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© Heterogeneous media - from simple composites to metamaterials




Heterogeneous media - mild contrast

Small parameter (period of material oscillations) € > 0 .

Oscillatory periodic heterogeneous media

e The material properties are stored in the coefficient matrix function C.(z)
* Cu(a) = C(2).
e Cis Y-periodic on R?, Y = [0, 1]%.
The matrix C is symmetric, and Ja, 8 > 0, such that:
of¢]’ < C(0)E- € < BIE, Vo, £eRY
Elliptic operator:
w:= —div (Cc(x)Vu), D(A)c H'(R?).




Homogenisation in mild contrast

Heterogeneous problem

J C(z/e)Vue - Vodx = J fepdz, Ve H'(R?).
R4 R4
Homogenised problem
J ChomVy - Vdz = f fedz, Veoe H'(RY).
R4 R4

Chomg = L Cy)[€ + Vywe(y)] - m, f C)[€ + Vywe(y)] - Vyv(y) = 0.
Y
Operator with constant coefficients:

Aou = — div (Ch‘m‘vn) . D(Ao) = H*RY).




Qualitative and quantitative results

Qualitative results given with two-scale convergence

(-AE"'I)_lJCEi‘ (A0+I)_1f: sti‘f

Quantitative results are given with the norm-resolvent estimates
(Birman, Suslina 2001., 2005., 2006., ...):

Quantitative result
I(Ae + D" = (A+ D7 2 gy 2mey < Ce,
[(Ae + )7 = (A+ 1) = eReorr ()] 12 Rty 11 (met) < CF,
I(Ae + D7F = (A+ D)7 = eReore ()| L2ty 2mey < C€7,




Analysis of periodic operators

Gelfand transform
For f € L*(R?) its Gelfand transform Gf € L5 (Y; L*(Q)), Q = [-m,m)*

1\ 42 _
Gfix,y) = (%) Z Fly+ n)e—lx(y+n).

neL™

Spectral resolution:

L2R") = f (YA, (At =gt (jj (D)) 6

Ay = (V +ix)*Cy)(V +ix) : D(Ay) © Hu(Y,C*) — L*(Y,C?)

a(A) = o) =J (U An,x> = J [Pas ]

XEQ neN \xeQ neN




Quick numerical experiment in 1D

mild contrast eps = 0.1 mild contrast eps = 0.05
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High-contrast materials

Figure: Depiction of a material with high-contrast inclusions

shf V;lasc

e Tensor of material coefficients:

_/SJ:‘F P‘m (C ( ) _ Cstiﬂ(y)7 Yy € Y;tiff7
N 52 (Csoft (y)7 Yy e )/;oft-

Mantg

o Cqift, Coort uniformly positive definite.




Homogenisation in high contrast

Heterogeneous problem

Ce(y) = € xsott (4) Csote () + Xstitt () Cstigt (v)

f Ce(z/e)Vue - Vipdr = j fodz, Yee HY(RY).
R4 Rd

Homogenised problem

» Cr™Vuy - Vipds = JRd JY f(z,y)p(z)ds, Yoe H' (RY.
stiff

C(ywyuo(x,y)~vys<x,y>dydx=fR L F(@, 9)E(e, y)dyde, Ve

Re JY o8 soft

ue () = u(w) + uo(z,y) € H'(RY) + L*(RY; X),
where: X = {gp € H#(Y), @ =0o0n Ystiff}




Limit operator and spectral characterisation

Micro and Macro operators

Amacro < | C""Vu-Vodz, D(Amacro) < H' (R?)

Amicro «— f C(y)Vyuo(z,y) - Vyé(z,y)dydz, D(Amicro) = L*(R% X).
Ysoft

Self-adjoint, nonnegative operator A defined through bilinear form:

Ysoft

[ e vedss [ | o)Vt Vit ndyda,
R R
X)

D(A) c H'(RY) + L*(RY
U(A) = U(Amicro) v {)\ > 07 /B(A) € U(-Amacro)}7

C
= Wm € U(Amicro)-




Limit operator

Equivalent formulations of Au = A\u

{ AsreemeUnpere = B(A)umacro

AmicroUmicro = )\(umacro iz umicro) Umacro # 0
macroUmacro = A(umacro aF <umicro>) = or
U = Umicro T Umacro <Umicro> = Umacro = 0
microWmicro = AUmicro
By
/s
p
”
/4
/n
>
L )
A Y * U) w“ “{ cen




Quick numerical experiment in 1D

high contrast eps = 0.1 high contrast eps = 0.05

e Gaps remain in the limit spectrum!
L4 (As + 21)71 i‘ (A + 21)71 , PHl(]Rd) (A + 21)71 |H1(]Rd) =
(A+B(z))7 .

* metamaterials, time non-locality
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Quick numerical experiment in 1D

Some eigenfunctions for ¢ = 0.05.
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© Strongly elliptic systems in high-contrast - main results
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Problem setting - strongly elliptic systems

Nonnegative selfadjoint operator family
Ac-i= —div (C°(2)V}), D(A.) < H'(R*,R?), ¢>0,
as(u,v) := j C° (%) Vu:Vv, wu,ve H'(R*R?).
RrR3
The tensors of material coefficients C® with high-contrast structure:

ey | Csur(y),  ye€Yeus,
(C (y) - { 52 Csoft(Q), Yy € Y;oft,

e The operator A. is strongly elliptic, 3v > 0 such that
VIEP N < Caimeory ) (€07 ) = (6n") < %IE|2|77|27 V& meR?, VyeY.
e The coefficients of Cgti(sott) are Lipschitz continuous
[Cstiﬁ(soft)]iﬂ- € C™' (Yatitt (sott))-
e The boundary T = Yo is CU1.
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Questions:

e Resolvent asymptotics and norm-resolvent estimates?
e Where do metamaterial properties show up?

e Spectral approximation, other consequences
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Main results:

Theorem
Let z € p(A:), then we have:

H(Ae R N (s s IY < Cé,

L2(R3)— L2(R3)

where AL°™ js pseudodifferential operator, and ©. is a partial isometry.

Theorem

Let z € p(Ac), then we have:

< Ce,

|22 (Ae = 2D 2 gag, ) — OF (Amacro = B(2)) " O .
stiff

20 2
L2(QF ) > L2(2

where A acro is a strongly elliptic differential operator with constant coefficients, ©. is a unitary
operator from L2 (%) to L?(R®), and B(z) is a matrix-valued Zhikov function.

s

Similar theorems in works of Cherednichenko, Ershova, Kiselev for the case of
elliptic operators in high contrast (scalar case).




© Proof ideas and tools
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Scaled Gelfand transform

Unitary operator:

@
Ge : L*(R®) — L*(Y'; LL(Y;C?)) = f L% (Y;C* x)dx,

N

Gy ) i= = 3 e " uley+ ), yeR', xeY = [-mm

nez3
Resolvent decomposition
(] 1 -1
J (?Ax,a + ZI) dX QE.
Y'/

Ay e = (V+iX,)*C(y)(V +iXy) : D(Ay.e) € Hy(Y,C?) — L*(Y,C%)

(Ac +2I)7" =9;1<

x-dependent operator family

with the associated bilinear forms

telwv) = | ST +iXgus [T %00, wve HLYC).




Transmission boundary problem

Definition (transmission boundary problem = transformed resolvent problem )

Find w € L (Y;C?) such that u|y,,; € H' (Yeusr, C*), |y, € H' (Yeot, C*) and
the following is valid:

1 .
- (V+ iX)* Catin(y) (V +iX)u+zu = f, on Yeug,

—(V+iX)* Coots(v) (V+iXy)u+2zu = F, on Yeos,
us(y) —u-(y) =0, yel,

1 , . . _
?Cstif{(y) (V+iXy)us - 7it + Coore(y) (V+iXy)u— -1ic =0, yel.

(éAX,E + zI) u=f, onY, we Hy(Y,C?




The framework of boundary operators

Harmonic lift operators

Hiﬁﬂ(som : L*(T') — L?(Yaift(sotr)) bounded operators (harmonic lifts) defined
with:

Hstiﬁ(soft)g — AiOft(stiff)u =0,
X ’ u=gonl.

soft (stiff)

Self-adjoint restrictions of A%

AZ?S(S“E)?L = (V+iX,)* Coor(stier) (y) (V + iXy) u self-adjoint operators with
D(AFTCDY) < fu € HY (Yiote(stimy), ulr = 0},

0,x
. F(S)t)if(somu := u|p left inverses of IT5 (o)
. I‘T,if(somu = —Catii(sott) (¥) (Vu + iXyu) |r - 7@ traces of normal derivative.

Dirichlet-to-Neumann maps

Aitlff(soft) = FitlH(SOft) H;tlff(soft)

2{{1 (P)

self-adjoint operators on L*(T') with the domain

’




The framework of boundary operators

Decomposition of the space L*(Y) = L?(Yaug) ® L* (Yeot)

Operators related to the transmission problem

o Agy,e = E%Aﬁfif ® ALY, self-adjoint operator

o I, := II$"T @I, "harmonic lift" from the boundary T'

o Aye = E%Aifiﬂ I Af("ft - jump in the normal derivative on T" (self-adjoint DTN
map)

Krein formula representation of the resolvent (Ryzhov 2009.)

The resolvent associated with the transmission boundary problem:
1 -t i
?'AX,E — =zl = (Aoyx,a - ZI)

— (1= 25k " Mo ()7 (188 (1 - 245%,0) ™)),

where
My, (2) = Ay,e + 2 (IEEIL) + 2% (ITF (Ao,x,e — 2I) ' IL) .




M-function

M (z) is a Dirichlet-to-Neumann map associated with the resolvent problem.

(Properties of the Weyl M-function)

e The following representation holds:

Myo(2) = Aye + 2T (T = 2(Aoe) ™) ' Ty, 2€ p(Aoxe). (1)

e M, .(z) is an analytic operator-valued function with values in the set of closed
operators in L*(T') defined on the z-independent domain D(A.-).

o Foru e ker(Ay . — zI) n {D(Ao,x.c)+I,D(Ay.c)}, the following formula
holds:

My - (2)To,x,ct = 'y cu. (2)

Decomposition of M-function

SO 1 sti
My ,e(z) = MP™(2) + ?M; Te?2), zep(Aoy.e).




The asymptotics of M-function and Steklov truncation

Stiff component of M-function
. . e\ ¥ . s\ K . -1 .
M;tlff(€2z) _ Aitlff + 522 ((H;tlﬂ) Hitlﬁ) + 5422 ((Hs;(tlff) (A?)t’;ff _ 6221[) H;tlff

1

. 1 . N & e\ e\ =T
tiff /2 tiff tiff tiff 2 tiff tiff tiff
SMET(E2) = A e (7)) I Y e (T0T) (AR) T e

n=1

Lemma (The order in x of Steklov eigenvalues)

The spectrum of AP consists of three lowest eigenvalues of order O(|x|*) with
the rest being of order O(1).

e P, orthogonal projection on the 3—dimensional subspace of L*(T') (with
Steklov eigenvalues of order |x|?).

o IS8T .= U7 P, H = [T 12(D), AT .— P AP,




Fiberwise approximation results

Effective operator

hom ~ 2 ystiff sof ~ Sstiff nsof
D (Ax,s ) = {(u,u) € L2 (Yor) @ H, weDAP™), a=0 Foyxtu},

hom [UW Ai‘O& 0 u
Ao [A] = Sstitr) * ) T sor AN [A] .
e - ((th ) ) Fl,xt _5% <(th ) ) Flt,x &

Theorem (Full resolvent asymptotics)

There exists C > 0, such that for the resolvent of the transmission boundary problem we have:

< Ce”,

1 -t =il
H (—2AX,€ - z1> —oF (Ar —21)" 6y
€ L3, (V)L (Y)

for all x €Y' and ©, : Li(Y) = LQ#(YSD&) (&) LZ#(YStiff) — Li(}/soft) &) ﬁiﬁff is a projection.




Focusing on the stiff component

Dispersion function for the stiff component

(Kx,e(2) = 21)71 1= Lstiff (-A;Oén - ZI) Puis

A s \ 71 1~ . . 1
e == (7)) (G s o) ()

The operator JA\ﬁfiH permits the following asymptotics:

H‘Kiﬁﬂ - (iXX)* AhomiXX < C‘X|3»

Fystiff _, gystiff
HPH S HE!

where the matrix A"°™ does not depend on .




Focusing on the stiff component

What about M:°™(z)?

M)s(oft (Z) _ K;oft s soft (Asoft _ 21)71 ﬁ;oft.

Spectral decomposition of the resolvent:

(A —=1) ZA P, Pif = (f o0

By (z) = ((ﬁ;ﬁiﬂ)*)l ( [soft (Aaoft _ zI) -t ﬁioft> (ﬁiﬁg)fl .

When written in the basis, we obtain:

0
A SO SO
[]BX(Z)]i,j =z Z e i Iy " PR X P H ft¢x> + 2055

= Zhikov's matrix beta function

27




Final result

Theorem (Resolvent asymptotics on the truncated space 7-[,“\““)

-1

-1
1 1 . oy
Pﬁ;ti“ <?AX75 = ZI> |,;Z§,<tiff = (? (’LXX)* Ah ’LXX — B(Z))

Fystiff _, g7stiff
HX —>’HX

< Ce,

forall xeY'.




o
The end

Thank you for attention!
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