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Motivation

Pendry et al., Science, 2016

Leonhardt, Science, 2016

• Improved seismic protection

Cloaking discovered in optics, 

expanded to acoustic waves

✓ Cloaking of Rayleigh waves will give complete seismic protection

Colombi et al., Sci.Rep., 2016a

Issue:

• Not all directions are cloaked 



Introduction

Colombi et al. Sci Rep, 2016b• Seismic metasurfaces



Colombi et al. Sci Rep, 2016c

• Bandgap revealed
✓ Designed forest as a natural seismic metasurface

• A rod is not the best model for a tree

• The approach is essentially numerical 

Issues:

• Large structures required to realise low-frequency band-gaps 



Palermo et al. Sci Rep, 2016• Seismic barriers

Issues:

• Contact between the resonator and soil 
not clearly explained 

• Horizontal and translational motion neglected in approximate dispersion 
relation, essentially reducing to mass-spring attached on the surface

• Limited possibilities of generalization to 3D (Rayleigh wave is not separated)   



• More sophisticated formulations,

i.e. porosity, nonlinearity, etc.  

Pu et al. Int J Eng Sci, 2020

• The approach is even more “numerical”   

• Would be good to have more explicit results      

✓ Employ asymptotic model for the Rayleigh wave

Lou et al. Int J Mech Sci, 2022



Hyperbolic-elliptic model for the Rayleigh wave

( J. Kaplunov et. al,  IMA J. Appl. Math. 2006 )

𝜎𝑥𝑦 = 0, 𝜎𝑦𝑦 = 𝑃 𝑥, 𝑡 .

𝜙,𝑦𝑦 + 𝛼𝑅
2𝜙,𝑥𝑥 = 0.

𝜙,𝑥𝑥 −
1

𝑐𝑅
2 𝜙,𝑡𝑡 =

1 + 𝛽𝑅
2

2𝜇𝐵
𝑃.

• Vertical surface load

𝜓(𝑥1 − 𝑐𝑅𝑡, 𝛽𝑅𝑦) =
2𝛼𝑅

1 + 𝛽𝑅
2 𝜙

∗(𝑥1 − 𝑐𝑅𝑡, 𝛽𝑅𝑦).

The pseudo-static elliptic equation over the interior

The boundary condition at  y = 0  is provided by a hyperbolic equation

The second potential is restored as

𝑢,𝑥𝑥 −
1

𝑐𝑅
2 𝑢,𝑡𝑡 =

𝛽𝑅
4 − 1

4𝜇𝐵
𝑃,𝑥 (at 𝑦 = 0)Note:



𝜎𝑥𝑦 = 𝑄 𝑥, 𝑡 , 𝜎𝑦𝑦 = 0.

𝜓,𝑦𝑦 + 𝛽𝑅
2𝜓,𝑥𝑥 = 0.

𝜓,𝑥𝑥 −
1

𝑐𝑅
2 𝜓,𝑡𝑡 = −

1 + 𝛽𝑅
2

2𝜇𝐵
𝑄.

• Tangential surface load

The pseudo-static elliptic equation over the interior

A hyperbolic equation at  y = 0

The longitudinal potential is found as

𝜙(𝑥1 − 𝑐𝑅𝑡, 𝛼𝑅𝑦) = −
2𝛽𝑅

1 + 𝛽𝑅
2𝜓

∗(𝑥1 − 𝑐𝑅𝑡, 𝛼𝑅𝑦).



𝜎𝑥𝑦 = 𝑄(𝑥, 𝑡), 𝜎𝑦𝑦 = 𝑃 𝑥, 𝑡 .

𝜙,𝑦𝑦 + 𝛼𝑅
2𝜙,𝑥𝑥 = 0.

𝜙,𝑥𝑥 −
1

𝑐𝑅
2 𝜙,𝑡𝑡 =

1

2𝜇𝐵
[2𝛽𝑅𝑄

∗ + 1 + 𝛽𝑅
2 𝑃].

• Combined load

The pseudo-static elliptic equation over the interior

The boundary condition at  y = 0  is provided by a hyperbolic equation



• Alternative formulation via pseudo-differential operator

(J. Kaplunov, D.A. Prikazchikov, R.F. Sabirova, Dokl. Phys., 2022)

Express the hyperbolic-elliptic formulation

where , ,  as a hyperbolic equation at a given depth

In other words,



• Example (smoothing surface discontinuities with depth)

Distributed delta-function

Solving the hyperbolic equation

Consider the Lamb’s problem, for which

we result in

Note:



3D pseudo-static elliptic equations over the interior

2D membrane wave equation at

Relations between the potentials

R

Displacements

Δ2𝜙 −
1

𝑐𝑅
2𝜙,𝑡𝑡 =

1 + 𝛽R
2

2𝜇𝐵
𝑃,

0z =

(H.H. Dai, J. Kaplunov, D.A. Prikazchikov, Proc. Roy. Soc. A, 2010)

• 3D model for the Rayleigh wave (vertical load)

Δ2 = 𝜕𝑥𝑥 + 𝜕𝑦𝑦

z
x

y

Surface load

( ), ,P P x y t=

𝜙,𝑧𝑧 + 𝛼R
2Δ2𝜙 = 0, 𝛙,𝑧𝑧 + 𝛽R

2Δ2𝛙 = 0, 𝛙 = 𝜓1, 𝜓2 .

𝛙,𝑧 =
2

1 + 𝛽R
2 grad2𝜙.

𝐮 = grad𝜙 + rot𝚿, 𝚿 = −𝜓2, 𝜓1, 0 .



• Tangential load

(Ege N., Erbas B., Prikazchikov D.A., ZAMM, 2015) 

1 2,    ,    0     at   0. xz yz zzQ Q z  = = = =
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Relation on the surface

2D wave equation

Elliptic equations

Decomposing

Boundary conditions

, 22

R

2
grad .

1
z 


=

+
ψ



• Example: 3D horizontal loading on the surface of  an elastic half-space

( ) ( ) ( ) ,    0   at   0.xz yz zzA x y t z     = = = =

( ) ( ) ( ) ( ) ( ) ( )1 2,      ' .gQ A x y t Q A x y t     =   =

Decomposing the load

Equation for vertical displacement on the surface
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( J.Kaplunov, D.A. Prikazchikov, Adv. Appl. Mech. 2017 )



Explicit model for surface wave in a coated half-space

(H.H. Dai, J. Kaplunov, D.A. Prikazchikov 2010)

Long-wave asymptotic integration  →  efficient boundary conditions

− elastic 
parameters of the coating

0 0 0, ,  

( ) ( ) 2 2 2

3 0 , 20 , 0 , 0 ,

33 0 3,

4 1 3 4 ,

,               1 2.

i i tt i jj i ii j ij

tt

h u c u u u

hu P i j

   

 

− − = − + − + −
 

= −   



Singularly perturbed equation

( )
2

2 ,2

1 1
,      

2
tt

R

bh P
c B


  



+
 − − −  =

with

Pseudo-
differential 

operator

Elliptic equation over the interior

Resulting formulation



Discussion of the model

• Presence of a coating integral form

• At h=0 − explicit asymptotic model for the Rayleigh wave in a half-space

• Sign of coefficient b (cR – local extremum of phase speed)

(Shuvalov, A. L., & Every, A. G., 2008)

Dispersion relation 1 ...
2

ph b
v k= − +





• Summary and further developments

✓ Effects of anisotropy, pre-stress and nonlocality

(A.Nobili & D.A.Prikazchikov, Eur. J. Mech. A, 2018;   Y.Fu et al., Proc.Roy.Soc.A 2020;   
D.A.Prikazchikov et al., Mech. Res. Comm., 2018; D.A.Prikazchikov, Vibration, 2023)

✓ Seismic meta-surfaces

( N. Ege et al., JOMMS 2018;  P.T. Wootton et al.,  Proc. Roy. Soc. A 2019; A. Alzaidi et 
al., ZAMP 2022 )

✓ Surface waves with non-Neumann-type boundary conditions
( J.Kaplunov et al., Phil. Trans. Roy. Soc. A, 2019 )

✓ Composite theories for plates

(B.Erbas et al., Proc. Roy. Soc. A 2018;  Kaplunov et al., Mech. Res. Comm., 2018 )

✓ Refined model
( J.Kaplunov et al., IMA J. Appl. Math. 2020 )

✓ Summary ( J.Kaplunov, D.A. Prikazchikov, Adv. Appl. Mech. 2017 )

✓ Models for bending edge waves
( J.Kaplunov et al., Proc.Roy.Soc.A 2016; S.Althobaiti et al., JOMMS 2021)



• Developments of  the hyperbolic-elliptic model to meta-surfaces

N. Ege et al., JOMMS, 2018

Hyperbolic equation on the surface

Start with point time-harmonic 
vertical force

(propagating Rayleigh wave patterns)

Then, over the interior



Here

Note that

Contribution of 
the Rayleigh poles 

Spurious term

• The latter is straightforward for numerical integration, however, is an artefact 

of the asymptotic model, arising due to neglecting bulk waves. A similar term 

does not appear in analysis of the full problem within linear elasticity.

• Moreover, exact analysis shows divergence of the associated Fourier integral, 

resulting in blow-up of the vertical displacement at the origin

✓ Distributed load should work better



• Array of oscillators

Hyperbolic equation on the surface

Homogenizing the load

Mass-spring oscillator: 

(               is the contact force )

In case of time-harmonic waves



Rayleigh eigensolution

Dispersion relation

LHS - cR RHS – w0

For the oscillator

Conditions on the surface

Here



• Shear wave

• Rayleigh wave

• Dispersion curve

(validity of the model) 



• Extensions to anisotropy (mass-spring system on an orthotropic half-space) 

Asymptotic model for the Rayleigh wave
induced by prescribed surface stresses

Formulation within linear elasticity

( )11 1,11 66 1,22 12 66 2,12 1,ttc u c u c c u u+ + + =

( )12 66 1,12 66 2,11 22 2,22 2,ttc c u c u c u u+ + + =

and

subject to boundary conditions at

( ) ( )21 66 1,2 2,1 1 1,  c u u f x t = + =

and

( )22 12 1,1 22 2,2 2 1,  c u c u f x t = + =

2 0x =

(D. Prikazchikov et al., submitted)



and

Asymptotic formulation: hyperbolic equations for surface displacements

( )
( )

 
( )
( )
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2 2
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1 22 2 1 11 12

2 11

( ) ( ) ( ), ( ) ( ) ( ),

( ) ( ) ( ), ( ) ( ) 2 ( ),
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2

11 22 12 22 11( ) ( ) ( ) ( )R z c c c c z z z c z   = − − − −

and



Rayleigh eigensolutions

Dispersion relation

For the oscillator

Conditions on the surface

1 2 2 2 1

1 2 2 2 1

2
( )1

1 2

2

2
( )1

2 1 22

2

,

( ) ( ) ,

kq x kq x i kx t

kq x kq x i kx t

q
u A e e e

q

q
u A f q e f q e e

q

w

w

 

 

 

 

− − −

− − −

 +
= − 

+ 

 +
= − 

+ 



Dispersion curves

a) pure exponential decay b) oscillatory decay



• Array of elastic rods

Using the Rayleigh wave eigensolution and the solution for the rod

the dispersion relation is obtained in the form

subject to

Equation of motion

with



• Shear wave • Rayleigh wave • Dispersion curve

Eigenfrequencies
(free ends)

Eigenfrequencies
(fixed ends)



(D.J. Colquitt et al.,  JMPS, 2017)Comparison with exact solution
near the first and second band gaps 

• Exact solution • Approximate dispersion curves



P. Wootton et al., Proc. Roy. Soc. A, 2019• Array of Euler-Bernoulli beams

Comparison with exact solution

✓ Several modes of contact analysed
(simply supported, horizontal  
rails, full matching) 

✓ No band gaps for simply supported 

✓ Straightforward explicit 
approximate solutions 

A. Alzaidi et al., ZAMP, 2022

• Exact • Approximate



Remarks

✓ The methodology of hyperbolic-elliptic models for surface waves allows

various qualitative insights combined with physical understanding

✓ Prospective explicit approximate solutions for seismic meta-interfaces for

various types of embedded resonators are possible, as well as in case of

fluid-structure interaction

✓ More rigorous homogenisation of the contact force, as well as adding

randomness factor to distribution of the oscillators, may be beneficial.
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