

Zero-range models with internal structure in the analysis of strongly inhomogeneous media

Aleksandr Kiselev, Yulia Yu. Ershova

20/07/2022, IIMAS, UNAM

Zero-radius potentials with internal structure

- In many models, an explicit solution can be obtained in a very limited number of special cases (e.g., by separation of variables).
- This deficit has led physicists (E. Fermi, 1934) to the idea to replace potentials with some boundary condition at a point of three-dimensional space, i.e., a *zero-range potential*.
- Rigorously: initiated by Berezin, Faddeev (1961). Shown: the model Hamiltonians are self-adjoint extensions of a Laplacian, restricted to the set of $W^{2,2}$ such that $u(x) = 0$ in \mathbb{R}^3 . Further development: see the monograph by Albeverio, Kurasov (2000) and references there.
- Drawbacks: spherically symmetric scatterers only. If a more involved structure, the complexity of the model blows up, eliminating the main selling point, i.e., explicit solvability.

Internal structure (B.S. Pavlov, 1980s)

The idea: $A_0 = -\Delta$ restricted to the set of $W^{2,2}$ functions vanishing in a vicinity of a fixed point in \mathbb{R}^3 , precisely as in Berezin, Faddeev.

A twist: instead of von Neumann extensions, consider the so-called *out of space* extensions, i.e., extensions to self-adjoint operators in a larger Hilbert space (the theory developed by: Neumark, Krasnoselskii, Strauss, 1940s–1970s).

Alongside $H = L^2(\mathbb{R}^3)$, consider an *internal* Hilbert space E (commonly: finite-dimensional), a self-adjoint operator A in it. Let ϕ be its generating vector and consider the restriction A_ϕ of A (non-densely defined) to the space

$$\text{dom } A_\phi := \{(A - i)^{-1}\psi : \psi \in E, \langle \phi, \psi \rangle = 0\}.$$

This leads to the symmetric operator \mathcal{A}_0 on the Hilbert space $H \oplus E$, defined as $A_0 \oplus A_\phi$ on the domain

$$\text{dom } \mathcal{A}_0 := \left\{ \begin{pmatrix} f \\ v \end{pmatrix} : f \in \text{dom } A_0, v \in \text{dom } A_\phi \right\}.$$

Then \mathcal{A}_0 : symmetric, non-densely defined, equal deficiency indices. Self-adjoint extensions \mathcal{A} : interested in those which non-trivially couple the spaces H and E . I.e., feed the boundary data at x_0 of a function $f \in W^{2,2}(\mathbb{R}^3)$ to A in E (the operator of the “internal structure”).

Kuchment's example

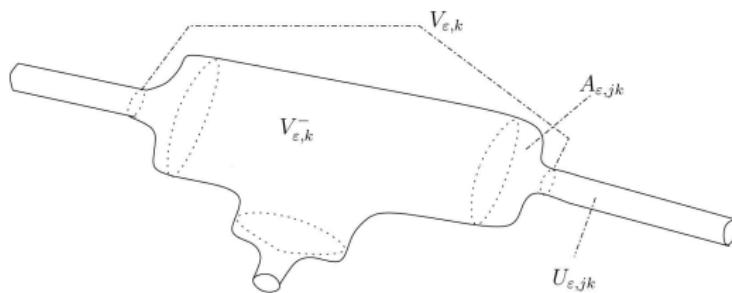


Figure: A “thin” graph-like structure.

The question: asymptotics of spectra of operator sequences associated with domains “shrinking” as $\varepsilon \rightarrow 0$ to a metric graph embedded into \mathbb{R}^d .

Assume: the rate of shrinking obeys

$$\frac{\text{vol}(V_{\text{vertex}}^\varepsilon)}{\text{vol}(V_{\text{edge}}^\varepsilon)} \rightarrow \alpha > 0, \quad \varepsilon \rightarrow 0. \quad (1)$$

Kuchment's example (cont.)

Then: the spectra of the corresponding Laplacian operators with Neumann BC converge to the spectrum of the following model (in the particular case of the last slide!).

Let $H_{\text{eff}} = H \oplus \mathbb{C}^1$, $H = L^2(\Gamma)$. The operator \mathcal{A}_{eff} on the space H_{eff} :

$$\text{dom } \mathcal{A}_{\text{eff}} = \left\{ (u, \beta)^\top \in H_{\text{eff}} : u \in W^{2,2}(\Gamma), \text{ cont. on } \Gamma, u(V) = \beta/\sqrt{\alpha} \right\}.$$

Here V is the edge junction.

$$\mathcal{A}_{\text{eff}} \begin{pmatrix} u \\ \beta \end{pmatrix} = \begin{pmatrix} -d^2/dx^2 \\ -\frac{1}{\sqrt{\alpha}} \sum_{e \in V} \partial_n u(V) \end{pmatrix}.$$

where we sum up over all edges terminating at V , and ∂_n is the inward normal derivative.

The take-home message

- The spectral convergence is proved on *compacts* in \mathbb{C} .
- Kuchment's example is a particular case of a zero-range model with internal structure (one-dimensional "internal" space!)
- Can be shown to be unitary equivalent to a Laplace operator on Γ with δ' matching at V (Cherednichenko, Kiselev 2017)
- The model is *generic* for inhomogeneous media (see below).
- If we are looking for a convergence *everywhere* in \mathbb{C} , we need to relate the spectral parameter z to ε . Then \Rightarrow more involved internal structures.

A PDE problem setup

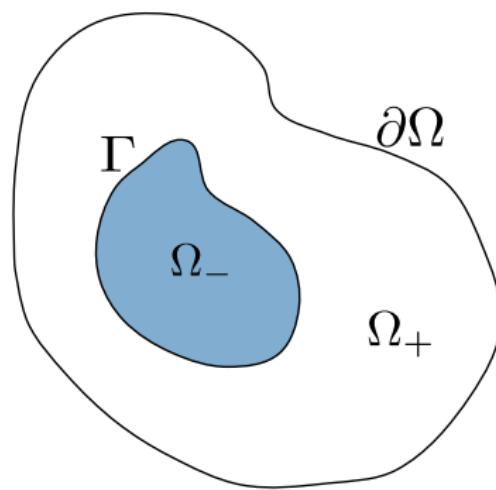


Figure: Domain with a “stiff” inclusion.

Problem setup (maths)

For $a > 0$, $z \in \mathbb{C}$ consider the “transmission” eigenvalue problem

$$\left\{ \begin{array}{l} -\Delta u_+ = zu_+ \text{ in } \Omega_+, \\ -a\Delta u_- = zu_- \text{ in } \Omega_-, \\ u_+ = u_-, \quad \frac{\partial u_+}{\partial n_+} + a \frac{\partial u_-}{\partial n_-} = 0 \text{ on } \Gamma, \\ \frac{\partial u_+}{\partial n_+} = 0 \text{ on } \partial\Omega, \end{array} \right. \quad (2)$$

where n_{\pm} is the exterior normal to the corresponding part of the boundary.

The question: norm-resolvent convergence of the associated family of linear self-adjoint operators as $a \rightarrow \infty$?

The leading order term

Let $H_{\text{eff}} = L^2(\Omega_+) \oplus \mathbb{C}$ and

$$\text{dom } \mathcal{A}_{\text{eff}} = \left\{ \begin{pmatrix} u_+ \\ \eta \end{pmatrix} \in H_{\text{eff}} : u_+ \in H^2(\Omega_+), \ u_+|_{\Gamma} = \frac{\eta}{\sqrt{|\Omega_-|}} \mathbb{1}_{\Gamma}, \ \frac{\partial u_+}{\partial n_+} \Big|_{\partial\Omega} = 0 \right\}, \quad (3)$$

where $u|_{\Gamma}$ is the trace of the function u and $\mathbb{1}_{\Gamma}$ is the unity function on Γ . On $\text{dom } \mathcal{A}_{\text{eff}}$

$$\mathcal{A}_{\text{eff}} \begin{pmatrix} u_+ \\ \eta \end{pmatrix} := \begin{pmatrix} -\Delta u_+ \\ \frac{1}{\sqrt{|\Omega_-|}} \int_{\Gamma} \frac{\partial u_+}{\partial n_+} \end{pmatrix}.$$

Theorem

Up to a unitary equivalence, we have $(A_a - z)^{-1} \simeq (A_{\text{eff}} - z)^{-1} + O(a^{-1})$ in operator norm topology, uniformly on compacts $K_{\sigma} := \{z \in K : \text{dist}(z, \mathbb{R}) \geq \sigma\}$, where $K \subset \mathbb{C}$ is a compact.

Remarks

Remark

The operator \mathcal{A}_{eff} is precisely of Kuchment's form!

Remark

Let P be orthogonal projection from H_{eff} to $L^2(\Omega_+)$. Then the generalised resolvent $P(\mathcal{A}_{\text{eff}} - z)^{-1}P$ is the solution operator for

$$\begin{cases} -\Delta u_+ - zu_+ = f, & f \in L^2(\Omega_+) \\ u_+|_{\Gamma} = \frac{1}{|\Gamma|} \int_{\Gamma} u_+, \quad \frac{|\Gamma|}{|\Omega_-|} \int_{\Gamma} \frac{\partial u_+}{\partial n_+} = z \int_{\Gamma} u_+. \end{cases}$$

We have: $P(\mathcal{A}_a - z)^{-1}P = P(\mathcal{A}_{\text{eff}} - z)^{-1}P + O(a^{-1})$ and \mathcal{A}_{eff} is the self-adjoint Neumark-Strauss dilation of the above generalised resolvent. "Impedance BVP" with linear in z BC: Shkalikov'83; Exner-Post'2000s, Kuchment-Zeng'2000s (in quantum graphs); Figotin-Schenker'2000s (problems with memory), et al.

How does the argument work?

Start with $P(A_a - z)^{-1}P$. It is the solution operator for

$$\begin{cases} -\Delta u_+ - zu_+ = f_+, & f_+ \in L^2(\Omega_+) \\ \frac{\partial u_+}{\partial n_+}|_\Gamma = -M^-(z)u_+|_\Gamma, \end{cases}$$

where $M^-(z)$ is the Dirichlet-to-Neumann map for Ω_- .

Show: this is $O(a^{-1})$ close to

$$\begin{cases} -\Delta u_+ - zu_+ = f_+, & f_+ \in L^2(\Omega_+) \\ \mathcal{P} \frac{\partial u_+}{\partial n_+}|_\Gamma = -\mathcal{P} M^-(z) \mathcal{P} u_+|_\Gamma, \quad \mathcal{P}^\perp u_+|_\Gamma = 0, \end{cases}$$

where \mathcal{P} is the orthoprojection onto constants on Γ . But because of large a ,

$$\mathcal{P} M^-(z) \mathcal{P} = -z \frac{|\Omega_-|}{|\Gamma|} \mathcal{P} + O(a^{-1}),$$

and that's it.

Is it the end of the story?

Assume we want to drop the requirement that z is in a compact. Then consider the next order term:

$$\mathcal{P}M^-(z)\mathcal{P} = -z \frac{|\Omega_-|}{|\Gamma|} \mathcal{P} - \frac{z^2}{a} T + O\left(\frac{z^3}{a^2}\right),$$

leading to a *quadratic* impedance in BCs. Further terms \Rightarrow *polynomial*. Then the “internal” space of the effective model acquires more dimensions, and the internal structure becomes more involved!

The result for polynomial impedance

Let now $H_{\text{eff}} = L^2(\Omega_+) \oplus \mathbb{C}^k$; in this space take the self-adjoint Neumark-Strauss dilation A_{eff} of the generalised resolvent pertaining to the *polynomial of the order k* impedance boundary conditions on Γ .

Theorem

Up to a unitary equivalence, we have

$$(A_a - z)^{-1} \simeq \mathfrak{P}(A_{\text{eff}} - z)^{-1}\mathfrak{P} + O(\max\{a^{-1}, |z|^{k+1}a^{-k}\})$$

in operator norm topology.

Here \mathfrak{P} is the orthogonal projection of H_{eff} onto $L^2(\Omega_+) \oplus \mathbb{C}$ (i.e., the H_{eff} of the previous result).

The quadrupole case

In the case where $k = 2$ ("quadrupole regime") we have, in particular:

- $H_{\text{eff}} = L^2(\Omega_+) \oplus \mathbb{C}^2$;
-

$$\text{dom } \mathcal{A}_{\text{eff}} = \left\{ \begin{pmatrix} u_+ \\ \vec{\eta} \end{pmatrix} \in H_{\text{eff}} : u_+ \in H^2(\Omega_+), \ u_+|_{\Gamma} = \frac{\eta_1}{\kappa} \mathbb{1}_{\Gamma}, \ \frac{\partial u_+}{\partial n_+} \Big|_{\partial\Omega} = 0 \right\},$$

where $\vec{\eta} = (\eta_1, \eta_2) \in \mathbb{C}^2$, $u|_{\Gamma}$ is the trace of the function u and $\mathbb{1}_{\Gamma}$ is the unity function on Γ .

- On $\text{dom } \mathcal{A}_{\text{eff}}$

$$\mathcal{A}_{\text{eff}} \begin{pmatrix} u_+ \\ \eta_1 \\ \eta_2 \end{pmatrix} := \begin{pmatrix} -\Delta u_+ \\ \frac{1}{\kappa} \int_{\Gamma} \frac{\partial u_+}{\partial n_+} + a(B^2 D^{-1} \eta_1 + B \eta_2) \\ a(B \eta_1 + D \eta_2) \end{pmatrix}.$$

Here B, D and κ are real parameters, explicitly computed in terms of coefficients defining the impedance.

An explicit spectral decomposition for \mathcal{A}_{eff}

In [4], we have used functional model techniques + the boundary triples theory, to establish an *explicit* spectral representation for operators of the form \mathcal{A}_{eff} . In particular, in the “dipole” case (i.e., when the “internal” space E is one-dimensional), it is realised as $L^2(\mathbb{R}; d\mu)$, where μ is a Clarke measure.

References

- (K. Cherednichenko, A. Kiselev, L. Silva) Operator-norm resolvent asymptotic analysis of continuous media with low-index inclusions, to appear: Mathematical Notes; [link](#); arXiv: 2010.13318
- (with K. Cherednichenko, A. Kiselev) Effective behaviour of critical-contrast PDEs: micro-resonances, frequency conversion, and time dispersive properties. I, *Communications in Mathematical Physics* **375** (2020), pp. 1833–1884; [link](#); DOI: 10.1007/s00220-020-03696-2 (open access)
- (with K. Cherednichenko, A. Kiselev, L. Silva, V. Ryzhov) Asymptotic analysis of operator families and applications to resonant media, arXiv: 2204.01199
- (with K. Cherednichenko, L. Silva) Functional model for generalised resolvents and its application to time-dispersive media arXiv: 2111.05387
- (with K. Cherednichenko, A. Kiselev) Norm-resolvent convergence for Neumann Laplacians on manifolds thinning to graphs arXiv: 2205.04397

Thank you for your attention!