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Heterogeneous media - mild contrast

Small parameter (period of material oscillations) ε ą 0 .

Oscillatory periodic heterogeneous media

‚ The material properties are stored in the coefficient matrix function Cεpxq

‚ Cεpxq “ Cpx
ε

q.

‚ C is Y -periodic on Rd, Y “ r0, 1s
d.

The matrix C is symmetric, and Dα, β ą 0, such that:

α|ξ|
2

ď Cpxqξ ¨ ξ ď β|ξ|
2, @x, ξ P Rd.

Elliptic operator:

Aεu :“ ´ div pCεpxq∇uq , D pAεq Ă H1
pRd

q.

uε
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Homogenisation in mild contrast

Heterogeneous problem
ż

Rd

Cpx{εq∇uε ¨ ∇φdx “

ż

Rd

fεφdx, @φ P H1
pRd

q.

Homogenised problem
ż

Rd

Chom∇u ¨ ∇φdx “

ż

Rd

fφdx, @φ P H1
pRd

q.

Chomξ ¨ η :“

ż

Y

Cpyqrξ ` ∇ywξpyqs ¨ η,

ż

Y

Cpyqrξ ` ∇ywξpyqs ¨ ∇yvpyq “ 0.

Operator with constant coefficients:

A0u :“ ´ div
´

Chom∇u
¯

, D pA0q “ H2
pRd

q.
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Qualitative and quantitative results

Qualitative results given with two-scale convergence

pAε ` Iq
´1 fε

2
Ýá pA0 ` Iq

´1 f, @fε
2

Ýá f.

uε Ñ

Quantitative results are given with the norm-resolvent estimates
(Birman, Suslina 2001., 2005., 2006., ...):

Quantitative result

∥pAε ` Iq
´1

´ pA ` Iq
´1∥L2pRdqÑL2pRdq ď Cε,

∥pAε ` Iq
´1

´ pA ` Iq
´1

´ εRcorrpεq∥L2pRdqÑH1pRdq ď Cε,

∥pAε ` Iq
´1

´ pA ` Iq
´1

´ ε pRcorrpεq∥L2pRdqÑL2pRdq ď Cε2,
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Analysis of periodic operators

Gelfand transform

For f P L2
pRd

q its Gelfand transform Gf P L2
#pY ;L2

pQqq, Q “ r´π, πq
d

Gfpχ, yq “

ˆ

1

2π

˙d{2
ÿ

nPZn

f
`

y ` n
˘

e´iχpy`nq.

Spectral resolution:

L2
pRn

q “

ż ‘

Q

L2
#pY, χqdχ, pA ` zIq

´1
“ G´1

ˆ
ż ‘

Q

pAχ ` zIq
´1 dχ

˙

G

Aχ :“ p∇ ` iχq
˚Cpyqp∇ ` iχq : DpAχq Ă H1

#pY,C3
q Ñ L2

pY,C3
q

Spectral decomposition and band structure

σpAq “
ď

χPQ

σpAχq “
ď

nPN

˜

ď

χPQ

λn,χ

¸

“
ď

nPN

“

λn, λn

‰
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Quick numerical experiment in 1D
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High-contrast materials

uε

Figure: Depiction of a material with high-contrast inclusions

Figure: Unit cell in a high-contrast material

‚ Tensor of material coefficients:

Cεpyq “

"

Cstiffpyq, y P Ystiff ,
ε2 Csoftpyq, y P Ysoft.

‚ Cstiff , Csoft uniformly positive definite.
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Homogenisation in high contrast

Heterogeneous problem

Cεpyq “ ε2χsoftpyqCsoftpyq ` χstiffpyqCstiffpyq

ż

Rd
Cεpx{εq∇uε ¨ ∇φdx “

ż

Rd
fφdx, @φ P H1pRdq.

Homogenised problem

$

’

’

&

’

’

%

ż

Rd

Chom∇u ¨ ∇φdx “

ż

Rd

ż

Ystiff

fpx, yqφpxqdx, @φ P H1
pRd

q.
ż

Rd

ż

Ysoft

Cpyq∇yu0px, yq ¨ ∇yξpx, yqdydx “

ż

Rd

ż

Ysoft

fpx, yqξpx, yqdydx, @ξ.

uεpxq
2

Ýáupxq ` u0px, yq P H1
pRd

q ` L2
pRd;Xq,

where: X “
␣

φ P H1
#pY q, φ “ 0 on Ystiff

(
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Limit operator and spectral characterisation

Micro and Macro operators

Amacro ÐÑ

ż

Rd

Chom∇u ¨ ∇φdx, DpAmacroq Ă H1
pRd

q

Amicro ÐÑ

ż

Rd

ż

Ysoft

Cpyq∇yu0px, yq ¨ ∇yξpx, yqdydx, DpAmicroq Ă L2
pRd;Xq.

Self-adjoint, nonnegative operator A defined through bilinear form:
ż

Rd

Chom∇u ¨ ∇φdx`

ż

Rd

ż

Ysoft

Cpyq∇yu0px, yq ¨ ∇yξpx, yqdydx,

DpAq Ă H1
pRd

q ` L2
pRd;Xq

Theorem

σpAq “ σpAmicroq Y tλ ą 0, βpλq P σpAmacroqu ,

βpλq “ λ`

8
ÿ

m“1

λ2c2m
ωm ´ λ

, ωm P σpAmicroq.
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Limit operator

Equivalent formulations of Au “ λu

# Amicroumicro “ λpumacro ` umicroq
Amacroumacro “ λpumacro ` xumicroyq

u “ umicro ` umacro

ðñ

"

Amacroumacro “ βpλqumacro
umacro ‰ 0

or
"

xumicroy “ umacro “ 0
Amicroumicro “ λumicro

11



Quick numerical experiment in 1D

‚ Gaps remain in the limit spectrum!

‚ pAε ` zIq
´1 2

Ýá pA ` zIq
´1 , PH1pRdq pA ` zIq

´1
|H1pRdq “

pA ` βpzqIq
´1 .

‚ metamaterials, time non-locality
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Quick numerical experiment in 1D

Some eigenfunctions for ε “ 0.05.
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Problem setting - strongly elliptic systems

Nonnegative selfadjoint operator family

Aε¨ :“ ´div
`

Cε
px
ε

q∇¨
˘

, DpAεq Ă H1
pR3,R3

q, ε ą 0,

aεpu,vq :“

ż

R3

Cε
`

x
ε

˘

∇u : ∇v, u,v P H1
pR3;R3

q.

The tensors of material coefficients Cε with high-contrast structure:

Cε
pyq “

"

Cstiffpyq, y P Ystiff ,
ε2 Csoftpyq, y P Ysoft,

‚ The operator Aε is strongly elliptic, Dν ą 0 such that

ν|ξ|
2
|η|

2
ď Cstiffpsoftqpyq

´

ξηT
¯

:
´

ξηT
¯

ď
1

ν
|ξ|

2
|η|

2, @ξ, η P R3, @y P Y.

‚ The coefficients of Cstiffpsoftq are Lipschitz continuous
“

Cstiffpsoftq

‰

i,j
P C0,1

pYstiffpsoftqq.

‚ The boundary Γ “ BYsoft is C1,1.
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Questions:

‚ Resolvent asymptotics and norm-resolvent estimates?
‚ Where do metamaterial properties show up?
‚ Spectral approximation, other consequences
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Main results:

Theorem

Let z P ρpAεq, then we have:∥∥∥∥pAε ´ zIq
´1

´ Θ˚
ε

´

Ahom
ε ´ zI

¯´1

Θε

∥∥∥∥
L2pR3qÑL2pR3q

ď Cε2,

where Ahom
ε is pseudodifferential operator, and Θε is a partial isometry.

Theorem
Let z P ρpAεq, then we have:∥∥∥P stiff

ε pAε ´ zIq
´1

|L2pΩε
stiff

q ´ Θ
˚
ε pAmacro ´ Bpzqq

´1
Θε

∥∥∥
L2pΩε

stiff
qÑL2pΩε

stiff
q

ď Cε,

where Amacro is a strongly elliptic differential operator with constant coefficients, Θε is a unitary
operator from L2

pΩε
stiff q to L2

pR3
q, and Bpzq is a matrix-valued Zhikov function.

Similar theorems in works of Cherednichenko, Ershova, Kiselev for the case of
elliptic operators in high contrast (scalar case).
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Scaled Gelfand transform

Unitary operator:

Gε : L2
pR3

q Ñ L2
pY 1;L2

#pY ;C3
qq “

ż ‘

Y 1

L2
#pY ;C3, χqdχ,

pGεuqpy, χq :“
ε

?
2π

ÿ

nPZ3

e´iχpy`nqupεpy ` nqq, y P R3, χ P Y 1
“ r´π, πy

3,

Resolvent decomposition

pAε ` zIq
´1

“ G´1
ε

˜

ż ‘

Y 1

ˆ

1

ε2
Aχ,ε ` zI

˙´1

dχ

¸

Gε.

χ-dependent operator family

Aχ,ε :“ p∇ ` iXχq
˚Cε

pyqp∇ ` iXχq : DpAχ,εq Ă H1
#pY,C3

q Ñ L2
pY,C3

q

with the associated bilinear forms

aχ,εpu,vq :“

ż

Y

Cε
pyqp∇ ` iXχqu : p∇ ` iXχqv, u,v P H1

#pY ;C3
q.
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Transmission boundary problem

Definition (transmission boundary problem “ transformed resolvent problem )

Find u P L2
#pY ;C3

q such that u|Ystiff P H1
pYstiff ,C3

q, u|Ysoft P H1
pYsoft,C3

q and
the following is valid:

´
1

ε2
p∇ ` iXχq

˚ Cstiffpyq p∇ ` iXχqu ` zu “ f , on Ystiff ,

´ p∇ ` iXχq
˚ Csoftpyq p∇ ` iXχqu ` zu “ f , on Ysoft,

u`pyq ´ u´pyq “ 0, y P Γ,

1

ε2
Cstiffpyq p∇ ` iXχqu` ¨ n⃗` ` Csoftpyq p∇ ` iXχqu´ ¨ n⃗´ “ 0, y P Γ.

ˆ

1

ε2
Aχ,ε ` zI

˙

u “ f , on Y, u P H1
#pY,C3

q
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The framework of boundary operators

Harmonic lift operators

Π
stiffpsoftq
χ : L2

pΓq Ñ L2
pYstiffpsoftqq bounded operators (harmonic lifts) defined

with:

Πstiffpsoftq
χ g :“ u,

"

Asoftpstiffq
χ u “ 0,
u “ g on Γ.

Self-adjoint restrictions of Asoftpstiffq
χ

Asoftpstiffq

0,χ u :“ p∇ ` iXχq
˚ Csoftpstiffqpyq p∇ ` iXχqu self-adjoint operators with

DpAsoftpstiffq

0,χ q Ă tu P H1
#pYsoftpstiffqq, u|Γ “ 0u,

Boundary operators

‚ Γ
stiffpsoftq

0,χ u :“ u|Γ left inverses of Πstiffpsoftq
χ .

‚ Γ
stiffpsoftq

1,χ u :“ ´Cstiffpsoftqpyq p∇u ` iXχuq |Γ ¨ n⃗ traces of normal derivative.

Dirichlet-to-Neumann maps

Λ
stiffpsoftq
χ :“ Γ

stiffpsoftq

1,χ Π
stiffpsoftq
χ self-adjoint operators on L2

pΓq with the domain
H1

pΓq.
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The framework of boundary operators

Decomposition of the space L2
pY q “ L2

pYstiffq ‘ L2
pYsoftq

Operators related to the transmission problem

‚ A0,χ,ε :“ 1
ε2
Astiff

0,χ ‘ Asoft
0,χ , self-adjoint operator

‚ Πχ :“ Πstiff
χ ‘ Πsoft

χ , "harmonic lift" from the boundary Γ

‚ Λχ,ε :“ 1
ε2
Λstiff

χ ` Λsoft
χ - jump in the normal derivative on Γ (self-adjoint DTN

map)

Krein formula representation of the resolvent (Ryzhov 2009.)

The resolvent associated with the transmission boundary problem:
ˆ

1

ε2
Aχ,ε ´ zI

˙´1

“ pA0,χ,ε ´ zIq
´1

´
`

I ´ zA´1
0,χ,ε

˘´1
ΠχMχ,εpzq

´1
´

Π˚
χ

`

I ´ zA´1
0,χ,ε

˘´1
¯

,

where
Mχ,εpzq “ Λχ,ε ` z

`

Π˚
χΠχ

˘

` z2
`

Π˚
χ pA0,χ,ε ´ zIq

´1 Πχ

˘

.
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M-function

Mpzq is a Dirichlet-to-Neumann map associated with the resolvent problem.

Proposition

(Properties of the Weyl M -function)
‚ The following representation holds:

Mχ,εpzq “ Λχ,ε ` zΠ˚
χ

`

I ´ zpA0,χ,εq
´1

˘´1
Πχ, z P ρpA0,χ,εq. (1)

‚ Mχ,εpzq is an analytic operator-valued function with values in the set of closed
operators in L2

pΓq defined on the z-independent domain DpΛχ,εq.
‚ For u P kerpAχ,ε ´ zIq X

␣

DpA0,χ,εq 9̀ ΠχDpΛχ,εq
(

, the following formula
holds:

Mχ,εpzqΓ0,χ,εu “ Γ1,χ,εu. (2)

Decomposition of M-function

Mχ,εpzq “ M soft
χ pzq `

1

ε2
M stiff

χ pε2zq, z P ρpA0,χ,εq.
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The asymptotics of M-function and Steklov truncation

Stiff component of M-function

M stiff
χ pε2zq “ Λstiff

χ ` ε2z

ˆ

´

Πstiff
χ

¯˚

Πstiff
χ

˙

` ε4z2
ˆ

´

Πstiff
χ

¯˚ ´

Astiff
0,χ ´ ε2zI

¯´1

Πstiff
χ

˙

.

1

ε2
M stiff

χ pε2zq “
1

ε2
Λstiff

χ `z
´

Πstiff
χ

¯˚

Πstiff
χ `

8
ÿ

n“1

ε2nzn
´

Πstiff
χ

¯˚ ´

Astiff
0,χ

¯´n

Πstiff
χ .

Lemma (The order in χ of Steklov eigenvalues)

The spectrum of Λstiff
χ consists of three lowest eigenvalues of order Op|χ|

2
q with

the rest being of order Op1q.

‚ pPχ orthogonal projection on the 3´dimensional subspace of L2
pΓq (with

Steklov eigenvalues of order |χ|
2).

‚ pΠstiff
χ :“ Πstiff

χ
pPχ, pHstiff

χ “ pΠstiff
χ L2

pΓq, pΛstiff
χ :“ pPχΛ

stiff
χ

pPχ.
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Fiberwise approximation results

Effective operator

D
´

Ahom
χ,ε

¯

:“
!

pu, puq P L
2
#pYsoftq ‘ pHstiff

χ , u P DpAsoft
χ q, pu “ pΠ

stiff
χ Γ

soft
0,χ u

)

,

Ahom
χ,ε

”

u
pu

ı

:“

»

–

Asoft
χ 0

´

ˆ

´

pΠstiff
χ

¯˚
˙´1

Γsoft
1,χ ´ 1

ε2

ˆ

´

pΠstiff
χ

¯˚
˙´1

pΓstiff
1,χ

fi

fl

”

u
pu

ı

.

Theorem (Full resolvent asymptotics)

There exists C ą 0, such that for the resolvent of the transmission boundary problem we have:∥∥∥∥ˆ 1

ε2
Aχ,ε ´ zI

˙´1

´ Θ
˚
χ

´

Ahom
χ,ε ´ zI

¯´1
Θχ

∥∥∥∥
L2
#

pY qÑL2
#

pY q

ď Cε
2
,

for all χ P Y 1 and Θχ : L2
#pY q “ L2

#pYsoftq ‘ L2
#pYstiff q Ñ L2

#pYsoftq ‘ pHstiff
χ is a projection.
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Focusing on the stiff component

Dispersion function for the stiff component

pKχ,εpzq ´ zIq
´1 :“ Pstiff

´

Ahom
χ,ε ´ zI

¯´1

Pstiff

Kχ,εpzq “ ´

ˆ

´

pΠstiff
χ

¯˚
˙´1 ˆ

1

ε2
pΛstiff
χ ` xM soft

χ pzq

˙

´

pΠstiff
χ

¯´1

Lemma

The operator pΛstiff
χ permits the following asymptotics:∥∥∥pΛstiff

χ ´ piXχq
˚ ΛhomiXχ

∥∥∥
xHstiff

χ ÑxHstiff
χ

ď C|χ|
3,

where the matrix Λhom does not depend on χ.
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Focusing on the stiff component

What about xM soft
χ pzq?

xM soft
χ pzq “ pΛsoft

χ ` zpΓsoft
1,χ

´

pAsoft
0,χ ´ zI

¯´1
pΠsoft
χ .

Spectral decomposition of the resolvent:

´

Asoft
0,χ ´ zI

¯´1

“

8
ÿ

k“1

1

λk ´ z
Pχ

k , Pχ
k f :“ xf , φkyφk.

Bχpzq :“

ˆ

´

pΠstiff
χ

¯˚
˙´1 ˆ

zpΓsoft
1,χ

´

Asoft
0,χ ´ zI

¯´1
pΠsoft
χ

˙

´

pΠstiff
χ

¯´1

` zI,

When written in the basis, we obtain:

rBχpzqsi,j :“ z
8
ÿ

k“1

λk

λk ´ z
xpΠsoft

χ ψχ
i , φ

χ
kyxφχ

k ,
pΠsoft
χ ψχ

j y ` zδi,j

ñ Zhikov’s matrix beta function
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Final result

Theorem (Resolvent asymptotics on the truncated space pHstiff
χ )

∥∥∥∥∥PxHstiff
χ

ˆ

1

ε2
Aχ,ε ´ zI

˙´1

|
xHstiff

χ
´

ˆ

1

ε2
piXχq

˚ AhomiXχ ´ Bpzq

˙´1
∥∥∥∥∥
xHstiff

χ ÑxHstiff
χ

ď Cε,

for all χ P Y 1.
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The end

Thank you for attention!
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