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Goals

1. Explain the boundary triples approach for high-contrast (HC) homogenization.

2. Using the output of this approach - How do waves propagate effectively in our HC

composite?




PrOblem Setup _div(a(-/e)V) "—" — div(apemV ) ?

= Fix dimension d > 2. Consider the problem
—div(a(%)Vug) —uut =f, f € L3(R%), uecC

= a(x) is Z%-periodic, and looks like this: . .
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PI’Oblem Setup * Operator POV

full space
« Fix dimension d > 2. Consider the problem * Resolvent eqn
Auf —uut =f
(A% _ 2 (md
—div(a(%)Vu) — pu = f, f € L*(R%), nec } * Find Anome s-t.

0(Ag) ~ 0(Ahom)

“stiff” material
a=1

= a(x) is Z%-periodic, and looks like this:
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Methods available (non-HC)

(Murat 1978, Tartar 1979) Method of compensated compactness
U¢ = U%ve =v0in (L2()9)
divUé - f°e H ' and curl V€ = o

Then U - VE - U° . V0O,

(Allaire 1992) Two-scale convergence method: We say v® 2, v0 if

JQ vf(x)tp(x,g)dx —>ff v0(x, V)Y (x, y)dydx

0x[0,1]

For all ¥(x,y) € D(Q; Cper([0,1])).

Tartar’s method of I'-convergence,
oscillating test functions G-convergence, ...
(1977)

Two-scale expansion method

uf(x) = uo(x,%) + eul(x,%) + ezuz(x,%) ST

(Birman-Suslina 2004) “spectral germ”

Gelfand transform

~ (D
A= f[oll]dA(T)dT

Perturbation theory
A(t) (1) = A,(£) @ (D), T =t

Norm-resolvent approximations!!!




Why norm-resolvent convergence?

= Definition: Let 4,, and A be (unbounded) self-adjoint ops on a Hilbert space H .

- We say that 4, converges to 4 in the norm-resolvent sense, denoted 4,, > 4, if

1A =D —UA-=D"l,p =0, as n — o, for some 1 € C \ R.
= Implies strong convergence of solutions u™ = (4, — )~ 1f - (A —A)~1f =u°.

= (By functional calculus) ||g(4,) — g(Dllop = 0, g € Co(R; C) What it cannot achieve
I\

: : . \ . » Spectral decomposition
= A, A implies convergence of spectrum (in some Ser\se), 1.e. P P

* Might not have limits in

. . | eneral ... norm resolvent
L0 (nr — lim An) = lim o(4,) S
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Step 0 — unitary transform

= From A,u® — uu® = f, we apply a sequence of unitary transforms:

® 0
A, =G ( j 0:4%% 0, d9> G,
g1’/

Gelfand Transform
Ge: L?2(RY) - L2(e71Q % Q)
(gives us a family of PDEs on L%(£Q))

Unitary rescaling

d L7 (eQ) - L7 (Q)

. . Qstiff—1s
Unit cube Q = [0,1)% , Gqyifrys = €2

’

Qsoft
"""" ¥ Csore =1
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A

« Write T = €0 € Q' = [—m, m)2. The resolvent equation

(49 - z)u = f € 17(Q)
has a unique solution u = ugf) = Ugtifi—int T Usoft T Ustiffi—1s Whenever the following BVP can be

solved uniquely in the weak sense:

( 2
—2(1 _ :
€ (TV + T) Ustiff—int —ZUstiff—int = [ N Qstiff—int,
1 2 _ ,
(TV + T) Usoft — ZUsoft = |, N Qsoft, . Qstiff_1s
_2(1 2 _ : Unit cube Q = [0,1) Coricr 1o = g2
e72(FV + 7) Ustifr-1s —ZUstitr-1s = f, iN Qstif—1s» Q o Catittls
Ustiff—int = Usoft, ~ Qsoft
Csoft = 1

OUsoft
on

+i(t- n)usoft

_, |OUstift—int
€
on

] on Fint,
+ (T - M Ustifr—ine | + =0,
~~~~~ . Qstiff—int
~ — a2
Cstiff-int — €

Usoft = Ustiff—1s;

OUgtiff—1s
+i(t-n)u 42| —=2
( ) soft] [ on

1
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Our goal

- Find an operator AY,  that is

= self-adjoint on a possibly smaller subspace L?(Qs.s) @ H of L2(Q).

(T

- Dependence on ¢ only allowed in the action of 4.} ..

on the stiff component.
(e.g. domain D (A(T) ) cannot depend on ¢.)

« Is 0(&?) close to Ag) in the norm-resolvent sense. 0(e?)-error does not depend on

need not be unique since we are discussing asymptotics.




Result (as a piCture) v Periodic BCs on dQ
sutt-int(0)

(AZOft‘(T)) } rsoft.(® span{ 1
GB Span{lpftlff—ls,(r)}

stiff—int,(7) stiff—1s,(7)
1 1

’

» Periodic BCs on dQ

domain

-»Transmission BC on T[},;

1-[stiff—int,(r)lpstiff—int,(r)____, Hstiff—ls,(‘r)lpStiff—lS;(T)
1omemm==mm""" 1

o

~~~~~~ » Transmission BC on T

—24(0) (™)
€ 2an‘[ Ustiff + anT Usoft
=0

-
-
m————
-
-

Stiff Dirichlet-to-Neumann
operators on L?(T;,,) and L?(T}5)

c ¢ Hstiff—int,(r)l/)ftiff—int,(lj) . E
s —e72(V + i1)2u . cl(Tglepends on 72, Hitiff—mt'(f)i and
an Usoft
: o —(V+it)%u . ¢, MSHE-1S(D) lplstiff—ls,(r)é.
action . ¢, depends on £72, Miitlff—ls,(t) and
T _e72(V 4 i1)2u I —

éeli proble;n
F )2
—(V+it)*u lurking here!




FSHF-18,(T) = span {Hstiff—ls,(r) lpftiff—ls,(r)}
Result

Hstiff,(‘c) — Hstiff—int,(‘c) an) Hstiff—ls,(‘c)

Theorem The operator Agom defined by U = Ustiff-int + Ustiff-1s
u
D ( Ag,[k)lom) - {<astiff_int> € 12(Qupr) B i stiff-int () gy Gy stiff-1s,(7).
Ustitr—1s
UED (Azoft,(r)) i [rsoft.(o (span {I)bistiff—int,(r)} @ span{ istiff—ls,(r)})  og= [ Stiff.() FOSOft'(T)u}
y —(V+i1)%u

~ _ (Tstiff—int,(t)+) L p(D) (1)
Agf)lom (uStiff—int> = | TP R [a" ulr ]

Ustiff-1s _(ﬁsuff_ls’(r)*)_l?s(tr%f N [aéf)u| n g_zluitiff_ls’(r)u| ]

= r r

is self-adjoint on L2(Qgog) @ FSHf-INt(D @ Frstiff-1s.(D  and is 0(£2) close to A in the norm-resolvent sense.

e
\

This estimate is uniformin r € Q' and z € K, (a compact set ¢ > 0 distance away from the real line.)



Boundary triples

A (Ryzhov) boundary triple (4., A, I1) needs:
= Separable Hilbert spaces H and € (boundary space).
= (Dirichlet operator) A, an unbounded SA op on H, with 0 € p(4,).
= (DTN operator) A an unbounded SA op on &.

- (Lift) I1: £ > #, a bounded injective linear map. [1,5(z)

/__\ A, M(2),
= D(A,) Nran(Il) = {0} Ao, A

(SR
. A

FO) 1—‘1




Step 1 — Construct the triples

For each 7, construct the following triples:

. stiff—int,(t) ,stiff-int,(7) iff—1i
,,,,,, v (AS'O , I\ , TTstiff mt'(f)) on L?(Qstifr—int) and boundary space L?(T};,.)

ASOTE(D psoft(D), HSOft'(T)) on L?(Qsof) and boundary space L?(Ty,) @ L*(T)

R (Azjc(i)ff—ls,(r),Asgtiff—ls,(l'), Hstiff—ls,(r)) on L2 (Qstiff—ls) and boundary space Lz(rls)

|
@ A [ o
(Ag,O' A7, ne . Az,t(‘,ff_mt'(r) = —&72(V + it)? with Dirichlet BCs on T},
on i = L*(Q) and &€ = L?(T},,) D L?(T3) - A = _(v 4+ i1)? with Dirichlet BCs on Ty, and T
AZf(i)ff_ls'(T) = —&~2(V + it)? with Dirichlet BC on T} + Periodic BC on 9Q

A(;()) _ Aif(i)ff—int,(r) @A?)oft,(‘r) @A;t(i)ff—ls,(‘r) @



Auxillary operators (defn)

To a boundary triple with spaces H and &, define the following operators:

with domain D(4) = D(4,) + ranll and action
A(AGf +TIg) = f, fEH,PEE

with domain D(T,,) = D(A4,) + ranll and action
To(Aglf +1gp) = ¢, fEH,pEE
with domain D(T;) = D(4,) + II(D(A)) and action

To(Aglf + Tp) = IT*f + A, fEH,pEE

= (Solution operator) For z € p(4,), define the bounded op by
S(z2)p = (I + z(4y — )"l

= (M-operator) For z € p(4,), define the closed op with domain D(M(z)) = D(A) and action

M(z)p =T1S(2)¢

e
\



Auxillary operators (intuition)

= How to think of the auxillary ops?

« For 4, T,, and I, consider the following “BVP”

[1,S(2) MO

{ (A-z)u=f

A /_\ Bo, B
. A

= For S(z), we have S(0) =11
FO) 1_‘1

= For M(z), we have M(0) = A

= P.S. p(4p) 2z~ S(2) and p(4y) 2 z » M(z) are nice!




Step 2 — Construct aux ops

Obtain the auxillary ops: ( JStiff-int,(0)

\Stiff-int,(2) Hstiff—int,(r)) and
g0 roUE ’

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

astiff-int,(t) pstiff—int,(t) stiff-int,(7) ostiff—int,(7) stiff—int,(7)
AS TS T2 ,S: , M (2)

(A(s)oft,(‘r)’Asoft,(‘r)’ Hsoft,(f)) and
> 8x4 = 32 operators!!!
A*soft,(r), r,goft,(‘r)’ r,1soft,(‘L'), Ssoft,(r) (Z), Msoft,(‘z:) (Z)

S~
-~
~
~
~
-
-
~
-~
~
-~
~~

stiff—1s,(t) astiff-1s,(t) stiff—Is,
(A(T) AD n(r)) and % (AS»O e 2l (T)) and
8’0’ 8 , - - - - -
A\ztlff—ls,(r)’ 1-,gtlff—ls,(r)’ l-,:fllff—ls,(r)’ S:tlff—ls,(r), (Z) M:tlff—ls,(r) (Z)

AP 1O 0 5O, M7 (2)

) 8,1 )




Step 3 — Use resulis of bdry triple theory

Why boundary triples?

Theorem (Ryzhov 2009) With B, and B; “nice” opson &, z € p(Ay),

= There is a closed, densely defined operator s.t. for f e H,
(A-2)u=f 3 —
070 T F1 has a unique solution

has a unique solution

« (Krein’s formula) R 4. (2) = (g g, —2) = (Ag —2)"1 = S(2)(Bo + M) piS(2)"

Corollary With our triple (AS&A{:), n(r)) we have 4" = AS&I and

-1 -1 -1
(Aff) — z) - (Agg _ z) ) (Mf) (z)) s )

L




Step 3 — Use resulis of bdry triple theory

Why boundary triples?

= By varying through S, and ; we get a collection of operators ABO»ﬁl that is big enough to

include all relevant operators that we need.

= Each operator Aﬁo,ﬁl has a corresponding “BVP” interpretation

= Krein’s formula provides a way to compute norm-resolvent asymptotics in terms of “nicer”
objects like M(z) and S(z).




Step 4 — Using Krein’s formula

In a nutshell... -1 -1 - o
(45 5.-2) =(a%--2) -sP@ (b +HMP @) AP @)

... and the crude approximation of A = ¥ u, (-, Y ), by (-, Y1)y, is enough, because

Theorem The following estimate in the operator norm holds 2x2 matrix
1 1 (abuse of notation
(D) A@ p (1)
(Mér)(2)> = ((SD Ae P ) 0) +0(e?) on P(®)
0 0
: P _ (7) _ p(0) (7)
Relative to the decomposition € = P(Ve @ PV €, where P = P50 .+ P .
(e.g. Ps(tri%f_ls = projection onto (1D) eigenspace w.r.t. first (simple) evalue of stiff-DTN)

-1, . .
(P@APP®) ~ is bounded uniformly in ¢ > 0, T € Q’, and z € K,.

This estimate is uniformin t € Q', and z € K.




Step 4 — Using Krein’s formula ... is not enough
2x2 matrix

Theorem The following estimate in the operator norm holds
Q) -
((P(T)Ag PO) 0) 0(e?)

0

0
_ p(D) ()
— :])stiff—int + :])stiff—ls y

(M <z>)_1 -

Relative to the decomposition € = P(ME @ ?f)é:‘ , where P
= projection onto (1D) eigenspace w.r.t. first (simple) evalue of stiff-DTN)

(7)
(e‘g' ?stiff—ls
(P(ﬂA(;)?(T))_l is bounded uniformly in e > 0, T € Q', and z € K,,.

1
f

This estimate is uniform in t € Q',and z € K,

etc.

)

Needs perturbation theory. For e.g. to prove that
T A(T)qﬁ, R #Y) T l/)lstiff_int'(r),l' N | Hstiff—int,(r)lplstiff—int'(T)

are continuous.

(_,- — N\,
\'r'i‘;)




FESHF-18,(T) = span {Hstiff—ls,(r) lpftiff—ls,(r)}

Result (again)

Jstiff—1s 1S @ unitary map for

Theorem The operator Agom defined by FSUIIS (D) = Copiprine

u
D (A'(S:[t)lom) = {<'85tiff—int> € LZ (Qsoft) @ «:stiff—int @ (Cstiff—ls

Bitift-1s
UED (Agoft,(r)) 1 qrsoft(@ (span {lplstiff—int,(r)} @ span {lplstiff—ls,(r)}) ’

.(T) rrstiff-int,(D) goft,(r)

_ (1) stiff—Is,(t) psoft,(1)
Bstiff-int = Jstiff—int I ( )Fo u}

U, Bstiff-1s = Jstift-1s
—(V+i1)%u \

-1

y ) i @) soft,(7) _p SHE-InG(D) (D Hstiffoint ()| -

(ﬁstiff—int> = _<(Jstiff—intnsu lnt(T))) Fstir—int [Fl Ch (]stiff—intnsn mt(r)) p Stiff‘"‘t]

Potr-s (@) s o s0ft,(7) stiff—1s,(z) (;(7) ff-15,())
, LS, ’ ., stiff-ls,(0) [ . S
B ((Jstiff—lsnstl S(T)) ) Pstite-1s [F1 Uute iy (]stiff—lsHSl i T) ﬂstiff—ls] )

is self-adjoint on L2(Qsot) D Cstiff—int D Cstitr1s, and (upon a unitary transformation) is 0(e?) close to Ag) in
the norm-resolvent sense.

A (7)

ghom

This estimate is uniform in 7 € Q' and z € K, (a compact set ¢ > 0 distance away from the real line.) &






Spectral properties of DTN

Proposition For all € Q' = [—m, )¢, the DTN ops are SA, semibounded from above, and have compact

resolvent. If we order evalues in descending order (counting multiplicities, then)

« The evalues of ASHI-Int(D (yunweighted) satisfies

tiff—int iff—i iff—i
Forallz, 0 = Hi iff—int,(7) > ‘u;tl int,(7) > ﬂgtlff int,(7) > .5 —0

= The evalues of ASHf-Is.(D satisfies

If =0, then 0 = ‘uitlff—lnt,(l') > M;tlff—lnt,(‘[) > M;tiff—int,(f) > .5 —o0

If T £ 0, then 0 > ‘uitiff—int,(r) > ’u;tlff—lnt,(‘[) > ’ugtiff—int,(r) > 5 —00

The first evalue admits an asymp expansion in 7, with quadratic leading order term

SIS0 s (strictly) neg-definite matrix @
\ 4

Hstiff—ls,(r) _ H:tiff—ls,(T)T T+ 0(|T|3),
/4

1



Plug in the values...

Vanishes because

it =0 for all 7!

—(V+i1)%u
-1 ¥ 1

u (1) = stiff—int, * (1) soft,(T) _o stiff-int,(7) [ .(7) T stiff—int, -
4@ ([)’ g >_ _<(]Stiff—intnstl mt(r))) Ftifr-int [Fl U+ et (]stiff—intnsu mtm) 4 Stiff_int]
£ hom stiff-int | =

. -1

Pstitt-1s (1) gstiff-ls,(7) " p® rsoft(® =2, SUft-s (D) (50 - fstiff-1s,() -
~ (Jstiff—ls ) stiff-1s |1 ute T, (Jstiff—ls ) Pstitt-1s

—(V+it)%u Quadratic i
(1) uadratic In 7
= Tg;tiff_int (u: :Bstiff—int: :Bstiff— ls)

(1)
Tg,stiff_ ls (u: :Bstiff—int: :Bstiff— ls)




Finding the “dispersion reln”

How do waves propagate in the stiff-interior region and the stiff-landscape region?

Let’s start with stiff-interior. Consider the following operator from Cgtifr—int t0 Cstiff—int:

-1
PCstiff—int ( ghom Z) P(Cstiff—int
Suppose that we can write the “resolvent eqn”
p A9 ) p —zB=6 8 € Csrifr;
Cstiff—int \“*ghom — Z Cstif—intP — 2P =0, stiff-int

In the form
(K(t,z2) —z)B =6 We will call K the

(P g & 134
Then, dispersion function

-1
Pqgir—int ( chom — Z) Pegie—ine = M(k(z,2)-2)~1

®
\



Dispersion fct for stiff-int

D= HSOft'(T) (l/)ftiff_int'(r), 0)’ W= Hsoft,(f) (0, wlstiff—ls,(r))’ Lpls'ciff—ls,(‘t') — l-[Stiff—ls,(‘L')lljlstiff—ls,(‘r)

Then (omitting dependence on ¢ and 7 for brevity),

L T
Z(A(S)Oft_z) v+ v
Ksatr-int(7,2) = =g Tscir- z) +
sif-int (% 2) = [gifeme] suff-int | [|gpufin
0

dl

- -1 -1
) 2(43°% - 2) 1yt w z(A°" —2z) v+ ) (A —2) Tw+w
s tff—Ts ||| stiff—ing| Tstiff-int 0 Tstiff-1s ||Lp15tiff—int|| 1- Z||wstIs | Tstiff-1s 0

||Lp15tiff—15|| 0 ”Lplstiff—ls”

(Negligible) correction term @



Dispersion fct for stiff-lIs

v = [Iseft(® (lpftiff—int,(r), 0), w = [soft(®) 0, d)stiff—ls,(r))’ Lplstiff—ls,(l') — l-[stiff—ls,(1:)l/)stiff—ls,(r)

1 1

Then (omitting dependence on ¢ and 7 for brevity),

z(AST — Z)_1W +w

1
Kstife-15(T, 2) = sttiﬁ’—ls 0
. ”Lplstiff—ls ”
(R(e6,2) —2) = (ahomg -0 — ﬁ(z))_l
. 2(A°% — 2) " w + w z(A3eTt — z)_lv +v ) z( ATt — z)_lv + v
2| wst=Ts |[||wstiff=int| Tstiff—int ||Lpftgf—ls ” Tstif—1s ||Lp15ti(f)f—int|| 1- m Tstiff—int ”LplSti(f)f—int”

Correction term @
{



Justification of term “dispersion
function”

= For const. coefficient PDEs

“seek plane-wave solutions e!(§¥ —w)”,

= Alternatively, notice that if p(§) = |€]? and D = —iV and F =FT in spé{ce, then —A = p(D) and
p(D) = F1M,F '

The poly p gives us the “spatial part” of the dispersion relnin !!!
So, we call p the “dispersion function”

(e.g. if d++u is replaced by id;u (Schrodinger eqn), then p coincides the dispersion relation.)




Justification

= Generalize the definition to our case:

= Write A = A, @ Aqc D Asc. Suppose that we can find a unitary U such that 4,. = U*M,U where M,is
the mult. operator by p(x) on L?(Q, Leb). Then we call p(x) the “dispersion function”.

= Observe that with f,(1) = =

(A-2) ’ AN

(Agc — z)~! = fz(Agc) = U*fz(Mp)U — U*MfzopU — U*M(p(l)—z)_lU \

In general, we allow the this

fct to depend on spectral

= In our case, we had for each 7 the following operator on C: _
_~ Pparameter z. This

’
’

-1 < corresponds to incorporating
P(C (Ag[]’)lom - Z) PC = M(K(T Z)—Z)_1 /’/
’ ’ S the “temporal part” of the
e dispersion reln.

Therefore, on er? Cdr = I2(Q'; C), we will have a mult. operator by T - (K (t,z) — z)~

Hence, by definition , K is our dispersion fct.

(.»' — N\,






