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1. Explain the boundary triples approach for high-contrast (HC) homogenization.

2. Using the output of this approach – How do waves propagate effectively in our HC 

composite?



▪ Fix dimension 𝑑 ≥ 2. Consider the problem

▪ 𝑎(𝑥) is ℤ𝑑-periodic, and looks like this:

…

…

…

…

… …

… …

“stiff” material

𝑎 ≡ 𝑐stiff−ls𝐼

“soft” material

𝑎 ≡ 𝑐soft𝐼

−div a 𝑥

𝜀
∇𝑢𝜀 − 𝜇𝑢𝜀 = 𝑓,        𝑓 ∈ 𝐿2 ℝ𝑑 ,         𝜇 ∈ ℂ

𝜀

𝜀

−div 𝑎 Τ⋅ 𝜀 ∇ ⋅ "⟶" − div ahom∇ ⋅ ?

Cube with 𝑂(𝜀) side-length 
Transmission BCs

“stiff” material

𝑎 ≡ 𝑐stiff−int𝐼



▪ Fix dimension 𝑑 ≥ 2. Consider the problem

▪ 𝑎(𝑥) is ℤ𝑑-periodic, and looks like this:

…

…

…

…

… …

… …

“stiff” material

𝑎 ≡ 𝐼

“soft” material

𝑎 ≡ 𝜀2𝐼

−div a 𝑥

𝜀
∇𝑢𝜀 − 𝜇𝑢𝜀 = 𝑓,        𝑓 ∈ 𝐿2 ℝ𝑑 ,         𝜇 ∈ ℂ

𝜀

𝜀
Cube with 𝑂(𝜀) side-length 

Transmission BCs

“stiff” material

𝑎 ≡ 𝐼

“high/critical 

contrast” scaling

full space
• Operator POV

• Resolvent eqn

𝐴𝜀𝑢
𝜀 − 𝜇𝑢𝜀 = f

• Find 𝐴hom,𝜀 s.t.

𝜎 𝐴𝜀 ~ 𝜎(𝐴hom)



Tartar’s method of 

oscillating test functions 

(1977)

Two-scale expansion method

𝑢𝜀 𝑥 = 𝑢0 𝑥, 𝑥
𝜀
+ 𝜀𝑢1 𝑥, 𝑥

𝜀
+ 𝜀2𝑢2 𝑥, 𝑥

𝜀
+⋯

(Allaire 1992) Two-scale convergence method: We say 𝑣𝜀 → 𝑣0 if

න
Ω

𝑣𝜀 𝑥 𝜓 𝑥, 𝑥
𝜀
𝑑𝑥 →ඵ

Ω×[0,1]

𝑣0 𝑥, 𝑦 𝜓 𝑥, 𝑦 𝑑𝑦𝑑𝑥

For all 𝜓 𝑥, 𝑦 ∈ 𝒟(Ω; 𝐶𝑝𝑒𝑟
∞ 0,1 ).

2

Γ-convergence, 

G-convergence, …

(Murat 1978, Tartar 1979) Method of compensated compactness

𝑈𝜀 ⇀ 𝑈0, 𝑉𝜀 ⇀ 𝑉0 in L2 Ω d

div 𝑈𝜀 → 𝑓0 ∈ 𝐻−1 and curl V𝜀 = 𝒐

Then 𝑈𝜀 ⋅ 𝑉𝜀 ⇀ 𝑈0 ⋅ 𝑉0.

(Birman-Suslina 2004) “spectral germ”

• Gelfand transform

𝐴 ≅ 0,1׬ 𝑑

⊕
𝐴(𝜏)𝑑𝜏

• Perturbation theory

𝐴 𝑡 𝜑𝑛 𝑡 = 𝜆𝑛 𝑡 𝜑𝑛 𝑡 , 𝜏 = 𝑡𝜃

• Norm-resolvent approximations!!! 



▪ Definition: Let 𝐴𝑛 and 𝐴 be (unbounded) self-adjoint ops on a Hilbert space ℋ. 

▪ We say that 𝐴𝑛 converges to 𝐴 in the norm-resolvent sense, denoted 𝐴𝑛 → 𝐴, if 

▪ Implies strong convergence of solutions 𝑢𝑛 = 𝐴𝑛 − 𝜆 −1𝑓 → 𝐴 − 𝜆 −1𝑓 = 𝑢0.

▪ (By functional calculus) 𝑔 𝐴𝑛 − 𝑔 𝐴 𝑜𝑝 → 0, 𝑔 ∈ 𝐶0(ℝ; ℂ)

▪ 𝐴𝑛 → 𝐴 implies convergence of spectrum (in some sense), i.e.

nr

𝐴𝑛 − 𝜆 −1 − 𝐴 − 𝜆 −1
𝑜𝑝 → 0,        as 𝑛 → ∞, for some 𝜆 ∈ ℂ ∖ ℝ.

nr

𝜎 nr − lim
𝑛→∞

𝐴𝑛 = lim
𝑛→∞

𝜎(𝐴𝑛)

𝑔 𝜆 = 𝑒𝑖𝑡𝜆 not ok

What it cannot achieve

• Spectral decomposition

• Might not have limits in 

general … norm resolvent 

asymptotics

𝜎 sr − lim
𝑛→∞

𝐴𝑛 ⊆ lim
𝑛→∞

𝜎(𝐴𝑛)



▪ From A𝜀𝑢
𝜀 − 𝜇𝑢𝜀 = 𝑓, we apply a sequence of unitary transforms:

𝑄stiff−ls
ǁ𝑐stiff−𝑙𝑠 = 𝜀−2

𝑄soft
ǁ𝑐soft = 1

𝐴𝜀 = 𝐺𝜀
∗ න

𝜀−1𝑄′

⊕

Φ𝜀
∗𝐴𝜀

(𝜀𝜃)
Φ𝜀 𝑑𝜃 𝐺𝜀

Unit cube 𝑄 = 0,1 𝑑

• Gelfand Transform

𝐺𝜀: 𝐿
2 ℝ𝑑 → 𝐿2 𝜀−1𝑄 × 𝜀𝑄

(gives us a family of PDEs on 𝐿2(𝜀𝑄))

• Unitary rescaling 

Φ𝜀: 𝐿
2 𝜀𝑄 → 𝐿2(𝑄) Periodic 

BCs on 𝜕𝑄

…

…

…

…

… …

… …

𝜀
𝑄stiff−int

ǁ𝑐stiff−int = 𝜀−2

Transmission BC on Γls

Transmission BC on Γint



▪ Write 𝜏 = 𝜀𝜃 ∈ 𝑄′ = −𝜋, 𝜋 𝑑. The resolvent equation

has a unique solution 𝑢 ≡ 𝑢𝜀
𝜏
= 𝑢stiff−int + 𝑢soft + 𝑢stiff−ls whenever the following BVP can be 

solved uniquely in the weak sense:

𝐴𝜀
(𝜏)

− 𝑧 𝑢 = 𝑓 ∈ 𝐿2(𝑄)

𝜀−2 1
𝑖
∇ + 𝜏

2
𝑢stiff−int −𝑧𝑢stiff−int= 𝑓,

1
𝑖
∇ + 𝜏

2
𝑢soft − 𝑧𝑢soft = 𝑓,

𝜀−2 1
𝑖
∇ + 𝜏

2
𝑢stiff−ls −𝑧𝑢stiff−ls= 𝑓,

𝑢stiff−int = 𝑢soft,

𝜀−2
𝜕𝑢stiff−int

𝜕𝑛
+ 𝑖 𝜏 ⋅ 𝑛 𝑢stiff−int +

𝜕𝑢soft
𝜕𝑛

+ 𝑖 𝜏 ⋅ 𝑛 𝑢soft = 0,

𝑢soft = 𝑢stiff−ls,

𝜕𝑢soft
𝜕𝑛

+ 𝑖 𝜏 ⋅ 𝑛 𝑢soft + 𝜀−2
𝜕𝑢stiff−ls

𝜕𝑛
+ 𝑖 𝜏 ⋅ 𝑛 𝑢stiff−ls = 0,

𝑢stiff−ls periodic

in 𝑄stiff−int,

in 𝑄soft,

in 𝑄stiff−ls,

on Γint,

on Γls,

on 𝜕𝑄

𝑄stiff−ls
ǁ𝑐stiff−𝑙𝑠 = 𝜀−2

𝑄soft
ǁ𝑐soft = 1

Unit cube 𝑄 = 0,1 𝑑

Transmission BC on Γls
Periodic 

BCs on 𝜕𝑄

𝑄stiff−int
ǁ𝑐stiff−int = 𝜀−2

Transmission BC on Γint



▪ Find an operator 𝐴𝜀,ℎ𝑜𝑚
(𝜏)

that is

▪ self-adjoint on a possibly smaller subspace 𝐿2 𝑄soft ⊕ ෩ℋ of 𝐿2 𝑄 .

▪ Dependence on 𝜀 only allowed in the action of 𝐴𝜀,ℎ𝑜𝑚
(𝜏)

on the stiff component. 

(e.g. domain 𝒟 𝐴hom
(𝜏)

cannot depend on 𝜀.)

▪ Is 𝑂 𝜀2 close to 𝐴𝜀
(𝜏)

in the norm-resolvent sense. 𝑂 𝜀2 -error does not depend on 

𝜏.

▪ 𝐴𝜀,ℎ𝑜𝑚
(𝜏)

need not be unique since we are discussing asymptotics.



• 𝑐1 Π
stiff−int,(𝜏)𝜓1

stiff−int,(𝜏)

• 𝑐1 depends on 𝜀−2, and 

𝜕𝑛
𝜏
𝑢soft−𝜀−2 ∇ + 𝑖𝜏 2𝑢

Transmission BC on Γ𝑙𝑠
𝜀−2𝜕𝑛

𝜏
𝑢stiff + 𝜕𝑛

𝜏
𝑢soft

= 0

Periodic BCs on 𝜕𝑄

− ∇ + 𝑖𝜏 2𝑢

𝐴𝜀
(𝜏)

domain

action

𝐴𝜀,hom
(𝜏)

− ∇ + 𝑖𝜏 2𝑢

Periodic BCs on 𝜕𝑄

𝑢 ∈ 𝒟 𝐴0
soft, 𝜏

∔ Πsoft, 𝜏
span 𝜓1

stiff−int, 𝜏

⊕ span{𝜓1
stiff−𝑙𝑠,(𝜏)

}

𝜓1
stiff−int,(𝜏)

Πstiff−int,(𝜏)𝜓1
stiff−int,(𝜏)

• 𝑐2 Π
stiff−ls,(𝜏)𝜓1

stiff−ls,(𝜏)

• 𝑐2 depends on 𝜀−2, and 

𝜕𝑛
𝜏
𝑢soft

𝜇1
stiff−int, 𝜏

Stiff Dirichlet-to-Neumann 

operators on 𝐿2(Γ𝑖𝑛𝑡) and 𝐿2(Γ𝑙𝑠)

Cell problem 

lurking here!

−𝜀−2 ∇ + 𝑖𝜏 2𝑢

Transmission BC on Γ𝑖𝑛𝑡

𝜓1
stiff−ls,(𝜏)

Πstiff−ls,(𝜏)𝜓1
stiff−ls,(𝜏)

𝜇1
stiff−ls, 𝜏



Theorem The operator 𝐴𝜀,hom
(𝜏)

defined by

is self-adjoint on 𝐿2 𝑄soft ⊕ ෱ℋstiff−int,(𝜏) ⊕ ෱ℋstiff−ls,(𝜏), and is 𝑂 𝜀2 close to 𝐴𝜀
(𝜏)

in the norm-resolvent sense. 

This estimate is uniform in 𝜏 ∈ 𝑄′ and 𝑧 ∈ 𝐾𝜎 (a compact set 𝜎 > 0 distance away from the real line.)

𝒟 𝐴𝜀,hom
𝜏

≔ {

𝑢
ො𝑢stiff−int
ො𝑢stiff−ls

∈ 𝐿2 𝑄soft ⊕ ෱ℋstiff−int,(𝜏) ⊕ ෱ℋstiff−ls,(𝜏):

𝑢 ∈ 𝒟 𝐴0
soft, 𝜏

∔ Πsoft, 𝜏 span 𝜓1
stiff−int, 𝜏

⊕ span 𝜓1
stiff−𝑙𝑠, 𝜏

, ො𝑢 = ෱Πstiff, 𝜏 Γ0
soft, 𝜏

𝑢}

𝐴𝜀,hom
(𝜏)

𝑢
ො𝑢stiff−int
Ƹ𝑢stiff−ls

=

− ∇+ 𝑖𝜏 2𝑢

− ෱Πstiff−int, 𝜏 ∗ −1
𝒫stiff−int

𝜏
𝜕𝑛

𝜏
𝑢ȁ𝛤

− ෱Πstiff−ls, 𝜏 ∗ −1
𝒫stiff−ls

𝜏
𝜕𝑛

𝜏
𝑢 ቚ

𝛤
+ 𝜀−2𝜇1

stiff−ls,(𝜏)
𝑢 ቚ

Γ

෱ℋstiff−ls,(𝜏) = span Πstiff−ls,(𝜏)𝜓1
stiff−ls,(𝜏)

Πstiff,(𝜏) = Πstiff−int,(𝜏) ⊕Πstiff−ls,(𝜏)

ො𝑢 = ො𝑢stiff−int + ො𝑢stiff−𝑙𝑠



A (Ryzhov) boundary triple (𝐴0, Λ, Π) needs:

▪ Separable Hilbert spaces ℋ and ℰ (boundary space).

▪ (Dirichlet operator) 𝐴0 an unbounded SA op on ℋ, with 0 ∈ 𝜌 𝐴0 .

▪ (DTN operator) Λ an unbounded SA op on ℰ.

▪ (Lift) Π: ℰ → ℋ, a bounded injective linear map.

▪ 𝒟 𝐴0 ∩ ran Π = {0}
ℋ = 𝐿2(𝑄) ℰ = 𝐿2(Γ)

Γ0, Γ1

Π, 𝑆(𝑧)

𝐴0, መ𝐴

Λ,M z ,
𝛽0, 𝛽1



For each 𝜏, construct the following triples:

𝐴𝜀,0
𝜏
, Λ𝜀

𝜏
, Π(𝜏)

on ℋ = 𝐿2 𝑄 and ℰ = 𝐿2 Γ𝑖𝑛𝑡 ⊕𝐿2(Γ𝑙𝑠)

𝐴𝜀,0
stiff−int, 𝜏

, Λ𝜀
stiff−int, 𝜏

, Πstiff−int,(𝜏) on 𝐿2 𝑄stiff−int and boundary space 𝐿2 Γ𝑖𝑛𝑡

𝐴𝜀,0
stiff−ls, 𝜏

, Λ𝜀
stiff−ls, 𝜏

, Πstiff−ls,(𝜏) on 𝐿2 𝑄stiff−ls and boundary space 𝐿2 Γ𝑙𝑠

𝐴0
soft, 𝜏

, Λ
soft, 𝜏

, Πsoft,(𝜏) on 𝐿2 𝑄soft and boundary space 𝐿2 Γ𝑖𝑛𝑡 ⊕𝐿2 Γ𝑙𝑠

• 𝐴𝜀,0
stiff−int, 𝜏

= −𝜀−2 ∇ + 𝑖𝜏 2 with Dirichlet BCs on Γ𝑖𝑛𝑡

• 𝐴0
soft, 𝜏

= − ∇+ 𝑖𝜏 2 with Dirichlet BCs on Γ𝑖𝑛𝑡 and Γ𝑙𝑠

• 𝐴𝜀,0
stiff−ls, 𝜏

= −𝜀−2 ∇ + 𝑖𝜏 2 with Dirichlet BC on Γ𝑙𝑠 + Periodic BC on 𝜕𝑄

• 𝐴𝜀,0
𝜏
= 𝐴𝜀,0

stiff−int, 𝜏
⊕𝐴0

soft, 𝜏
⊕𝐴𝜀,0

stiff−ls, 𝜏



To a boundary triple (𝐴0, Λ, Π) with spaces ℋ and ℰ, define the following operators:

▪ መ𝐴:ℋ ⊃ 𝒟 𝐴0 → ℋ with domain 𝒟 መ𝐴 = 𝒟 𝐴0 ∔ ranΠ and action

መ𝐴 A0
−1𝑓 + Π𝜙 = 𝑓, 𝑓 ∈ ℋ,𝜙 ∈ ℰ

▪ Γ0:ℋ ⊃ 𝒟 Γ0 → ℰ with domain 𝒟 Γ0 = 𝒟 𝐴0 ∔ ranΠ and action

Γ0 A0
−1𝑓 + Π𝜙 = 𝜙, 𝑓 ∈ ℋ,𝜙 ∈ ℰ

▪ Γ1:ℋ ⊃ 𝒟 Γ1 → ℰ with domain 𝒟 Γ1 = 𝒟 𝐴0 ∔ Π(𝒟(Λ)) and action

Γ0 A0
−1𝑓 + Π𝜙 = Π∗𝑓 + Λ𝜙, 𝑓 ∈ ℋ,𝜙 ∈ ℰ

▪ (Solution operator) For 𝑧 ∈ 𝜌(𝐴0), define the bounded op 𝑆 𝑧 : ℰ → ℋ by

𝑆 𝑧 𝜙 = 𝐼 + 𝑧 𝐴0 − 𝑧 −1 Π𝜙

▪ (M-operator) For 𝑧 ∈ 𝜌(𝐴0), define the closed op M 𝑧 : ℰ ⊃ 𝒟 𝑀(𝑧) → ℰ with domain 𝒟 𝑀 𝑧 = 𝒟(Λ) and action

𝑀 𝑧 𝜙 = Γ1𝑆 𝑧 𝜙



▪ How to think of the auxillary ops?

▪ For መ𝐴, Γ0, and Γ1, consider the following “BVP”

▪ For 𝑆(𝑧), we have S 0 = Π

▪ For 𝑀 𝑧 , we have 𝑀 0 = Λ

▪ P.S. 𝜌 𝐴0 ∋ 𝑧 ↦ 𝑆(𝑧) and 𝜌 𝐴0 ∋ 𝑧 ↦ 𝑀(𝑧) are nice!

ℋ = 𝐿2(𝑄) ℰ = 𝐿2(Γ)

Γ0, Γ1

Π, 𝑆(𝑧)

𝐴0, መ𝐴

Λ,M z ,
𝛽0, 𝛽1൝

መ𝐴 − 𝑧 𝑢 = 𝑓

𝛽0Γ0 + 𝛽1Γ1 𝑢 = 𝜙



Obtain the auxillary ops:

𝐴𝜀,0
𝜏
, Λ𝜀

𝜏
, Π(𝜏) and

መ𝐴𝜀
(𝜏)
, Γ0

(𝜏)
, Γ𝜀,1

(𝜏)
, 𝑆𝜀

𝜏
(𝑧),𝑀𝜀

𝜏
(𝑧)

𝐴𝜀,0
stiff−int, 𝜏

, Λ𝜀
stiff−int, 𝜏

, Πstiff−int,(𝜏) and 

መ𝐴𝜀
stiff−int,(𝜏)

, Γ0
stiff−int,(𝜏)

, Γ𝜀,1
stiff−int,(𝜏)

, 𝑆𝜀
stiff−int,(𝜏)

, 𝑀𝜀
stiff−int, 𝜏

(𝑧)

𝐴0
soft, 𝜏

, Λ
soft, 𝜏

, Πsoft,(𝜏) and

መ𝐴
soft,(𝜏)

, Γ0
soft,(𝜏)

, Γ1
soft,(𝜏)

, 𝑆
soft, 𝜏

(𝑧),𝑀
soft, 𝜏

(𝑧)

𝐴𝜀,0
stiff−ls, 𝜏

, Λ𝜀
stiff−ls, 𝜏

, Πstiff−ls,(𝜏) and 

መ𝐴𝜀
stiff−ls,(𝜏)

, Γ0
stiff−ls,(𝜏)

, Γ𝜀,1
stiff−ls,(𝜏)

, 𝑆𝜀
stiff−ls, 𝜏

, (𝑧) 𝑀𝜀
stiff−ls, 𝜏

(𝑧)

8x4 = 32 operators!!!



Why boundary triples?

Theorem (Ryzhov 2009) With 𝛽0 and 𝛽1 “nice” ops on ℰ, 𝑧 ∈ 𝜌(𝐴0), 

▪ There is a closed, densely defined operator መ𝐴𝛽0,𝛽1 s.t. for 𝑓 ∈ ℋ,

▪ (Krein’s formula) 𝑅𝛽0,𝛽1 𝑧 ≔ መ𝐴𝛽0,𝛽1 − 𝑧
−1

= 𝐴0 − 𝑧 −1 − 𝑆 𝑧 𝛽0 + 𝛽1𝑀 𝑧
−1
𝛽1𝑆 ҧ𝑧 ∗

Corollary With our triple 𝐴𝜀,0
𝜏
, Λ𝜀

𝜏
, Π(𝜏) we have 𝐴𝜀

(𝜏)
= መ𝐴𝜀,0,𝐼

(𝜏)
and

𝐴𝜀
(𝜏)

− 𝑧
−1

= 𝐴𝜀,0
(𝜏)

− 𝑧
−1

− 𝑆𝜀
(𝜏)

𝑧 𝑀𝜀
(𝜏)

𝑧
−1

𝑆𝜀
(𝜏)

ҧ𝑧 ∗

൝
መ𝐴 − 𝑧 𝑢 = 𝑓

𝛽0Γ0 + 𝛽1Γ1 𝑢 = 0

has a unique solution

መ𝐴𝛽0,𝛽1 − 𝑧 𝑢 = 𝑓

has a unique solution
⟺



Why boundary triples?

▪ By varying through 𝛽0 and 𝛽1 we get a collection of operators መ𝐴𝛽0,𝛽1 that is big enough to 

include all relevant operators that we need.

▪ Each operator መ𝐴𝛽0,𝛽1 has a corresponding “BVP” interpretation

▪ Krein’s formula provides a way to compute norm-resolvent asymptotics in terms of “nicer” 

objects like 𝑀(𝑧) and 𝑆(𝑧).



In a nutshell…

… and the crude approximation of Λ = ∑𝜇𝑘 ⋅, 𝜓𝑘 𝜓𝑘 by 𝜇1 ⋅, 𝜓1 𝜓1 is enough, because

Theorem The following estimate in the operator norm holds

Relative to the decomposition ℰ = 𝒫(𝜏)ℰ ⊕𝒫⊥
𝜏
ℰ, where 𝒫(𝜏) = 𝒫stiff−int

(𝜏)
+ 𝒫stiff−𝑙𝑠

(𝜏)
.

(e.g. 𝒫stiff−𝑙𝑠
(𝜏)

= projection onto (1D) eigenspace w.r.t. first (simple) evalue of stiff-DTN)

𝒫 𝜏 Λ𝜀
𝜏
𝒫 𝜏

−1
is bounded uniformly in 𝜀 > 0, 𝜏 ∈ 𝑄′, and 𝑧 ∈ 𝐾𝜎.

This estimate is uniform in 𝜏 ∈ 𝑄′, and 𝑧 ∈ 𝐾𝜎.

𝐴𝜀,𝛽0,𝛽1
(𝜏)

− 𝑧
−1

= 𝐴𝜀,0
(𝜏)

− −𝑧
−1

− 𝑆𝜀
(𝜏)

𝑧 𝛽0 + 𝛽1𝑀𝜀
(𝜏)

𝑧
−1

𝛽1𝑆𝜀
(𝜏)

ҧ𝑧 ∗

𝑀𝜀
𝜏
𝑧

−1

= 𝒫(𝜏)Λ𝜀
(𝜏)
𝒫(𝜏)

−1
0

0 0
+ 𝑂 𝜀2

2x2 matrix 

(abuse of notation 

on 𝒫(𝜏))



Theorem The following estimate in the operator norm holds

Relative to the decomposition ℰ = 𝒫(𝜏)ℰ ⊕𝒫⊥
𝜏
ℰ, where 𝒫(𝜏) = 𝒫stiff−int

(𝜏)
+𝒫stiff−𝑙𝑠

(𝜏)
.

(e.g. 𝒫stiff−𝑙𝑠
(𝜏)

= projection onto (1D) eigenspace w.r.t. first (simple) evalue of stiff-DTN)

𝒫 𝜏 Λ𝜀
𝜏
𝒫 𝜏

−1
is bounded uniformly in 𝜀 > 0, 𝝉 ∈ 𝑸′, and 𝑧 ∈ 𝐾𝜎.

This estimate is uniform in 𝝉 ∈ 𝑸′, and 𝑧 ∈ 𝐾𝜎.

𝑀𝜀
𝜏
𝑧

−1

= 𝒫(𝜏)Λ𝜀
(𝜏)
𝒫(𝜏)

−1
0

0 0
+ 𝑂 𝜀2

2x2 matrix

Needs perturbation theory. For e.g. to prove that 

𝜏 ↦ Λ(𝜏)𝜙, 𝜏 ↦ 𝜇1
(𝜏)

, 𝜏 ↦ 𝜓1
stiff−int,(𝜏)

, 𝜏 ↦ Πstiff−int,(𝜏)𝜓1
stiff−int,(𝜏)

, etc.

are continuous.



Theorem The operator 𝐴𝜀,hom
(𝜏)

defined by

is self-adjoint on 𝐿2 𝑄soft ⊕ℂstiff−int⊕ℂstiff−ls, and (upon a unitary transformation) is 𝑂 𝜀2 close to 𝐴𝜀
(𝜏)

in 

the norm-resolvent sense. 

This estimate is uniform in 𝜏 ∈ 𝑄′ and 𝑧 ∈ 𝐾𝜎 (a compact set 𝜎 > 0 distance away from the real line.)

𝒟 𝐴𝜀,hom
𝜏

≔ {

𝑢
𝛽stiff−int
𝛽stiff−ls

∈ 𝐿2 𝑄soft ⊕ℂstiff−int⊕ℂstiff−ls

𝑢 ∈ 𝒟 𝐴0
soft, 𝜏

∔ Πsoft, 𝜏 span 𝜓1
stiff−int, 𝜏

⊕ span 𝜓1
stiff−𝑙𝑠, 𝜏

,

𝛽stiff−int = 𝑗stiff−int
𝜏

Πstiff−int, 𝜏 Γ0
soft, 𝜏

𝑢, 𝛽stiff−ls = 𝑗stiff−ls
𝜏

Πstiff−ls,(𝜏)Γ0
soft, 𝜏

𝑢}

𝐴𝜀,hom
(𝜏)

𝑢
𝛽stiff−int
𝛽stiff−ls

=

− ∇+ 𝑖𝜏 2𝑢

− 𝑗stiff−int
𝜏 ෱Πstiff−int, 𝜏

∗
−1

𝒫stiff−int
𝜏

Γ1
soft,(𝜏)

𝑢 + 𝜀−2𝜇1
stiff−int,(𝜏)

𝑗stiff−int
𝜏 ෱Πstiff−int, 𝜏

−1
𝛽stiff−int

− 𝑗stiff−ls
𝜏 ෱Πstiff−ls, 𝜏

∗
−1

𝒫stiff−ls
𝜏

Γ1
soft,(𝜏)

𝑢 + 𝜀−2𝜇1
stiff−ls,(𝜏)

𝑗stiff−ls
𝜏 ෱Πstiff−ls, 𝜏

−1
𝛽stiff−ls

෱ℋstiff−ls,(𝜏) = span Πstiff−ls,(𝜏)𝜓1
stiff−ls,(𝜏)

𝑗stiff−ls
𝜏

is a unitary map for 

෱ℋstiff−ls,(𝜏) ≅ ℂstiff−int





Proposition For all 𝜏 ∈ 𝑄′ = −𝜋, 𝜋 𝑑, the DTN ops are SA, semibounded from above, and have compact 

resolvent. If we order evalues in descending order (counting multiplicities, then)

▪ The evalues of ෨Λstiff−int,(𝜏) (unweighted) satisfies

For all 𝜏, 0 = 𝜇1
stiff−int,(𝜏)

> 𝜇2
stiff−int,(𝜏)

≥ 𝜇3
stiff−int, 𝜏

≥ ⋯ → −∞

▪ The evalues of ෨Λstiff−𝑙𝑠,(𝜏) satisfies

If 𝜏 = 0, then 0 = 𝜇1
stiff−int,(𝜏)

> 𝜇2
stiff−int,(𝜏)

≥ 𝜇3
stiff−int, 𝜏

≥ ⋯ → −∞

If 𝜏 ≠ 0, then 0 > 𝜇1
stiff−int,(𝜏)

> 𝜇2
stiff−int,(𝜏)

≥ 𝜇3
stiff−int, 𝜏

≥ ⋯ → −∞

The first evalue admits an asymp expansion in 𝜏, with quadratic leading order term

𝜇1
stiff−ls,(𝜏)

= 𝜇∗
stiff−ls,(𝜏)

𝜏 ⋅ 𝜏 + 𝑂( 𝜏 3),           𝜇∗
stiff−ls,(𝜏)

is a (strictly) neg-definite matrix



𝐴𝜀,hom
(𝜏)

𝑢
𝛽stiff−int
𝛽stiff−ls

=

− ∇+ 𝑖𝜏 2𝑢

− 𝑗stiff−int
𝜏 ෱Πstiff−int, 𝜏

∗
−1

𝒫stiff−int
𝜏

Γ1
soft,(𝜏)

𝑢 + 𝜀−2𝜇1
stiff−int,(𝜏)

𝑗stiff−int
𝜏 ෱Πstiff−int, 𝜏

−1
𝛽stiff−int

− 𝑗stiff−ls
𝜏 ෱Πstiff−ls, 𝜏

∗
−1

𝒫stiff−ls
𝜏

Γ1
soft,(𝜏)

𝑢 + 𝜀−2𝜇1
stiff−ls,(𝜏)

𝑗stiff−ls
𝜏 ෱Πstiff−ls, 𝜏

−1
𝛽stiff−ls

Vanishes because

𝜇1
𝜏
= 0 for all 𝜏!

=:

− ∇+ 𝑖𝜏 2𝑢

𝑇𝜀,stiff−int
𝜏

(𝑢, 𝛽stiff−int, 𝛽stiff−𝑙𝑠)

𝑇𝜀,stiff−𝑙𝑠
𝜏

(𝑢, 𝛽stiff−int, 𝛽stiff−𝑙𝑠)

Quadratic in 𝜏



How do waves propagate in the stiff-interior region and the stiff-landscape region?

Let’s start with stiff-interior. Consider the following operator from ℂstiff−int to ℂstiff−int:

𝑃ℂstiff−int 𝐴𝜀,hom
𝜏

− 𝑧
−1
𝑃ℂstiff−int

Suppose that we can write the “resolvent eqn”

𝑃ℂstiff−int 𝐴𝜀,hom
𝜏

− 𝑧
−1
𝑃ℂstiff−int𝛽 − 𝑧𝛽 = 𝛿, 𝛿 ∈ ℂstiff−int

In the form

𝐾 𝜏, 𝑧 − 𝑧 𝛽 = 𝛿

Then,

𝑃ℂstiff−int 𝐴𝜀,hom
𝜏

− 𝑧
−1

𝑃ℂstiff−int = 𝑀 𝐾 𝜏,𝑧 −𝑧 −1

We will call 𝐾 the 

“dispersion function”



𝑣 ≔ Πsoft, 𝜏 (𝜓1
stiff−int, 𝜏

, 0),               𝑤 ≔ Πsoft, 𝜏 (0, 𝜓1
stiff−ls, 𝜏

),            Ψ1
stiff−ls,(𝜏)

≔ Π
stiff−ls,(𝜏)

𝜓1
stiff−ls,(𝜏)

Then (omitting dependence on 𝜀 and 𝜏 for brevity),

𝐾stiff−int 𝜏, 𝑧 =
1

Ψ1
stiff−𝑖𝑛𝑡 𝑇stiff−int

𝑧 𝐴0
soft − 𝑧

−1
𝑣 + 𝑣

Ψ1
stiff−int

0

+

1

𝑧 Ψ1
stiff−ls Ψ1

stiff−int 𝑇stiff−int
𝑧 𝐴0

soft − 𝑧
−1
𝑤 +𝑤

0
Ψ1
stiff−ls

𝑇stiff−ls

𝑧 𝐴0
soft − 𝑧

−1
𝑣 + 𝑣

Ψ1
stiff−int

0

1 −
1

𝑧 Ψ1
stiff−ls 𝑇stiff−ls

𝑧 𝐴0
soft − 𝑧

−1
𝑤 +𝑤

0
Ψ1
stiff−ls/

(Negligible) correction term



෩𝐾 𝜀𝜃, 𝑧 − 𝑧
−1

= 𝑎hom 𝜃 ⋅ 𝜃 − 𝛽 𝑧
−1

𝑣 ≔ Πsoft, 𝜏 (𝜓1
stiff−int, 𝜏

, 0),               𝑤 ≔ Πsoft, 𝜏 (0, 𝜓1
stiff−ls, 𝜏

),            Ψ1
stiff−ls,(𝜏)

≔ Π
stiff−ls,(𝜏)

𝜓1
stiff−ls,(𝜏)

Then (omitting dependence on 𝜀 and 𝜏 for brevity),

𝐾stiff−ls 𝜏, 𝑧 =
1

Ψ1
stiff−ls 𝑇stiff−ls

𝑧 𝐴0
soft − 𝑧

−1
𝑤 + 𝑤

0
Ψ1
stiff−ls

+

1

𝑧 Ψ1
stiff−ls Ψ1

stiff−int 𝑇stiff−int
𝑧 𝐴0

soft − 𝑧
−1
𝑤 +𝑤

0
Ψ1
stiff−ls

𝑇stiff−ls

𝑧 𝐴0
soft − 𝑧

−1
𝑣 + 𝑣

Ψ1
stiff−int

0

1 −
1

𝑧 Ψ1
stiff−int 𝑇stiff−int

𝑧 𝐴0
soft − 𝑧

−1
𝑣 + 𝑣

Ψ1
stiff−int

0
/

Correction term



▪ For const. coefficient PDEs

𝜕𝑡𝑡𝑢 − Δ𝑢 = 0 𝜔2 + 𝜉 2 = 0

“seek plane-wave solutions 𝑒𝑖(𝜉⋅𝑥 −𝜔𝑡)”.

▪ Alternatively, notice that if 𝑝 𝜉 = 𝜉 2 and 𝐷 = −𝑖∇ and ℱ =FT in space, then −Δ = 𝑝(𝐷) and 

𝑝 𝐷 = ℱ−1𝑀𝑝ℱ

The poly 𝑝 gives us the “spatial part” of the dispersion reln in     !!! 

So, we call 𝑝 the “dispersion function”

(e.g. if 𝜕𝑡𝑡𝑢 is replaced by 𝑖𝜕𝑡𝑢 (Schrodinger eqn), then 𝑝 coincides the dispersion relation.)

Spacetime Fourier transform



▪ Generalize the definition to our case:

▪ Write 𝐴 = 𝐴𝑝𝑝⊕𝐴𝑎𝑐 ⊕𝐴𝑠𝑐. Suppose that we can find a unitary 𝑈 such that 𝐴𝑎𝑐 = 𝑈∗𝑀𝑝𝑈 where 𝑀𝑝is 

the mult. operator by 𝑝(𝑥) on 𝐿2(Ω, 𝐋𝐞𝐛). Then we call 𝑝 𝑥 the “dispersion function”.

▪ Observe that with 𝑓𝑧 𝜆 = 1

(𝜆−𝑧)
,

𝐴𝑎𝑐 − 𝑧 −1 = 𝑓𝑧 𝐴𝑎𝑐 = 𝑈∗𝑓𝑧 𝑀𝑝 𝑈 = 𝑈∗𝑀𝑓𝑧∘𝑝𝑈 = 𝑈∗𝑀 𝑝(𝜆)−𝑧 −1𝑈

▪ In our case, we had for each 𝜏 the following operator on ℂ:

𝑃ℂ 𝐴𝜀,hom
𝜏

− 𝑧
−1
𝑃ℂ = 𝑀 𝐾(𝜏,𝑧)−𝑧 −1

Therefore, on ׬
𝑄′

⊕
ℂ𝑑𝜏 ≅ 𝐿2(𝑄′; ℂ), we will have a mult. operator by 𝜏 ↦ 𝐾(𝜏, 𝑧) − 𝑧 −1

Hence, by definition                    , 𝐾 is our dispersion fct. 

In general, we allow the this 

fct to depend on spectral 

parameter 𝑧. This 

corresponds to incorporating 

the “temporal part” of the 

dispersion reln.




