# Spectral and evolution analysis of thin elastic domains in high-contrast regime

Recent progress in quantitative analysis of multiscale media



Faculty of Electrical Engineering and Computing

Hrvatska zaklada za znanost



University of Zagreb Faculty of Electrical Engineering and Computing josip.zubrinic@fer.hr

31.5.2023, Department of Mathematics, Faculty of Science, University of Split

Joint work with: Marin Bužančić (FKIT), Kirill Cherednichenko (University of Bath), Igor Velčić (FER)

# Heterogeneous thin elastic structures

- Composite structures
- Elastic properties
- Thickness in certain directions very small



# One wishes to:

- Rigorously derive lower dimensional homogeneous models of these objects
- Mathematically explain various effects associated with wave propagation
- Quantify the approximation





| A. | <u>P</u> |
|----|----------|
|    |          |



2 Heterogeneous media in high contrast - metamaterials?

3 Elastic heterogeneous plates in high contrast

# 1 Elastic thin structures - setting and tools

2 Heterogeneous media in high contrast - metamaterials?



# Thin (linearly) elastic structures

Parameter of thickness h > 0

Thin plate domain  $\Omega^h := \omega \times hI$ 



Thin rod domain  $\Omega^h := \omega_h \times I$ 



- Elastic properties:  $\mathbb{A} \in L^{\infty}(\Omega^h; \mathbb{R}^{3 \times 3 \times 3 \times 3})$
- A uniformly positive definite on symmetric matrices:  $\exists \alpha, \beta > 0$

 $\begin{aligned} \alpha |\xi|^2 &\leq \mathbb{A}(x)\xi : \xi \leq \beta |\xi|^2, \quad \forall x \in \Omega^h, \xi \in \mathbb{R}^{3 \times 3}, \xi^T = \xi. \\ \mathbb{A}_{ijkl}(x) &= \mathbb{A}_{jikl}(x) = \mathbb{A}_{klij}(x), \quad \forall x \in \Omega^h, \quad i, j, k, l \in \{1, 2, 3\}. \end{aligned}$ 

- Standard change of coordinates:  $\Omega^h \to \Omega^1 := \Omega, \ \nabla \to \nabla_h.$
- The operator of linear elasticity:

 $\mathcal{A}_h \boldsymbol{u} := -\operatorname{div}_h(\mathbb{A}(x)\operatorname{sym} \nabla_h \boldsymbol{u}), \quad \boldsymbol{u}: \Omega \to \mathbb{R}^3, \quad \mathcal{D}(\mathcal{A}_h) \subset H^1_{\Gamma_D}(\Omega; \mathbb{R}^3).$ 

Resolvent problem

$$\mathcal{A}_h \boldsymbol{u} + \alpha \boldsymbol{u} = \boldsymbol{f} \text{ on } \Omega, \quad \boldsymbol{f} \in L^2(\Omega; \mathbb{R}^3), \quad \alpha > 0.$$

#### Displacement approximations when $h \rightarrow 0$

Rod case:

$$\begin{bmatrix} \mathfrak{b}_1(x_3)/h\\ \mathfrak{b}_2(x_3)/h\\ (-x_1\mathfrak{b}_1'(x_3) - x_2\mathfrak{b}_2'(x_3)) \end{bmatrix} + \begin{bmatrix} x_2\mathfrak{d}(x_3)\\ -x_1\mathfrak{d}(x_3)\\ \mathfrak{a}(x_3) \end{bmatrix}$$

 $\mathfrak{b}_{\alpha} \in H^2(I), \mathfrak{d}, \mathfrak{a} \in H^1(I).$ 

Plate case:

$$\begin{bmatrix} -x_3\partial_1\mathfrak{b}(x_1,x_2)\\ -x_3\partial_2\mathfrak{b}(x_1,x_2)\\ \mathfrak{b}(x_1,x_2)/h \end{bmatrix} + \begin{bmatrix} \mathfrak{a}_1(x_1,x_2)\\ \mathfrak{a}_2(x_1,x_2)\\ 0 \end{bmatrix}$$

$$\mathfrak{b} \in H^2(\omega), \mathfrak{a}_{\alpha} \in H^1(\omega).$$

## The spectrum of $A_h$ (The case of finite domain)

$$\sigma(\mathcal{A}_h) = \left\{ 0 < \lambda_1^h \leqslant \lambda_2^h \leqslant \dots \lambda_i^h \to +\infty, \quad i \to \infty \right\}.$$

 $\lambda_i^h \leqslant h^2 \eta_i, \quad \text{ where } \eta_i \text{ does not depend on } h > 0.$ 

#### Lemma (Korn's innequality for thin domains)

Let  $\Omega \subset \mathbb{R}^3$  be a thin domain (rod or plate with regular enough boundary) and  $\Gamma \subset \partial \Omega$  of positive measure. We have:

$$\|\pi_{1/h}\psi\|_{H^{1}}^{2} \leq C^{\gamma}\left(\|\pi_{1/h}\psi\|_{L^{2}(\Gamma;\mathbb{R}^{3})}^{2} + h^{-2} \|\operatorname{sym}\nabla_{h}\psi\|_{L^{2}}^{2}\right), \quad \forall \psi \in H^{1}(\Omega;\mathbb{R}^{3}),$$

where  $C^{\gamma}$  depends only on the domain and  $\pi_{1/h}$  is the appropriate scaling.

#### Lemma (Compactness property for plate like domains)

Let  $\omega \subset \mathbb{R}^2$  (bounded with Lipschitz boundary). If the sequence  $(\psi^h)_{h>0} \subset H^1_{\gamma_D}(\Omega; \mathbb{R}^3)$  satisfies:

$$\limsup_{n\to\infty} \left\| \operatorname{sym} \nabla_h \boldsymbol{\psi}^h \right\|_{L^2} < \infty.$$

Then (on a subsequence) we have the decomposition:

whe

Assumption on additional material symmetries

$$\mathbb{A}_{ijk3}(x) = 0, \mathbb{A}_{i333}(x) = 0, \quad \forall x \in \Omega, \quad i, j, k \in \{1, 2\}.$$

Bending and Stretching subspaces

$$\begin{split} L^2_{\text{bend}} &:= \left\{ \boldsymbol{u} \in L^2(\Omega; \mathbb{R}^3), \quad \boldsymbol{u}(S(x)) = -S\boldsymbol{u}(x) \right\}, \\ L^2_{\text{stretch}} &:= \left\{ \boldsymbol{u} \in L^2(\Omega; \mathbb{R}^3), \quad \boldsymbol{u}(S(x)) = S\boldsymbol{u}(x) \right\}, \end{split}$$

where  $S(x) = S_{rod}(x) := (-x_1, -x_2, x_3)^T$  in the case of rod, and  $S(x) = S_{plate}(x) := (x_1, x_2, -x_3)^T$  in the case of plate.

#### Invariant subspaces

Under the assumption on additional material symmetries, the spaces  $L^2_{\text{stretch}}$  and  $L^2_{\text{bend}}$  are invariant for  $\mathcal{A}_h$ . The spectrum of order  $h^2$  is contained in  $\sigma(\mathcal{A}_h|_{L^2_{\text{bend}}})$ .

Elastic thin structures - setting and tools

#### 2 Heterogeneous media in high contrast - metamaterials?

## 3 Elastic heterogeneous plates in high contrast

# Heterogeneous media, mild contrast, scalar case

Small parameter (period of material oscillations)  $\varepsilon > 0$  .

#### Periodically oscillating heterogeneous material

- Material properties stored in  $\mathbb{A}_{\varepsilon}(x) \in \mathbb{R}^{d \times d}$ .
- $\mathbb{A}_{\varepsilon}(x) = \mathbb{A}(\frac{x}{\varepsilon}).$
- A is Y-periodic on  $\mathbb{R}^d$ ,  $Y = [0,1]^d$ .

The matrix  $\mathbb{A}$  is symmetric and  $\exists \alpha, \beta > 0$ , such that:

$$\alpha |\xi|^2 \leq \mathbb{A}(x)\xi \cdot \xi \leq \beta |\xi|^2, \quad \forall x, \xi \in \mathbb{R}^d$$

Elliptic operator:

$$\mathcal{A}_{\varepsilon} \boldsymbol{u} := -\operatorname{div}\left(\mathbb{A}_{\varepsilon}(x)\nabla \boldsymbol{u}\right), \quad \mathcal{D}\left(\mathcal{A}_{\varepsilon}\right) \subset H^{1}(\Omega).$$



Heterogeneous problem

 $\Omega \subset \mathbb{R}^d \text{ bounded, } \exists c>0, \ c |\xi|^2 \leqslant \mathbb{A}(y) \xi \cdot \xi, \ \mathbb{A} \ Y\text{-periodic.}$ 

$$\int_{\Omega} \mathbb{A}(x/\varepsilon) \nabla u_{\varepsilon} \cdot \nabla \varphi dx = \int_{\Omega} f_{\varepsilon} \varphi dx, \quad \forall \varphi \in H^{1}_{0}(\Omega), \quad f_{\varepsilon} \rightharpoonup f \text{ u } L^{2}(\Omega).$$

A wish of engineers and numerics people?

## Homogenised problem

$$\begin{split} &\int_{\Omega} \mathbb{A}^{\mathrm{hom}} \nabla u \cdot \nabla \varphi dx = \int_{\Omega} f \varphi dx, \quad \forall \varphi \in H^1_0(\Omega). \\ \mathbb{A}^{\mathrm{hom}} \xi \cdot \eta &:= \int_{Y} \mathbb{A}(y) [\xi + \nabla_y w_{\xi}(y)] \cdot \eta, \quad \int_{Y} \mathbb{A}(y) [\xi + \nabla_y w_{\xi}(y)] \cdot \nabla_y v(y) = 0. \end{split}$$

Homogenised elliptic operator:

$$\mathcal{A}\boldsymbol{u} := -\operatorname{div}\left(\mathbb{A}^{\operatorname{hom}}\nabla\boldsymbol{u}\right), \quad \mathcal{D}\left(\mathcal{A}\right) = H^{2}(\Omega) \cap H^{1}_{0}(\Omega).$$

# Qualitative method by two-scale convergence

#### Definition

A bounded sequence  $(u_\varepsilon)\subset L^2(\Omega)$  weakly "two-scale" converges to  $u(x,y)\in L^2(\Omega\times Y)$  if

$$\lim_{\varepsilon \to 0} \int_{\Omega} u_{\varepsilon}(x) \varphi(x, x/\varepsilon) dy = \int_{\Omega} \int_{Y} u(x, y) \varphi(x, y) dx dy, \quad \varphi \in C_{c}^{\infty}(\Omega; C_{\#}^{\infty}(Y)).$$

#### Theorem (Two-scale compactness in $L^2$ )

Every bounded sequence in  $L^2(\Omega)$  possesses a weakly two-scale convergent subsequence.

#### Definition

A bounded sequence  $(u_\varepsilon)\subset L^2(\Omega)$  strongly "two-scale" converges to  $u(x,y)\in L^2(\Omega\times Y)$  if

$$\lim_{\varepsilon \to 0} \int_{\Omega} u_{\varepsilon}(x) \varphi_{\varepsilon}(x) dy = \int_{\Omega} \int_{Y} u(x,y) \varphi(x,y) dx dy,$$

 $\text{for all weakly "two-scale" convergent} \quad \varphi_{\varepsilon} \xrightarrow{2} \varphi \in L^2(\Omega \times Y).$ 

#### Heterogeneous problem

 $\Omega \subset \mathbb{R}^d \text{ bounded, } \exists c > 0, \ c |\xi|^2 \leqslant \mathbb{A}(y) \xi \cdot \xi, \ \mathbb{A} \ Y \text{-periodic.}$ 

$$\int_{\Omega} \mathbb{A}(x/\varepsilon) \nabla u_{\varepsilon} \cdot \nabla \varphi dx = \int_{\Omega} f_{\varepsilon} \varphi dx, \quad \forall \varphi \in H^1_0(\Omega), \quad f_{\varepsilon} \rightharpoonup f \text{ u } L^2(\Omega).$$

#### Theorem

Every bounded sequence  $u_{\varepsilon}$  u  $H^1(\Omega)$  possesses a subsequence such that:

$$u_{\varepsilon} \rightarrow u(x), \quad \nabla u_{\varepsilon}(x) \xrightarrow{2} \nabla u(x) + \nabla_y v(x,y), \quad \forall v \in L^2(\Omega; H^1_{\#}(Y)).$$

#### Homogenised problem

$$\int_{\Omega} \mathbb{A}^{\mathrm{hom}} \nabla u \cdot \nabla \varphi dx = \int_{\Omega} f \varphi dx, \quad \forall \varphi \in H_0^1(\Omega).$$
$$\mathbb{A}^{\mathrm{hom}} \xi \cdot \eta := \int_Y \mathbb{A}(y) [\xi + \nabla_y w_{\xi}(y)] \cdot \eta, \quad \int_Y \mathbb{A}(y) [\xi + \nabla_y w_{\xi}(y)] \cdot \nabla_y v(y) = 0.$$

#### Definition

Sequence of nonneg. selfadj.  $(\mathcal{A}_{\varepsilon})$  operators on  $H_{\varepsilon}$ .  $\mathcal{A}$  nonneg. selfadj. operator on a closed subspace  $H_0$  of H.  $P: H \to H_0$  orthogonal projection. The sequence  $(\mathcal{A}_{\varepsilon})$  converges to  $\mathcal{A}$  in the sense of strong resolvent convergence, if

 $\forall \lambda > 0, \quad (\mathcal{A}_{\varepsilon} + \lambda)^{-1} f_{\varepsilon} \xrightarrow{\varepsilon \to 0} (\mathcal{A} + \lambda)^{-1} Pf, \quad \forall f_{\varepsilon}, f_{\varepsilon} \xrightarrow{\varepsilon \to 0} f \in H.$ 

Zhikov and Pastukhova: Convergence in variable Hilbert spaces - for example in the sense of two-scale convergence.

#### Definition

The sequence of spectra  $\sigma(A_{\varepsilon})$  converges to the spectrum of A in the sense of Hausdorff, if:

- $\forall \lambda \in \sigma(\mathcal{A})$  exists a sequence  $\lambda_{\varepsilon} \in \sigma(\mathcal{A}_{\varepsilon})$  such that  $\lambda_{\varepsilon} \to \lambda$ .
- If  $\lambda_{\varepsilon} \in \sigma(\mathcal{A}_{\varepsilon})$  and  $\lambda_{\varepsilon} \to \lambda$ , then  $\lambda \in \sigma(\mathcal{A})$ .

The first one is the consequence of strong resolvent convergence. The second needs a bit more work.

Quantitative results are given with the norm-resolvent estimates (Birman, Suslina 2001., 2005., 2006., ...):

Quantitative result

$$\begin{aligned} \|(\mathcal{A}_{\varepsilon}+I)^{-1} - (\mathcal{A}+I)^{-1}\|_{L^{2}(\mathbb{R}^{d}) \to L^{2}(\mathbb{R}^{d})} \leqslant C\varepsilon, \\ \|(\mathcal{A}_{\varepsilon}+I)^{-1} - (\mathcal{A}+I)^{-1} - \varepsilon\mathcal{R}_{\mathrm{corr}}(\varepsilon)\|_{L^{2}(\mathbb{R}^{d}) \to H^{1}(\mathbb{R}^{d})} \leqslant C\varepsilon, \\ \|(\mathcal{A}_{\varepsilon}+I)^{-1} - (\mathcal{A}+I)^{-1} - \varepsilon\widehat{\mathcal{R}}_{\mathrm{corr}}(\varepsilon)\|_{L^{2}(\mathbb{R}^{d}) \to L^{2}(\mathbb{R}^{d})} \leqslant C\varepsilon^{2}, \end{aligned}$$

Cherednichenko, Velčić (2021. thin heterogeneous plates in mild contrast) These quantitative results immediately yield spectral convergence.

# High-contrast materials



Figure: Depiction of a material with high-contrast inclusions



• Tensor of material coefficients:

$$\mathbb{A}(y) = \begin{cases} \mathbb{A}_{\text{stiff}}(y), & y \in Y_{\text{stiff}}, \\ \varepsilon^2 \mathbb{A}_{\text{soft}}(y), & y \in Y_{\text{soft}}. \end{cases}$$

•  $\mathbb{A}_{\rm stiff}$  ,  $\mathbb{A}_{\rm soft}$  uniformly positive definite.



- - - I

# Homogenisation in high contrast

#### Heterogeneous problem

 $\Omega \subset \mathbb{R}^d \text{ bounded, } \mathbb{A}_{\varepsilon}(y) = \varepsilon^2 \chi_{\mathrm{soft}}(y) \mathbb{A}_{\mathrm{soft}}(y) + \chi_{\mathrm{stiff}}(y) \mathbb{A}_{\mathrm{stiff}}(y)$ 

$$\int_{\Omega} \mathbb{A}_{\varepsilon}(x/\varepsilon) \nabla u_{\varepsilon} \cdot \nabla \varphi dx = \int_{\Omega} f_{\varepsilon} \varphi dx, \quad \forall \varphi \in H^1_0(\Omega), \quad f_{\varepsilon} \xrightarrow{2} f \ \mathbf{u} \ L^2(\Omega \times Y)$$

#### Theorem

Let  $u_{\varepsilon} \subset H^1(\Omega)$  such that both  $u_{\varepsilon}$  and  $\varepsilon \nabla u_{\varepsilon}$  are bounded in  $L^2(\Omega)$ . Then (on a subsequence):

$$u_{\varepsilon} \xrightarrow{2} u(x,y), \quad \varepsilon \nabla u_{\varepsilon}(x) \xrightarrow{2} \nabla_{y} u(x,y), \quad u \in L^{2}(\Omega; H^{1}_{\#}(Y))$$

#### Homogenised problem

$$\begin{cases} \int_{\Omega} \mathbb{A}^{\mathrm{hom}} \nabla u \cdot \nabla \varphi dx = \int_{\Omega} \int_{Y_{\mathrm{stiff}}} f(x, y) \varphi(x) dx, & \forall \varphi \in H_0^1(\Omega). \\ \int_{\Omega} \int_{Y_{\mathrm{soft}}} \mathbb{A}(y) \nabla_y u_0(x, y) \cdot \nabla_y \xi(x, y) dy dx = \int_{\Omega} \int_{Y_{\mathrm{soft}}} f(x, y) \xi(x, y) dy dx, & \forall \xi. \\ \mathbb{A}^{\mathrm{hom}} \xi \cdot \eta := \int_{Y_{\mathrm{stiff}}} \mathbb{A}(y) (\xi + \nabla_y w_{\xi}(y)) \cdot \eta, & \int_{Y_{\mathrm{stiff}}} \mathbb{A}(y) [\xi + \nabla_y w_{\xi}(y)] \cdot \nabla_y v(y) = 0. \end{cases}$$

# Two-scale limit operator and spectral characterisation

## Micro and Macro operators

$$\begin{split} \mathcal{A}_{\mathrm{macro}} &\longleftrightarrow \int_{\Omega} \mathbb{A}^{\mathrm{hom}} \nabla u \cdot \nabla \varphi dx, \quad \mathcal{D}(\mathcal{A}_{\mathrm{macro}}) \subset H_0^1(\Omega) \\ \mathcal{A}_{\mathrm{micro}} &\longleftrightarrow \int_{\Omega} \int_{Y_{\mathrm{soft}}} \mathbb{A}(y) \nabla_y u_0(x, y) \cdot \nabla_y \xi(x, y) dy dx, \quad \mathcal{D}(\mathcal{A}_{\mathrm{micro}}) \subset L^2(\Omega; X), \\ X &= \left\{ \varphi \in H^1_{\#}(Y), \quad \varphi = 0 \text{ on } Y_{\mathrm{stiff}} \right\} \end{split}$$

Self-adjoint, nonnegative operator  $\mathcal{A}$  defined through bilinear form:

$$\begin{split} &\int_{\Omega} \mathbb{A}^{\mathrm{hom}} \nabla u \cdot \nabla \varphi dx + \int_{\Omega} \int_{Y_{\mathrm{soft}}} \mathbb{A}(y) \nabla_y u_0(x,y) \cdot \nabla_y \xi(x,y) dy dx, \\ &\mathcal{D}(\mathcal{A}) \subset H_0^1(\Omega) + L^2(\Omega; X) =: V \end{split}$$

#### Theorem

$$egin{aligned} &\sigma(\mathcal{A}) = \sigma(\mathcal{A}_{ ext{micro}}) \cup \{\lambda > 0, \quad eta(\lambda) \in \sigma(\mathcal{A}_{ ext{macro}})\}, \ η(\lambda) = \lambda + \sum_{m=1}^\infty rac{\lambda^2 c_m^2}{\omega_m - \lambda}, \quad \omega_m \in \sigma(\mathcal{A}_{ ext{micro}}). \end{aligned}$$

# Limit operator



Let operators  $(A_{\varepsilon})$ , A be nonneg. selfadj. operators related to mild-contrast homogenisation/high-contrast homogenisation. Then we have both the strong resolvent convergence of the operators and Hausdorff convergence of spectra.

Vector version of Zhikov's beta function

$$\beta(\lambda) = \lambda \mathcal{I} + \sum_{n=1}^{\infty} \frac{\lambda^2}{\omega_n - \lambda} \left\langle \overline{\varphi_n} \right\rangle \otimes \left\langle \overline{\varphi_n} \right\rangle$$

•  $\exists C > 0 \text{ s.t. } \forall \lambda > 0$ 

$$\langle \beta'(\lambda)\xi,\xi\rangle > C|\xi|^2, \quad \forall \xi \in \mathbb{R}^2.$$

- The set of all  $\lambda>0$  for which the generalised eigenvalue problem is solvable is countable.

# Scaling of frequencies

Studying 
$$(\mathcal{A} + \alpha I)^{-1} \iff$$
 Studying  $\partial_{tt} u + \mathcal{A} u = f$   
Studying  $\left(\frac{1}{\eta}\mathcal{A} + \alpha I\right)^{-1} \iff$  Studying  $\eta \partial_{tt} u + \mathcal{A} u = f$ 

The inertia term  $\eta \partial_{tt} u$  is equivalent to  $\partial_{\tilde{t}\tilde{t}} u$  with  $\tilde{t} = \sqrt{\eta} t$ .

## Elastic thin structures - setting and tools

2 Heterogeneous media in high contrast - metamaterials?

# 3 Elastic heterogeneous plates in high contrast

# Heterogeneous thin elastic plate model



٠

$$\mathcal{A}_{\varepsilon_h} \cdot := -\operatorname{div}_h \left( \mathbb{A}^{\varepsilon_h}(\frac{x_1}{\varepsilon_h}, \frac{x_2}{\varepsilon_h}) \operatorname{sym} \nabla_h \cdot \right), \quad \mathcal{D}(\mathcal{A}_{\varepsilon_h}) \subset H^1_{\gamma_D}(\Omega),$$

$$\mathbb{A}^{\varepsilon_h}(y) = \begin{cases} \mathbb{A}_{\text{stiff}}(y), & y \in Y_{\text{stiff}}, \\ \varepsilon^2 \mathbb{A}_{\text{soft}}(y), & y \in Y_{\text{soft}}. \end{cases}$$

• Simultaneous homogenisation and dimension reduction (both parameters  $\varepsilon, h \to 0$ )

- To plug the dimension reduction and homogenisation of thin plates in the abstract setting of operator theory (as much as possible)
- To identify phenomena that come from dimension reduction, phenomena that come from high-contrast homogenisation, and phenomena that come from the interaction of these two settings
- To give a systematic overview of models of heterogeneous thin plates in various interesting regimes
- To answer some important questions (What happens with the spectrum? What are the properties of evolution equations?)

| Time scale<br>The level of contrast                              | $\begin{array}{l} \text{Standard time scale: } t \in [0,T] \\ \text{The resolvent of unscaled operator } (\mathcal{A}_{\varepsilon_h} + \alpha I)^{-1} \\ \text{Unscaled spectrum } \sigma(\mathcal{A}_{\varepsilon_h}) \end{array}$ | $ \begin{array}{l} \text{Long time scale: } \tilde{t} = \frac{t}{h^2} \in \left[0, \frac{T}{h^2}\right] \\ \text{The resolvent of scaled operator } \left(\frac{1}{h^2}\mathcal{A}_{\varepsilon_h} + \alpha I\right)^{-1} \\ \text{Scaled spectrum } \sigma(\frac{1}{h^2}\mathcal{A}_{\varepsilon_h}) \end{array} $ |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High contrast $\mu_{\varepsilon_h} = {\varepsilon_h}^2$          |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                     |
|                                                                  |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                     |
| Very high contrast $\mu_{\varepsilon_h} = \varepsilon_h{}^2 h^2$ |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                     |
|                                                                  |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                     |

Let  $A_{\varepsilon_h}$  be an operator of linear elasticity on the thin plate with oscillating material coefficients in high contrast. Then we have strong resolvent convergence:

$$\mathcal{A}_{\varepsilon_h} \to \mathcal{A}$$

where  $\mathcal{A}$  is the operator associated with the problem: Find  $(\mathfrak{a}, \mathfrak{b})^{\top} \in H^1_{\gamma_D}(\omega; \mathbb{R}^2) \times L^2(\omega)$ ,  $\mathring{\boldsymbol{u}} \in L^2(\omega; H^1_{00}(I \times Y_{soft}; \mathbb{R}^3))$ , such that:

$$\begin{aligned} \mathcal{A}_{\mathrm{macro}}(\mathfrak{a},\mathfrak{b}) + \lambda(\mathfrak{a},\mathfrak{b}) + \lambda \langle \mathring{\boldsymbol{u}} \rangle &= \langle \boldsymbol{f} \rangle, \\ \mathcal{A}_{\mathrm{micro}}(\mathring{\boldsymbol{u}}) + \lambda(\mathfrak{a},\mathfrak{b}) + \lambda \mathring{\boldsymbol{u}} &= \boldsymbol{f}, \end{aligned}$$

and we have  $\mathcal{A}_{macro}(\mathfrak{a}, \mathfrak{b}) = \mathcal{A}_{macro}(\mathfrak{a}, 0)$ .

Let  $A_{\varepsilon_h}$  be an operator of linear elasticity on the thin plate with oscillating material coefficients in high contrast. Then we have strong resolvent convergence:

$$\frac{1}{h^2} \mathcal{A}_{\varepsilon_h} \to \mathcal{A}$$

where  $\mathcal{A}$  is the operator associated with the problem: Find  $\mathfrak{a} \in H^1_{\gamma_D}(\omega; \mathbb{R}^2)$ ,  $\mathfrak{b} \in H^2_{\gamma_D}(\omega)$ ,  $\hat{\mathfrak{u}} \in L^2(\omega; H^1_{00}(I \times Y_{soft}; \mathbb{R}^3))$ , such that:

$$\begin{split} \mathcal{A}^{\mathfrak{b}}_{\mathrm{macro}} \mathfrak{b} + \lambda \mathfrak{b} &= \mathcal{M}_{\mathrm{bend}} \langle \boldsymbol{f} \rangle, \\ \mathfrak{a} &= \mathfrak{a}^{\mathfrak{b}} + \mathfrak{a}^{\boldsymbol{f}}, \\ \mathcal{A}_{\mathrm{micro}} \mathring{\boldsymbol{u}} &= \boldsymbol{f}. \end{split}$$

Let  $A_{\varepsilon_h}$  be an operator of linear elasticity on the thin plate with oscillating material coefficients in **VERY** high contrast. Then we have strong resolvent convergence:

$$\frac{1}{h^2} \mathcal{A}_{\varepsilon_h} \to \mathcal{A}$$

where  $\mathcal{A}$  is the operator associated with the problem: Find  $\mathfrak{a} \in H^1_{\gamma_D}(\omega; \mathbb{R}^2)$ ,  $\mathfrak{b} \in H^2_{\gamma_D}(\omega)$ ,  $\mathfrak{a} \in L^2(\omega; H^1_{00}(I \times Y_{soft}; \mathbb{R}^3))$  such that

$$\begin{split} \mathcal{A}^{\mathfrak{b}}_{\mathrm{macro}} \mathfrak{b} + \lambda \mathfrak{b} + \lambda \langle \mathring{u}_{3} \rangle &= \langle f_{3} \rangle, \\ \mathfrak{a} &= \mathfrak{a}^{\mathfrak{b}}, \\ \mathcal{A}_{\mathrm{micro}} \mathring{\boldsymbol{u}} + \lambda (0, 0, \mathfrak{b})^{T} + \lambda \mathring{\boldsymbol{u}} = \boldsymbol{f} \end{split}$$

# Systematic overview of properties

| Time scale<br>The level of contrast                              | $ \begin{array}{l} \text{Standard time scale: } t \in [0,T] \\ \text{The resolvent of unscaled operator } (\mathcal{A}_{\varepsilon_h} + \alpha I)^{-1} \\ \text{Unscaled spectrum } \sigma(\mathcal{A}_{\varepsilon_h}) \end{array} $ | $ \begin{array}{l} \text{Long time scale: } \tilde{t} = \frac{t}{h^2} \in \left[0, \frac{T}{h^2}\right] \\ \text{The resolvent of scaled operator } \left(\frac{1}{h^2}\mathcal{A}_{\varepsilon_h} + \alpha I\right)^{-1} \\ \text{Scaled spectrum } \sigma(\frac{1}{h^2}\mathcal{A}_{\varepsilon_h}) \end{array} $                                          |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High contrast<br>$\mu_{\varepsilon_h} = \varepsilon_h^2$         | <ul> <li>Limit resolvent problem exhibits metamaterial properties - is coupled through the spectral parameter.</li> <li>"bending" deformations are contained in the kernel of the effective operator.</li> </ul>                       | <ul> <li>Limit resolvent problem does not exhibit<br/>metamaterial properties.</li> <li>The spectral parameter appears only with<br/>"bending" deformations."</li> <li>"bending" and "stretching" deformations are<br/>coupled through nonlocal operator. The<br/>coupling can be removed with additional<br/>assumptions on material symmetries.</li> </ul> |
| Very high contrast $\mu_{\varepsilon_h} = \varepsilon_h{}^2 h^2$ | No limit.                                                                                                                                                                                                                              | <ul> <li>Limit resolvent problem exhibits metamaterial<br/>properties.</li> <li>The spectral parameter appears only with<br/>"bending" deformations and the "micro"<br/>deformations. "</li> </ul>                                                                                                                                                           |

# Spectral approximation theorems

#### Theorem

The sequence of spectra  $\sigma(h^{-2}\mathcal{A}_{\varepsilon_h}) = \{h^{-2}\lambda_1^{\varepsilon_h}, h^{-2}\lambda_2^{\varepsilon_h}, \dots\}$  converges in the sense of Hausdorff to the set  $\sigma(\mathcal{A}_{macro}^b) = \{\lambda_1, \lambda_2, \dots\}$ . Moreover,

$$h^{-2}\lambda_n^{\varepsilon_h} \to \lambda_n, \quad h \to 0, \quad \forall n \in \mathbb{N}.$$

#### Theorem

Under the additional assumptions on material symmetries, the sequence of spectra  $A_{\varepsilon_h}|_{L^2_{\text{stretch}}}$  converges in the sense of Hausdorff to the set:

 $\sigma(\mathcal{A}) = \sigma(\mathcal{A}_{\text{micro}}) \cup \overline{\{\lambda > 0 : \text{The problem (1) has a nontrivial solution }.\}}.$ 

Generalised eigenvalue problem: Find  $\lambda > 0$  and  $0 \neq \mathfrak{a} \in H^1_{\gamma_D}(\omega, \mathbb{R}^2)$  such that:

$$\mathcal{A}_{\text{macro}}^{\text{stretch}} \mathfrak{a} = \beta^{\text{stretch}}(\lambda)\mathfrak{a}.$$
(1)

#### Theorem

In the case of **VERY** high contrast, the sequence of spectra  $\sigma(h^{-2}A_{\varepsilon_h})$  converges in the sense of Hausdorff to the set:

$$\sigma(\mathcal{A}) = \sigma(\mathcal{A}_{\mathrm{micro}}) \cup \overline{\{\lambda > 0 : \beta^{\mathrm{bend}}(\lambda) \in \sigma(\mathcal{A}^{\mathfrak{b}}_{\mathrm{macro}})\}}$$

# Systematic overview of properties

| Time scale<br>The level of contrast                              | $ \begin{array}{l} \text{Standard time scale: } t \in [0,T] \\ \text{The resolvent of unscaled operator } (\mathcal{A}_{\varepsilon_h} + \alpha I)^{-1} \\ \text{Unscaled spectrum } \sigma(\mathcal{A}_{\varepsilon_h}) \end{array} $                                                                      | $ \begin{array}{l} \text{Long time scale: } \tilde{t} = \frac{i}{h^2} \in \left[0, \frac{T}{h^2}\right] \\ \text{The resolvent of scaled operator } \left(\frac{1}{h^2}\mathcal{A}_{\varepsilon_h} + \alpha I\right)^{-1} \\ \text{Scaled spectrum } \sigma(\frac{1}{h^2}\mathcal{A}_{\varepsilon_h}) \end{array} $                                                                                                                                       |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High contrast<br>$\mu_{\epsilon_h} = {\varepsilon_h}^2$          | <ul> <li>Limit resolvent problem exhibits metamaterial properties.</li> <li>"bending" deformations are contained in the kernel of the effective operator.</li> <li>The spectrum is polluted.</li> <li>"stretching" spectrum has band-gap structure with infinite number of accummulation points.</li> </ul> | <ul> <li>Limit resolvent problem does not exhibit<br/>metamaterial properties.</li> <li>The spectral parameter appears only with<br/>"bending" deformations."</li> <li>"bending" and "stretching" deformations are<br/>coupled through nonlocal operator. The<br/>coupling can be removed with additional<br/>assumptions on material symmetries.</li> <li>The spectrum converges to the spectrum of<br/>nonlocal operator (compact resolvent)</li> </ul> |
| Very high contrast $\mu_{\varepsilon_h} = \varepsilon_h{}^2 h^2$ | No limit.                                                                                                                                                                                                                                                                                                   | <ul> <li>Limit resolvent problem exhibits metamaterial properties.</li> <li>The spectral parameter appears only with "bending" deformations and the "micro" deformations. "</li> <li>The spectrum has band-gap structure with infinite number of accummulation points.</li> </ul>                                                                                                                                                                         |

# Real time scale with high contrast

$$\begin{aligned} \partial_{tt} \big( (\mathbf{a}, \mathbf{b})^\top + \mathring{\boldsymbol{u}} \big)(t) &+ \mathcal{A} \big( (\mathbf{a}, \mathbf{b})^\top + \mathring{\boldsymbol{u}} \big)(t) = P \boldsymbol{f}(t), \\ \big( (\mathbf{a}, \mathbf{b})^\top + \mathring{\boldsymbol{u}} \big)(0) &= \boldsymbol{u}_0(x, y), \qquad \partial_t \big( (\mathbf{a}, \mathbf{b})^\top + \mathring{\boldsymbol{u}} \big)(0) = P \boldsymbol{u}_1(x, y). \end{aligned}$$

#### Long time scale with high contrast

$$\begin{aligned} \partial_{tt} \mathfrak{b}(t) &+ \mathcal{A}^{\mathfrak{b}}_{\mathrm{macro}} \mathfrak{b}(t) = \mathcal{M}_{\mathrm{bend}} \big( \boldsymbol{f}(t) \big), \\ \mathfrak{b}(0) &= \mathfrak{b}_{0} \in H^{2}_{\gamma_{\mathrm{D}}}(\omega), \qquad \partial_{t} \mathfrak{b}(0) = \mathfrak{b}_{1} \in L^{2}(\omega), \\ \mathfrak{a}(t) &= \mathfrak{a}^{\mathfrak{b}(t)} + \mathfrak{a}^{\boldsymbol{f}_{\ast}(t)}, \quad \mathcal{A}_{00} \mathring{\boldsymbol{u}}(t, \hat{x}, \cdot) = \big( \boldsymbol{f}_{\ast}(t, \hat{x}, \cdot), 0 \big)^{\top}. \end{aligned}$$

# Long time scale with very high contrast

$$\partial_{tt} \big( (0,0,\mathbf{b})^{\top} + \mathring{\boldsymbol{u}} \big) (t) + \mathcal{A} \big( (0,0,\mathbf{b})^{\top} + \mathring{\boldsymbol{u}} \big) (t) = P \boldsymbol{f}(t), \big( (0,0,\mathbf{b})^{\top} + \mathring{\boldsymbol{u}} \big) (0) = \boldsymbol{u}_0(x,y), \qquad \partial_t \big( (0,0,\mathbf{b})^{\top} + \mathring{\boldsymbol{u}} \big) (0) = P \boldsymbol{u}_1(x,y).$$

# Systematic overview of properties

| Time scale<br>The level of contrast                              | $ \begin{array}{l} \text{Standard time scale: } t \in [0,T] \\ \text{The resolvent of unscaled operator } \left(\mathcal{A}_{\varepsilon_h} + \alpha I\right)^{-1} \\ \text{Unscaled spectrum } \sigma(\mathcal{A}_{\varepsilon_h}) \end{array} $                                                                                                                                                                                          | $ \begin{array}{l} \text{Long time scale: } \tilde{t} = \frac{t}{h^2} \in \left[0, \frac{T}{h^2}\right] \\ \text{The resolvent of scaled operator } \left(\frac{1}{h^2}\mathcal{A}_{\varepsilon_h} + \alpha I\right)^{-1} \\ \text{Scaled spectrum } \sigma(\frac{1}{h^2}\mathcal{A}_{\varepsilon_h}) \end{array} $                                                                                                                                                                                                                                       |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High contrast<br>$\mu_{\varepsilon_h} = \varepsilon_h^2$         | <ul> <li>Limit resolvent problem exhibits metamaterial properties.</li> <li>"bending" deformations are contained in the kernel of the effective operator.</li> <li>The spectrum is polluted.</li> <li>"stretching" spectrum has band-gap structure with infinite number of accumulation points.</li> <li>Memory effects are present in the evolution.</li> <li>"bending" deformations do not show elastic resistance to motion.</li> </ul> | Limit resolvent problem does not exhibit<br>metamaterial properties.     The spectral parameter appears only with<br>"bending" deformations."     "bending" and "stretching" deformations are<br>coupled through nonlocal operator. The<br>coupling can be removed with additional<br>assumptions on material symmetries.     The spectrum converges to the spectrum of<br>nonlocal operator (compact resolvent)     Standard hyperbolic evolution of the "bending"<br>deformations. Evolution of the "stretching"<br>component is partially quasistatic. |
| Very high contrast $\mu_{\varepsilon_h} = \varepsilon_h{}^2 h^2$ | No limit.                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Limit resolvent problem exhibits metamaterial properties.</li> <li>The spectral parameter appears only with "bending" deformations and the "micro" deformations. "</li> <li>The spectrum has band-gap structure with infinite number of accumulation points.</li> <li>Memory effects are present in the evolution.</li> </ul>                                                                                                                                                                                                                    |

- $h \ll \varepsilon$  similar phenomenology to  $h \sim \varepsilon$ .
- +  $h\gg \varepsilon$  inclusions behave like little elastic rods loss of compactness of normalized eigenfunctions spectral pollution

# Thank you for attention!