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Evolution equations in zero–curvature form

Many physically interesting evolution equations

∂u

∂t
= K(u, ux, . . . , u

(n)), u = u(x, t),

where K is a nonlinear function can be written in zero–curvature form

∂A1

∂x
−
∂A2

∂t
+ [A1, A2] = 0, A1, A2 ∈ g,

where g is a finite or inifinite dimensional Lie algebra.

Such equations, known as integrable systems, have many special properties in

common:

admit soliton solutions,

solvable by the inverse scattering transform,

posses Hamiltonian structure (on an infinite dimensional phase space),

admit an infinite hierarchy of conservation laws (related to inifinitesial

symmetries),

can be solved by the Riemann–Hilbert factorization problem on Lie groups,
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Examples of integrable systems

1 Kortweg–de Vries (KdV) equation

ut = uxxx + 3uux

describes propagation of water waves in a shallow canal.

2 Nonlinear Shrödinger (NLS) equation

iut −
1

2
uxx − 4u|u|2 = 0

has applications in fiber optics.

3 Heisenberg magnet (HM) equation

St = Sxx × S, ‖S‖ = 1,

describes distribution of mangetic moments S = (S1, S2, S3) in a

ferromangetic chain.

4 Landau–Lifshitz (LL) equation

St = Sxx × S + S × JS, ‖S‖ = 1,

generalizes the HM equation to nonisotropic interaction of magnetic moments

with coupling J = diag(J1, J2, J3).

S. Krešić–Jurić Gauge transformations and symmetries



Examples of integrable systems

1 Kortweg–de Vries (KdV) equation

ut = uxxx + 3uux

describes propagation of water waves in a shallow canal.

2 Nonlinear Shrödinger (NLS) equation

iut −
1

2
uxx − 4u|u|2 = 0

has applications in fiber optics.

3 Heisenberg magnet (HM) equation

St = Sxx × S, ‖S‖ = 1,

describes distribution of mangetic moments S = (S1, S2, S3) in a

ferromangetic chain.

4 Landau–Lifshitz (LL) equation

St = Sxx × S + S × JS, ‖S‖ = 1,

generalizes the HM equation to nonisotropic interaction of magnetic moments

with coupling J = diag(J1, J2, J3).
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Riemann–Hilbert factorization on Lie groups

Integrable systems in zero–curvature form can be constructed by the

Riemann–Hilbert factorization problem on loop groups.

Definition

Let G be a Banach–Lie group. We say that G admits a Riemann–Hilbert

factorization if G contains closed subgroups G− and G+ such that

G− ∩G+ = {e}, the set G−G+ is open inG.

Remark

G−G+ is open in G ⇐⇒ g = g− ⊕ g+

where g = TeG and g± = TeG±.

Choose X1, X2, . . . , Xn ∈ g+ such that [Xk, Xl] = 0 and define the action of Rn

on G by

t ∗ g = exp
( n∑
i=1

tiXi
)
g, t = (ti) ∈ Rn.
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For g ∈ G−G+ we have unique factorization

exp
( n∑
i=1

tiXi
)
g = g−(t)g+(t), t ∈ Bε(0) (R-H factorization). (1)

The flow g−(t) ∈ G− represents solutions to a hierarchy of nonlinear

evolution equations written in zero–curvature form on the Lie algebra

g+.

t1 = x space variable, tk = t time variable of the k–th flow

Xk ∈ g+ inifinitesimal generator of the k–th flow

By taking derivatives Eq. (1) we find

g−(t)−1Xk g−(t) = g−1
−

∂g−

∂tk
+
∂g+

∂tk
g−1
+ ∈ g− ⊕ g+

and projecting to g+ we have

∂g+

∂tk
= p+

(
g−1
− (t)Xkg−(t)

)
g+, p+ : g→ g+ projection.
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This yields a system of linear PDE’s for g+:

∂g+

∂tk
= Mk g+, Mk = p+

(
g−1
− (t)Xkg−(t)

)
, k = 1, 2, . . . , n.

Since [Xk, Xl] = 0 the k and l flows commute, hence

(g+)tktl = (g+)tltk ⇒ Mk and Ml satisfy

∂Mk

∂tl
−
∂Ml

∂tk
+ [Mk,Ml] = 0 (zero–curvature equation on g+). (2)

Remarks

1 Eq. (2) represents a hierarchy of evolution PDE’s in the space variable x = t1

and time variable t = tk, k ≥ 2 (other variables fixed).

2 Solutions of the hierarchy are determined by the group element g−(t) ∈ G−.

3 If G is the loop group of a matrix Lie group, then Eq. (2) is equivalent with a

system of nonlinear PDE’s for matrix elements of Mk and Ml.
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Integrable systems on loop algebras

Concrete examples of integrable systems are obtained by taking G to be a matrix

group with elements in the Wienner algebra of functions

A =
{
f : S1 → C | f(z) =

∞∑
n=−∞

anz
n,

∞∑
n=−∞

|an| <∞
}
.

(A, ‖ · ‖1) Banach algebra with norm ‖f‖1 =
∞∑

n=−∞
|an|

Introduce the algebra of n× n matrices with elements in A, M(n,A), and define

GL(n,A) =
{
g ∈M(n,A) | det(g(z)) 6= 0 ∀z ∈ S1

}
.

Remarks

1 M(n,A) is a Banach algebra with norm ‖g‖ =
∑n
i,j=1 ‖gij‖1.

2 By Wienner’s lemma, det(g(z)) 6= 0 ∀z ∈ S1 ⇒ g−1 ∈M(n,A).

3 GL(n,A) is an open subgroup of M(n,A).

4 The Banach–Lie group G is constructed as a closed subgroup of GL(n,A).
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The Wienner algebra splits into subalgebras

A+ =
{
f ∈ A | f(z) =

∞∑
n=0

anz
n
}

and A− =
{
f ∈ A | f(z) =

0∑
n=−∞

anz
n
}
.

The splitting allows us to

define subgroups G−, G+ of G,

and the corresponding Riemann–Hilbert factorization on G.
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Nonlinear Schrödinger equation

Consider the subgroup of GL(2,A) defined by

G =

{
g(z) ∈ GL(2,A) | g(z) =

[
a(z) b(z)

−b̄(z) ā(z)

]}
,

where a(z) =
∑∞
n=−∞ anzn, ā(z) ≡

∑∞
n=−∞ ānzn, etc.

The Lie algebra of G is given by

g =

{
X(z) ∈M(n,A) | X(z) =

[
a(z) b(z)

−b̄(z) ā(z)

]}
.

Define subgroups

G− =
{
g(z) ∈ G | g(z) = I+

∞∑
n=1

Anz
−n
}
, G+ =

{
g(z) ∈ G | g(z) =

∞∑
n=0

Bnz
n
}
.

Then

1 G− and G+ are closed subgroups of G,

2 G− ∩G+ = {I}.
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The Lie algebras of G− and G+ satisfy

g = g− ⊕ g+ ⇒ G−G+ is open in G.

Define

Xk(z) = σzk ∈ g+, σ =

[
i 0

0 −i

]
, k = 1, 2,

and consider the Riemann-Hilbert factorization

exp (xX1(z) + tX2(z)) g = g−(x, t)g+(x, t), g ∈ G−. (3)

Theorem

If the group element

g−(x, t) = I +

[
∗ u(x, t)

∗ ∗

]
z−1 + o(z−2)

solves the Riemann-Hilbert factorization (3), then u satifes the NLS equation

iut −
1

2
uxx − 4u|u|2 = 0. (4)
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solves the Riemann-Hilbert factorization (3), then u satifes the NLS equation

iut −
1

2
uxx − 4u|u|2 = 0. (4)
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Sketch of proof. According to the general theory, the matrices

M1 = p+
(
g−1
− σzg−

)
, M2 = p+

(
g−1
− σz2g−

)
satisfy the ZCE

∂M1

∂t
−
∂M2

∂x
+ [M1,M2] = 0. (5)

Let g− = I +
∑∞
n=1 Anz

−n. Then g−1
− = I −A1z−1 + (A2

1 −A2)z−2 + o(z−3),

hence

M1 = σz + [σ,A1], M2 = σz2 + [σ,A1]z + [σ,A2]−A1[σ,A1].

Since An =

[
an bn

−b̄n ān

]
for some real valued functions an and bn, we find

M1 = σz+2

[
0 ib1

−(ib1) 0

]
, M2 = σz2+2

[
0 ib1

−(ib1) 0

]
z+2

[
−|b1|2 v

−v̄ i|b1|2

]
,

where v = i(b2 − a1b1). If we denote u = b1, then Eq. (5) implies

v =
1

2
ux, iut −

1

2
uxx − 4u|u|2 = 0.
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One–soliton solution

Consider the initial data g ∈ G−,

g = I +

[
−α iβ

iβ −α

]
z−1, α, β ∈ R.

Solution of the Riemann–Hilbert factorization problem (3) yields

g−(x, t) = I +

[
a1(x, t) b1(x, t)

−b̄1(x, t) ā1(x, t)

]
z−1

where

a1(x, t) = −α+ iβ tahn
(
2β(x+ αt)

)
,

b1(x, t) = iβ exp
(
2i(αx+ (α2 − β2)t

)
sech

(
2β(x+ αt)

)
.

By the previous theorem, the function u = b1 is a solution of the NLS equation

(one–soliton solution).

Remark

If the initial data g ∈ G− has a pole or order N at z = 0, then the RH

factorization problem leads to N -soliton solution of the NLS equation.
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Heisenberg magnet equation

By choosing different subgroups of G one obtains a Riemann–Hibert factorization

that solves the Heisenberg magnet equation

St = Sxx × S, ‖S‖ = 1 (6)

S = (S1, S2, S3) magnetic moment in a ferromagnetic material with isotropic

interaction

Define closed subgroups

H− =
{
h(z) ∈ G | h(z) =

∞∑
n=0

Anz
−1
}
, H+ =

{
h(z) ∈ G | h(z) = I+

∞∑
n=1

Bnz
n
}
.

Then

1 H− ∩H+ = {I},

2 H−H+ is open in G.

Consider the Riemann–Hilbert factorization

exp (xX1(z) + tX2(z))h = h−(z)h+(z), h ∈ H−. (7)
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The matrices

M̃1 = p̃+
(
h−1
− σzh−

)
= (A−1

0 σA0)z,

M̃2 = p̃+
(
h−1
− σz2h−

)
= (A−1

0 σA0)z2 + [A−1
0 σA0, A

−1
0 A1]z

satisfy the ZCE
M̃1

∂t
−
M̃2

∂x
+ [M̃1, M̃2] = 0. (8)

Define

S =
1

i
(A−1

0 σA0) =

[
S3 S1 − iS2

S1 + iS2 −S3

]
=

3∑
i=1

Siσi

where

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
are Pauli spin matrices.

Note that S2 = I ⇒
∑3
i=1 S

2
i = 1.
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The zero–curvature equation for M̃1 and M̃2 is equivalent with the matrix

equation
∂S

∂t
=

1

4i
[S, Sxx]. (9)

which is the Heisenberg magnet equation (6) for the unit vector S = (S1, S2, S3)

after rescaling t 7→ 1
2
t.
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Gauge transformations

Let G be a Lie group with Lie algebra g. Assume A1, A2 ∈ g satisfy the

zero–curvature equation

∂A1

∂x2
−
∂A2

∂x1
+ [A1, A2] = 0.

Definition

A gauge transformation Γg : g→ g on a pair of matrices (A1, A2) by an element

g ∈ G is defined by

Γg(Ak) = gAkg
−1 +

∂g

∂xk
g−1, k = 1, 2. (10)

Γg defines an action of the group G on the associated Lie algebra g.

The zero–curvature equation is invariant under the gauge transformation:

if Bk = Γg(Ak), then ZCE(A1, A2) ⇔ ZCE(B1, B2).
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Remarks

1 A gauge transformation generally changes the type of equation represented by

ZCE. Such equations are called gauge equivalent (e.g. the nonlinear

Schrödinger and Heisenberg magnet equation).

2 Residual gauge transformations leave a particular equation invariant.

Such transformations preserve the particular shape of A1 and A2, and lead to

a hierarchy of infinitesimal symmetries of the equation and associated

conservation laws.
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Gauge transformation between the NLS and HM equations

The well known gauge equivalence between the NLS and HM equations can be

interpreted in terms of different Riemann–Hilbert factorization of the group G.

Theorem

Suppose

exp (xX1(z) + tX2(z)) = g−(x, t)g+(x, t), g ∈ G−,

is a solution of the RH factorization for the NLS equation, and let

Mk = p+
(
g−1
− σzkg−

)
, k = 1, 2.

If g+(x, t) =
∑∞
n=0Bn(x, t)zn, then the matrices defined by the gauge

transformation

M̃k ≡ Γ
B−1

0
(Mk) = B−1

0 MkB0 −B−1
0

∂B0

∂x
, k = 1, 2,

satisfy the ZCE which is equivalent with the HM equation (6).
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Example

Suppose g−(x, t) = I +
∑N
k=1 Ak(x, t)z−k. Then B0(x, t) can be found explicitly

from

B0(x, t) = A−1
N (x, t)AN (0, 0)

and the matrix

S =
1

i
B−1

0 σB0 =

[
S3 S1 − iS2

S1 + iS2 −S3

]
represents solution of the HM equation.

If we denote

AN (x, t) =

[
a b

−b̄ ā

]
, AN (0, 0) =

[
a0 b0

−b̄0 ā0

]
,

then

S3 = 1 +
4Re(ab a0b0)

(|a|2 − |b|2)(|a0|2 − |b0|2)
, (11)

S1 + iS2 = 2
(|a|2 − |b|2) a0b̄0 + ab b20 − ab a20

(|a|2 − |b|2)(|a0|2 − |b0|2)
. (12)
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]
,

then

S3 = 1 +
4Re(ab a0b0)

(|a|2 − |b|2)(|a0|2 − |b0|2)
, (11)

S1 + iS2 = 2
(|a|2 − |b|2) a0b̄0 + ab b20 − ab a20

(|a|2 − |b|2)(|a0|2 − |b0|2)
. (12)
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Consider the solution of the RH problem for the NLS equation

g−(x, t) = I +

 −iα tanh(2αx) −iαe−iα2t sech(2αx)

−iαei2α2t sech(2αx) iα tanh(2αx)

 z−1.

Then Eqs. (11) and (12) yield the solution

S1(x, t) = 2 cos(2α2t) tanh(2αx) sech(2αx),

S2(x, t) = −2 sin(2α2t) tanh(2αx) sech(2αx),

S3(x, t) = 2sech2(2αx)− 1.

S = (S1, S2, S3) magnetization vector which rotates about the z–axis.
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Residual gauge transformations

Many evolution equations can be written in zero–curvature form on finite

dimensional Lie algebras.

Examples

(1) The Kortweg–de Vries (KdV) equation

ut = uxxx + 3uux

is equivalent with the ZCE for A1, A2 ∈ sl(2,R),

A1 =

[
0 1

− 1
2
u 0

]
, A2 =

[
− 1

2
ux u

− 1
2
uxx − 1

2
u2 1

2
ux

]
.
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(2) The Harry Dym equation

ut = −
1

4
u3uxxx

is equivalent the ZCE for A1, A2 ∈ sl(2,R) given by

A1 =

[
0 1

− 1
u2 0

]
, A2 =

[
− 1

2
ux u

− 1
2
uxx − 1

u
1
2
ux

]
.

(3) The focusing nonlinear Schrödinger equation for a complex valued function u,

iut − uxx − 2|u|2u = 0,

is equivalent with the ZCE for A1, A2 ∈ su(2,C) defined by

A1 =

[
0 u

−ū 0

]
, A2 =

[
−i|u|2 −iux
−iūx i|u|2

]
.
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Residual gauge transformations for the KdV equation

Suppose that A1, A2 ∈ sl(2,R), Ai = Ai(x, t),

A1 =

[
R S

T −R

]
, A2 =

[
p u

q −p

]

satisfy the ZCE
∂A1

∂t
+
∂A2

∂x
+ [A1, A2] = 0. (13)

We fix a particular gauge of A1 as

A1 =

[
0 1

T 0

]
(Drinfeld–Sokolov gauge). (14)

If T = − 1
2
u, then A2 is completely determined by u since p = − 1

2
ux and

q = px − 1
2
u2, hence

A2 =

[
− 1

2
ux u

− 1
2
uxx − 1

2
u2 1

2
ux

]
. (15)

In this case, the ZCE equation (13) is equivalent with the KdV equation.

S. Krešić–Jurić Gauge transformations and symmetries



Residual gauge transformations for the KdV equation

Suppose that A1, A2 ∈ sl(2,R), Ai = Ai(x, t),

A1 =

[
R S

T −R

]
, A2 =

[
p u

q −p

]

satisfy the ZCE
∂A1

∂t
+
∂A2

∂x
+ [A1, A2] = 0. (13)

We fix a particular gauge of A1 as

A1 =

[
0 1

T 0

]
(Drinfeld–Sokolov gauge). (14)

If T = − 1
2
u, then A2 is completely determined by u since p = − 1

2
ux and

q = px − 1
2
u2, hence

A2 =

[
− 1

2
ux u

− 1
2
uxx − 1

2
u2 1

2
ux

]
. (15)

In this case, the ZCE equation (13) is equivalent with the KdV equation.
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Goal: determine residual gauge transformations that leave the DS gauge of A1

invariant. Bu successive application of such transformations we can find new

solutions of the KdV equation.

Idea: represent the sl(2,R) matrices in DS gauge as the level set of a function and

find the gauge symmetry group of the set.

If G is a local Lie group of transformations acting on the manifold M , then to

every X ∈ TeG we associate the vector field X̂ : M → TM by

X̂(a) =
d

dτ

∣∣∣
τ=0

exp(τX) · a.

Theorem

Let G be a connected local Lie group of transformations acting on the

m–dimensional manifold M . Suppose that F : M → Rl, l ≤ m, is of maximal rank

on the level set

S =
{
x ∈M | F (x) = 0

}
.

Then G is a symmetry group of S if and only if the Lie derivative

LX̂F (x) = 0 ∀x ∈ S, k = 1, 2, . . . , l,

for every infinitesimal generator X of G.
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m–dimensional manifold M . Suppose that F : M → Rl, l ≤ m, is of maximal rank

on the level set

S =
{
x ∈M | F (x) = 0

}
.

Then G is a symmetry group of S if and only if the Lie derivative

LX̂F (x) = 0 ∀x ∈ S, k = 1, 2, . . . , l,

for every infinitesimal generator X of G.
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Define F : sl(2,R)→ R2 by

F

([
a b

c −a

])
= (a, b− 1).

Then

S =
{
A ∈ sl(2,R) | F (A) = 0

}
consists of matrices in DS gauge. Using sl(2,R) ' R3, we find

DF (A) =

[
1 0 0

0 1 0

]
∀A ∈ sl(2,R) ⇒ rank(DF ) = max . on S.

Consider a one–parameter groups of gauge transformations

G =
{

Γg(τ) | g(τ) = exp(τL(x, t)), τ ∈ R
}
, L ∈ sl(2,R).

We want to determine conditions on L such that Γg(τ) is a residual transformation.

The group G acts on sl(2,R) by

Γg(τ)(A) = g(τ)Ag(τ)−1 +
∂g(τ)

∂x
g(τ)−1
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Hence, G is a symmetry group of the level set S iff

LL̂F (A) = 0 ∀A ∈ S

where L̂ is the vector field on sl(2,R) defined by

L̂(A) =
d

dτ

∣∣∣
τ=0

Γg(τ)(A) = [L,A] +
∂L

∂x
.

Hence L ∈ sl(2,R) is an infinitesimal generator of the gauge symmetry group of S
iff

LL̂F (A) = DF (A)
(

[L,A] +
∂L

∂x

)
= 0 ∀A ∈ S. (16)

To evaluate the condition (16), denote

L =

[
w y

v −w

]
, A =

[
0 1

T 0

]
∈ S.

Then

[L,A] +
∂L

∂x
=

[
Ty − v + wx 2w + yx

−2wT + vx −Ty + v − wx

]
.
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Using DF (A) =

[
1 0 0

0 1 0

]
we find

DF (A)
(

[L,A] +
∂L

∂x

)
=

[
Ty − v + wx

2w + yx

]
,

hence L must satisfy the condition

Ty − v + wx = 0, 2w + yx = 0.

The choice T = − 1
2
u yields the KdV equation, thus

L =

[
− 1

2
yx y

− 1
2
uy − 1

2
yxx

1
2
yx

]
(17)

is an infinitesimal generator of the gauge symmetry group for the KdV equation

parametrized by the function y(x, t).

The function y satisfies a linear PDE depending on the solution u of the KdV

equation.

The equation is found by expanding the gauge transformations of the KdV

matrices into powers of τ .
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For L given by Eq. (17), consider the gauge transformation of

A1 =

[
0 1

− 1
2
u

]
, A2 =

[
− 1

2
ux u

− 1
2
uxx − 1

2
u2 1

2
ux

]
.

Γg(τ)(A1) =

[
0 1

− 1
2
u 0

]
+ τ

[
0 0

− 1
2
yxxx − uyx − 1

2
uxy 0

]
+ o(τ2), (18)

Γg(τ)(A2) =

[
− 1

2
ux u

− 1
2
uxx − 1

2
u2 1

2
ux

]
+ τ

[
∗ yt − uyx + uxy

∗ ∗

]
+ o(τ2). (19)

Equations (18) and (19) give deformations of u to first order in τ :

δu(y) = yxxx + 2yx + uxy,

δu(y) = yt − uyx + uxy.

which imply that

yt = yxxx + 3uyx. (20)

Remark

Eq. (20) is the linear equation associated to KdV found by Gardner by the Inverse

scattering transform.
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Theorem (Infinitesimal transformations of KdV)

If u satisfies the KdV equation and y is a solution of the associated linear equation

(20), then

L =

[
− 1

2
yx y

− 1
2
uy − 1

2
yxx

1
2
yx

]
is an infinitesimal generator of the gauge symmetry group for the KdV equation

and

ũ = u+ τ(yxxx + 2yx + uxy)

satisfies the KdV equation to first order in τ .
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Hierarchy of residual gauge transformations for KdV

and associated conservation laws

To each solution u of the KdV equation one can associate a hierarchy of residual

gauge transformations L(1), L(1), L(2), . . . and associated local conservation laws.

Suppose y(1) is a solution of the associated linear equation (20) and define

G(1) = δu(y(1)) = y
(1)
xxx + 2uy

(1)
x + uxy

(1).

Then G(1) satisfies the evolution equation

G
(1)
t = G

(1)
xxx + 3uxG

(1) + 3uG
(1)
x

which can be written as the local conservation law

∂G(1)

∂t
=
∂F (1)

∂x
, F (1) = G

(1)
xx + 3uG(1)

for density G(1) and flux F (1).
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Define y(2) by the condition y
(2)
x = G(1). Then

y
(2)
t =

∫
∂G(1)

∂t
dx = F (1) = y

(2)
xxx + 3uy

(2)
x ,

hence y(2) also satisfies Eq. (20).

By iterating the above procedure we obtain an infinite hierarchy of

1 solutions of Eq. (20) defined by

y
(n+1)
x = G(n), G(n) = δu(y(n)),

2 local conservation laws

∂G(n)

∂t
=
∂F (n)

∂x
, F (n) = G

(n)
xx + 3uG(n), n ≥ 1.

By starting with the trivial solution y(1) = 1, we find

y(2) = u,

y(3) =
3

2
u2 + uxx,

y(4) =
15

6
u3 +

5

2
u2x + 5uuxx + uxxx etc.
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The corresponding infinitesimal generators of the gauge symmetry group are given

by

L(1) =

[
0 1

− 1
2
u 0

]
,

L(2) =

 − 1
2
ux u

− 1
2
uxx − 1

2
u2 1

2
ux

 ,
L(3) =

 − 1
2
uxxx − 3

2
uux uxx + 3

2
u2

− 1
2
uxxxx − 2uuxx − 3

2
u2x − 3

4
u3 1

2
uxxx + 3

2
uux

 ,
...
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