb{R})$,

$$
A_{1}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{1}{2} u & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
-\frac{1}{2} u_{x} & u \\
-\frac{1}{2} u_{x x}-\frac{1}{2} u^{2} & \frac{1}{2} u_{x}
\end{array}\right] .
$$

(2) The Harry Dym equation

$$
u_{t}=-\frac{1}{4} u^{3} u_{x x x}
$$

is equivalent the ZCE for $A_{1}, A_{2} \in \operatorname{sl}(2, \mathbb{R})$ given by

$$
A_{1}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{1}{u^{2}} & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
-\frac{1}{2} u_{x} & u \\
-\frac{1}{2} u_{x x}-\frac{1}{u} & \frac{1}{2} u_{x}
\end{array}\right] .
$$

(3) The focusing nonlinear Schrödinger equation for a complex valued function u,
is equivalent with the ZCE for $A_{1}, A_{2} \in s u(2, \mathbb{C})$ defined by

(2) The Harry Dym equation

$$
u_{t}=-\frac{1}{4} u^{3} u_{x x x}
$$

is equivalent the ZCE for $A_{1}, A_{2} \in \operatorname{sl}(2, \mathbb{R})$ given by

$$
A_{1}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{1}{u^{2}} & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
-\frac{1}{2} u_{x} & u \\
-\frac{1}{2} u_{x x}-\frac{1}{u} & \frac{1}{2} u_{x}
\end{array}\right] .
$$

(3) The focusing nonlinear Schrödinger equation for a complex valued function u,

$$
i u_{t}-u_{x x}-2|u|^{2} u=0,
$$

is equivalent with the ZCE for $A_{1}, A_{2} \in s u(2, \mathbb{C})$ defined by

$$
A_{1}=\left[\begin{array}{cc}
0 & u \\
-\bar{u} & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
-i|u|^{2} & -i u_{x} \\
-i \bar{u}_{x} & i|u|^{2}
\end{array}\right] .
$$

Residual gauge transformations for the KdV equation

Suppose that $A_{1}, A_{2} \in \operatorname{sl}(2, \mathbb{R}), A_{i}=A_{i}(x, t)$,

$$
A_{1}=\left[\begin{array}{cc}
R & S \\
T & -R
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
p & u \\
q & -p
\end{array}\right]
$$

satisfy the ZCE

$$
\begin{equation*}
\frac{\partial A_{1}}{\partial t}+\frac{\partial A_{2}}{\partial x}+\left[A_{1}, A_{2}\right]=0 \tag{13}
\end{equation*}
$$

In this case, the $Z C E$ equation (13) is equivalent with the $K d V$ equation.

Residual gauge transformations for the KdV equation

Suppose that $A_{1}, A_{2} \in \operatorname{sl}(2, \mathbb{R}), A_{i}=A_{i}(x, t)$,

$$
A_{1}=\left[\begin{array}{cc}
R & S \\
T & -R
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
p & u \\
q & -p
\end{array}\right]
$$

satisfy the ZCE

$$
\begin{equation*}
\frac{\partial A_{1}}{\partial t}+\frac{\partial A_{2}}{\partial x}+\left[A_{1}, A_{2}\right]=0 \tag{13}
\end{equation*}
$$

We fix a particular gauge of A_{1} as

$$
A_{1}=\left[\begin{array}{cc}
0 & 1 \tag{14}\\
T & 0
\end{array}\right] \quad \text { (Drinfeld-Sokolov gauge) }
$$

If $T=-\frac{1}{2} u$, then A_{2} is completely determined by u since $p=-\frac{1}{2} u_{x}$ and $q=p_{x}-\frac{1}{2} u^{2}$, hence

$$
A_{2}=\left[\begin{array}{cc}
-\frac{1}{2} u_{x} & u \tag{15}\\
-\frac{1}{2} u_{x x}-\frac{1}{2} u^{2} & \frac{1}{2} u_{x}
\end{array}\right] .
$$

In this case, the ZCE equation (13) is equivalent with the KdV equation.

Goal: determine residual gauge transformations that leave the DS gauge of A_{1} invariant. Bu successive application of such transformations we can find new solutions of the KdV equation.

Idea: represent the $\operatorname{sl}(2, \mathbb{R})$ matrices in DS gauge as the level set of a function and find the gauge symmetry group of the set

Goal: determine residual gauge transformations that leave the DS gauge of A_{1} invariant. Bu successive application of such transformations we can find new solutions of the KdV equation.

Idea: represent the $\operatorname{sl}(2, \mathbb{R})$ matrices in DS gauge as the level set of a function and find the gauge symmetry group of the set.

Let G be a connected local Lie group of transformations acting on the m-dimencional manifold M Sumnoes that $F \cdot M \rightarrow \mathbb{R} L<m$ is of mavimal ramks on the level set Then G is a symmetry group of S if and only if the Lie derivative

Goal: determine residual gauge transformations that leave the DS gauge of A_{1} invariant. Bu successive application of such transformations we can find new solutions of the KdV equation.

Idea: represent the $s l(2, \mathbb{R})$ matrices in DS gauge as the level set of a function and find the gauge symmetry group of the set.

If G is a local Lie group of transformations acting on the manifold M, then to every $X \in T_{e} G$ we associate the vector field $\hat{X}: M \rightarrow T M$ by

$$
\hat{X}(a)=\left.\frac{d}{d \tau}\right|_{\tau=0} \exp (\tau X) \cdot a .
$$

Goal: determine residual gauge transformations that leave the DS gauge of A_{1} invariant. Bu successive application of such transformations we can find new solutions of the KdV equation.

Idea: represent the $s l(2, \mathbb{R})$ matrices in DS gauge as the level set of a function and find the gauge symmetry group of the set.

If G is a local Lie group of transformations acting on the manifold M, then to every $X \in T_{e} G$ we associate the vector field $\hat{X}: M \rightarrow T M$ by

$$
\hat{X}(a)=\left.\frac{d}{d \tau}\right|_{\tau=0} \exp (\tau X) \cdot a .
$$

Theorem

Let G be a connected local Lie group of transformations acting on the m-dimensional manifold M. Suppose that $F: M \rightarrow \mathbb{R}^{l}, l \leq m$, is of maximal rank on the level set

$$
\mathcal{S}=\{x \in M \mid F(x)=0\} .
$$

Then G is a symmetry group of \mathcal{S} if and only if the Lie derivative

$$
\mathcal{L}_{\hat{X}} F(x)=0 \quad \forall x \in \mathcal{S}, \quad k=1,2, \ldots, l,
$$

for every infinitesimal generator X of G.

Define $F: s l(2, \mathbb{R}) \rightarrow \mathbb{R}^{2}$ by

$$
F\left(\left[\begin{array}{cc}
a & b \\
c & -a
\end{array}\right]\right)=(a, b-1)
$$

Then

$$
\mathcal{S}=\{A \in \operatorname{sl}(2, \mathbb{R}) \mid F(A)=0\}
$$

consists of matrices in DS gauge. Using $s l(2, \mathbb{R}) \simeq \mathbb{R}^{3}$, we find

$$
D F(A)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad \forall A \in \operatorname{sl}(2, \mathbb{R}) \quad \Rightarrow \quad \operatorname{rank}(D F)=\max . \text { on } \mathcal{S}
$$

Consider a one-parameter groups of gauge transformations
\qquad

Define $F: \operatorname{sl}(2, \mathbb{R}) \rightarrow \mathbb{R}^{2}$ by

$$
F\left(\left[\begin{array}{cc}
a & b \\
c & -a
\end{array}\right]\right)=(a, b-1)
$$

Then

$$
\mathcal{S}=\{A \in \operatorname{sl}(2, \mathbb{R}) \mid F(A)=0\}
$$

consists of matrices in DS gauge. Using $s l(2, \mathbb{R}) \simeq \mathbb{R}^{3}$, we find

$$
D F(A)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad \forall A \in \operatorname{sl}(2, \mathbb{R}) \quad \Rightarrow \quad \operatorname{rank}(D F)=\max . \text { on } \mathcal{S}
$$

Consider a one-parameter groups of gauge transformations

$$
G=\left\{\Gamma_{g(\tau)} \mid g(\tau)=\exp (\tau L(x, t)), \tau \in \mathbb{R}\right\}, \quad L \in \operatorname{sl}(2, \mathbb{R})
$$

We want to determine conditions on L such that $\Gamma_{g(\tau)}$ is a residual transformation.

The group G acts on $s l(2, \mathbb{R})$ by

$$
\Gamma_{g(\tau)}(A)=g(\tau) A g(\tau)^{-1}+\frac{\partial g(\tau)}{\partial x} g(\tau)^{-1}
$$

Hence, G is a symmetry group of the level set \mathcal{S} iff

$$
\mathcal{L}_{\hat{L}} F(A)=0 \quad \forall A \in \mathcal{S}
$$

where \hat{L} is the vector field on $\operatorname{sl}(2, \mathbb{R})$ defined by

$$
\hat{L}(A)=\left.\frac{d}{d \tau}\right|_{\tau=0} \Gamma_{g(\tau)}(A)=[L, A]+\frac{\partial L}{\partial x} .
$$

To evaluate the condition (16), denote

Then

Hence, G is a symmetry group of the level set \mathcal{S} iff

$$
\mathcal{L}_{\hat{L}} F(A)=0 \quad \forall A \in \mathcal{S}
$$

where \hat{L} is the vector field on $\operatorname{sl}(2, \mathbb{R})$ defined by

$$
\hat{L}(A)=\left.\frac{d}{d \tau}\right|_{\tau=0} \Gamma_{g(\tau)}(A)=[L, A]+\frac{\partial L}{\partial x} .
$$

Hence $L \in \operatorname{sl}(2, \mathbb{R})$ is an infinitesimal generator of the gauge symmetry group of \mathcal{S} iff

$$
\begin{equation*}
\mathcal{L}_{\hat{L}} F(A)=D F(A)\left([L, A]+\frac{\partial L}{\partial x}\right)=0 \quad \forall A \in \mathcal{S} . \tag{16}
\end{equation*}
$$

Then

Hence, G is a symmetry group of the level set \mathcal{S} iff

$$
\mathcal{L}_{\hat{L}} F(A)=0 \quad \forall A \in \mathcal{S}
$$

where \hat{L} is the vector field on $\operatorname{sl}(2, \mathbb{R})$ defined by

$$
\hat{L}(A)=\left.\frac{d}{d \tau}\right|_{\tau=0} \Gamma_{g(\tau)}(A)=[L, A]+\frac{\partial L}{\partial x} .
$$

Hence $L \in \operatorname{sl}(2, \mathbb{R})$ is an infinitesimal generator of the gauge symmetry group of \mathcal{S} iff

$$
\begin{equation*}
\mathcal{L}_{\hat{L}} F(A)=D F(A)\left([L, A]+\frac{\partial L}{\partial x}\right)=0 \quad \forall A \in \mathcal{S} . \tag{16}
\end{equation*}
$$

To evaluate the condition (16), denote

$$
L=\left[\begin{array}{cc}
w & y \\
v & -w
\end{array}\right], \quad A=\left[\begin{array}{cc}
0 & 1 \\
T & 0
\end{array}\right] \in \mathcal{S} .
$$

Then

$$
[L, A]+\frac{\partial L}{\partial x}=\left[\begin{array}{cc}
T y-v+w_{x} & 2 w+y_{x} \\
-2 w T+v_{x} & -T y+v-w_{x}
\end{array}\right]
$$

Using $D F(A)=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ we find

$$
D F(A)\left([L, A]+\frac{\partial L}{\partial x}\right)=\left[\begin{array}{c}
T y-v+w_{x} \\
2 w+y_{x}
\end{array}\right]
$$

hence L must satisfy the condition

$$
T y-v+w_{x}=0, \quad 2 w+y_{x}=0
$$

The choice $T=-\frac{1}{2} u$ yields the KdV equation, thus

is an infinitesimal generator of the gauge symmetry group for the KdV equation parametrized by the function $y(x, t)$.
\qquad equation.

In The equation is found by expanding the gauge transformations of the KdV matrices into powers of τ.

Using $D F(A)=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ we find

$$
D F(A)\left([L, A]+\frac{\partial L}{\partial x}\right)=\left[\begin{array}{c}
T y-v+w_{x} \\
2 w+y_{x}
\end{array}\right]
$$

hence L must satisfy the condition

$$
T y-v+w_{x}=0, \quad 2 w+y_{x}=0
$$

The choice $T=-\frac{1}{2} u$ yields the KdV equation, thus

$$
L=\left[\begin{array}{cc}
-\frac{1}{2} y_{x} & y \tag{17}\\
-\frac{1}{2} u y-\frac{1}{2} y_{x x} & \frac{1}{2} y_{x}
\end{array}\right]
$$

is an infinitesimal generator of the gauge symmetry group for the KdV equation parametrized by the function $y(x, t)$.

- The function y satisfies a linear PDE depending on the solution u of the KdV equation.
- The equation is found by expanding the gauge transformations of the KdV

Using $D F(A)=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ we find

$$
D F(A)\left([L, A]+\frac{\partial L}{\partial x}\right)=\left[\begin{array}{c}
T y-v+w_{x} \\
2 w+y_{x}
\end{array}\right]
$$

hence L must satisfy the condition

$$
T y-v+w_{x}=0, \quad 2 w+y_{x}=0
$$

The choice $T=-\frac{1}{2} u$ yields the KdV equation, thus

$$
L=\left[\begin{array}{cc}
-\frac{1}{2} y_{x} & y \tag{17}\\
-\frac{1}{2} u y-\frac{1}{2} y_{x x} & \frac{1}{2} y_{x}
\end{array}\right]
$$

is an infinitesimal generator of the gauge symmetry group for the KdV equation parametrized by the function $y(x, t)$.

- The function y satisfies a linear PDE depending on the solution u of the KdV equation.
- The equation is found by expanding the gauge transformations of the KdV matrices into powers of τ.

For L given by Eq. (17), consider the gauge transformation of

$$
A_{1}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{1}{2} u &
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
-\frac{1}{2} u_{x} & u \\
-\frac{1}{2} u_{x x}-\frac{1}{2} u^{2} & \frac{1}{2} u_{x}
\end{array}\right] .
$$

Equations (18) and (19) give deformations of u to first order in τ :

[^0]$y_{t}=y_{x x x}+3 u y_{x}$
Remark
Ea. (20) is the linear equation associated to KdV found by Gardner by the Inverse
scattering transform.

For L given by Eq. (17), consider the gauge transformation of

$$
\begin{gather*}
A_{1}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{1}{2} u &
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
-\frac{1}{2} u_{x} & u \\
-\frac{1}{2} u_{x x}-\frac{1}{2} u^{2} & \frac{1}{2} u_{x}
\end{array}\right] . \\
\Gamma_{g(\tau)}\left(A_{1}\right)=\left[\begin{array}{cc}
0 & 1 \\
-\frac{1}{2} u & 0
\end{array}\right]+\tau\left[\begin{array}{cc}
0 & 0 \\
-\frac{1}{2} y_{x x x}-u y_{x}-\frac{1}{2} u_{x} y & 0
\end{array}\right]+o\left(\tau^{2}\right), \tag{18}\\
\Gamma_{g(\tau)}\left(A_{2}\right)=\left[\begin{array}{cc}
-\frac{1}{2} u_{x} & u \\
-\frac{1}{2} u_{x x}-\frac{1}{2} u^{2} & \frac{1}{2} u_{x}
\end{array}\right]+\tau\left[\begin{array}{cc}
* & y_{t}-u y_{x}+u_{x} y \\
* & *
\end{array}\right]+o\left(\tau^{2}\right) . \tag{19}
\end{gather*}
$$

\qquad

For L given by Eq. (17), consider the gauge transformation of

$$
\begin{gather*}
A_{1}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{1}{2} u &
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
-\frac{1}{2} u_{x} & u \\
-\frac{1}{2} u_{x x}-\frac{1}{2} u^{2} & \frac{1}{2} u_{x}
\end{array}\right] . \\
\Gamma_{g(\tau)}\left(A_{1}\right)=\left[\begin{array}{cc}
0 & 1 \\
-\frac{1}{2} u & 0
\end{array}\right]+\tau\left[\begin{array}{cc}
0 & 0 \\
-\frac{1}{2} y_{x x x}-u y_{x}-\frac{1}{2} u_{x} y & 0
\end{array}\right]+o\left(\tau^{2}\right), \tag{18}\\
\Gamma_{g(\tau)}\left(A_{2}\right)=\left[\begin{array}{cc}
-\frac{1}{2} u_{x} & u \\
-\frac{1}{2} u_{x x}-\frac{1}{2} u^{2} & \frac{1}{2} u_{x}
\end{array}\right]+\tau\left[\begin{array}{cc}
* & y_{t}-u y_{x}+u_{x} y \\
* & *
\end{array}\right]+o\left(\tau^{2}\right) . \tag{19}
\end{gather*}
$$

Equations (18) and (19) give deformations of u to first order in τ :

$$
\begin{array}{r}
\delta u(y)=y_{x x x}+2 y_{x}+u_{x} y \\
\delta u(y)=y_{t}-u y_{x}+u_{x} y .
\end{array}
$$

which imply that

$$
\begin{equation*}
y_{t}=y_{x x x}+3 u y_{x} . \tag{20}
\end{equation*}
$$

Remark

Eq. (20) is the linear equation associated to KdV found by Gardner by the Inverse scattering transform.

Theorem (Infinitesimal transformations of KdV)

If u satisfies the KdV equation and y is a solution of the associated linear equation (20), then

$$
L=\left[\begin{array}{cc}
-\frac{1}{2} y_{x} & y \\
-\frac{1}{2} u y-\frac{1}{2} y_{x x} & \frac{1}{2} y_{x}
\end{array}\right]
$$

is an infinitesimal generator of the gauge symmetry group for the KdV equation and

$$
\tilde{u}=u+\tau\left(y_{x x x}+2 y_{x}+u_{x} y\right)
$$

satisfies the KdV equation to first order in τ.

Hierarchy of residual gauge transformations for KdV and associated conservation laws

To each solution u of the KdV equation one can associate a hierarchy of residual gauge transformations $L^{(1)}, L^{(1)}, L^{(2)}, \ldots$ and associated local conservation laws. Suppose $y^{(1)}$ is a solution of the associated linear equation (20) and define Then $G^{(1)}$ satisfies the evolution equation which can be written as the local conservation law

Hierarchy of residual gauge transformations for KdV and associated conservation laws

To each solution u of the KdV equation one can associate a hierarchy of residual gauge transformations $L^{(1)}, L^{(1)}, L^{(2)}, \ldots$ and associated local conservation laws.

Suppose $y^{(1)}$ is a solution of the associated linear equation (20) and define

$$
G^{(1)}=\delta u\left(y^{(1)}\right)=y_{x x x}^{(1)}+2 u y_{x}^{(1)}+u_{x} y^{(1)} .
$$

Hierarchy of residual gauge transformations for KdV and associated conservation laws

To each solution u of the KdV equation one can associate a hierarchy of residual gauge transformations $L^{(1)}, L^{(1)}, L^{(2)}, \ldots$ and associated local conservation laws.

Suppose $y^{(1)}$ is a solution of the associated linear equation (20) and define

$$
G^{(1)}=\delta u\left(y^{(1)}\right)=y_{x x x}^{(1)}+2 u y_{x}^{(1)}+u_{x} y^{(1)}
$$

Then $G^{(1)}$ satisfies the evolution equation

$$
G_{t}^{(1)}=G_{x x x}^{(1)}+3 u_{x} G^{(1)}+3 u G_{x}^{(1)}
$$

which can be written as the local conservation law

$$
\frac{\partial G^{(1)}}{\partial t}=\frac{\partial F^{(1)}}{\partial x}, \quad F^{(1)}=G_{x x}^{(1)}+3 u G^{(1)}
$$

for density $G^{(1)}$ and flux $F^{(1)}$.

Define $y^{(2)}$ by the condition $y_{x}^{(2)}=G^{(1)}$. Then

$$
y_{t}^{(2)}=\int \frac{\partial G^{(1)}}{\partial t} d x=F^{(1)}=y_{x x x}^{(2)}+3 u y_{x}^{(2)},
$$

hence $y^{(2)}$ also satisfies Eq. (20).
By iterating the above procedure we obtain an infinite hierarchy of
li solutions of Eq. (20) defined by

Define $y^{(2)}$ by the condition $y_{x}^{(2)}=G^{(1)}$. Then

$$
y_{t}^{(2)}=\int \frac{\partial G^{(1)}}{\partial t} d x=F^{(1)}=y_{x x x}^{(2)}+3 u y_{x}^{(2)},
$$

hence $y^{(2)}$ also satisfies Eq. (20).
By iterating the above procedure we obtain an infinite hierarchy of
I solutions of Eq. (20) defined by

$$
y_{x}^{(n+1)}=G^{(n)}, \quad G^{(n)}=\delta u\left(y^{(n)}\right),
$$

© local conservation laws

Define $y^{(2)}$ by the condition $y_{x}^{(2)}=G^{(1)}$. Then

$$
y_{t}^{(2)}=\int \frac{\partial G^{(1)}}{\partial t} d x=F^{(1)}=y_{x x x}^{(2)}+3 u y_{x}^{(2)},
$$

hence $y^{(2)}$ also satisfies Eq. (20).
By iterating the above procedure we obtain an infinite hierarchy of
I solutions of Eq. (20) defined by

$$
y_{x}^{(n+1)}=G^{(n)}, \quad G^{(n)}=\delta u\left(y^{(n)}\right),
$$

■ local conservation laws

$$
\frac{\partial G^{(n)}}{\partial t}=\frac{\partial F^{(n)}}{\partial x}, \quad F^{(n)}=G_{x x}^{(n)}+3 u G^{(n)}, \quad n \geq 1
$$

Define $y^{(2)}$ by the condition $y_{x}^{(2)}=G^{(1)}$. Then

$$
y_{t}^{(2)}=\int \frac{\partial G^{(1)}}{\partial t} d x=F^{(1)}=y_{x x x}^{(2)}+3 u y_{x}^{(2)},
$$

hence $y^{(2)}$ also satisfies Eq. (20).
By iterating the above procedure we obtain an infinite hierarchy of
I solutions of Eq. (20) defined by

$$
y_{x}^{(n+1)}=G^{(n)}, \quad G^{(n)}=\delta u\left(y^{(n)}\right),
$$

■ local conservation laws

$$
\frac{\partial G^{(n)}}{\partial t}=\frac{\partial F^{(n)}}{\partial x}, \quad F^{(n)}=G_{x x}^{(n)}+3 u G^{(n)}, \quad n \geq 1
$$

By starting with the trivial solution $y^{(1)}=1$, we find

$$
\begin{aligned}
& y^{(2)}=u \\
& y^{(3)}=\frac{3}{2} u^{2}+u_{x x} \\
& y^{(4)}=\frac{15}{6} u^{3}+\frac{5}{2} u_{x}^{2}+5 u u_{x x}+u_{x x x}
\end{aligned}
$$

The corresponding infinitesimal generators of the gauge symmetry group are given by

$$
\begin{aligned}
L^{(1)} & =\left[\begin{array}{cc}
0 & 1 \\
-\frac{1}{2} u & 0
\end{array}\right] \\
L^{(2)} & =\left[\begin{array}{cc}
-\frac{1}{2} u_{x} & u \\
-\frac{1}{2} u_{x x}-\frac{1}{2} u^{2} & \frac{1}{2} u_{x}
\end{array}\right] \\
L^{(3)} & =\left[\begin{array}{cc}
-\frac{1}{2} u_{x x x}-\frac{3}{2} u u_{x} & u_{x x}+\frac{3}{2} u^{2} \\
-\frac{1}{2} u_{x x x x}-2 u u_{x x}-\frac{3}{2} u_{x}^{2}-\frac{3}{4} u^{3} & \frac{1}{2} u_{x x x}+\frac{3}{2} u u_{x}
\end{array}\right]
\end{aligned}
$$

[^0]: which imply that

