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ABSTRACT. We review the concept of the limiting absorption
principle and its connection to virtual levels of operators in
Banach spaces.
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1 Virtual levels, virtual states

Scattering of neutrons on protons [Wigner *]

just a year after discovery of neutron [Chadwick *?].

e pl+nt = deuteron (Deuterium’s nucleus); Fhinding ~ 2.2MeV
e pl+nt = FEhbinding ~ 0
[Fermi®’]: real or virtual?

[Amaldi & Fermi3®]: virtual, FEpinqing ~ —67KeV.



2 Radiation principle. Vladimir Ignatowsky

Helmholtz equation: (—A — 2)u(z) = f(z) € L*(R*), 2 € R’ z¢€C
If z ¢ R, : unique L>-solution,

w(z) = (—A— 2D f =<V e Rey/ 2 > 0.

47| x|

If z = k2, k > 0: could be no L?-solution; then a solution is not unique.

Radiation principle: a way to specify a unique solution.

[Smirnov #!] credits [Ignatowsky %] and [Sommerfeld '?].



» Limiting absorption principle, or LAP [Ignatowsky %], [Sveshnikov *°]:

u(z) = lim (—A — (k+ie)*I) "' f(x), w(z) ~ lim etk o glhr

e—0+ e—0+

[Sveshnikov *°], [Povzner >*], [Eidus ®?], [Vainberg %°]...

» Sommerfeld radiation condition [Sommerfeld '*]:

lim r(a—u — iku) =0; wu~er

r—soco  \Or

» Limiting amplitude principle [Tikhonov & Samarskii *®]

Ofh — Aip = f(x)e ™ (1, )|, = (0,0); o ~ F;

u(x) = tg?mw(x, t)elt ~ et
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Further development of LAP
e Eigenfunction expansions [Weyl !, Carleman **, Titchmarsh *°];
e Krein’s method of directing functionals [Krein %, Krein *%];

e Gelfand-Kostyuchenko theory [Povzner °?, Povzner *°],

[Gelfand & Kostyuchenko >, Berezanskii >, Birman ®'];
e Rigged (or equipped) spaces [Gelfand & Vilenkin °'];

e Limit of the resolvent at the essential spectrum in certain spaces:

[Rejto ®], [Agmon "°], [ Yamada "?7?] (for Dirac operators), [Agmon "].



Recent meaning of LAP. Shmuel Agmon and E — X — F

LAP for A € €(X): lim(A — zI) L as 2 — 0es(A)

While no limit as a map X — X when z — o(A)...

[Agmon 7°, Agmon 7°]:

3 lim (—A- 27 L2RY) — L2 (RY), Vs>1 vd>1.
Z—=z0>
2eCy

[l 2(ray 3= 11+ |2]) ]| p2(ga)



Near the threshold: whatif z — 0?

o~ lr—ylv=2

d=3 (=A—z[)"' ~ ————, 3 limitas z — 0
dm|z — y|
o~ lr—ylv=2

d=1. (=0°—2I)"' ~ ————, nolimitas z — 0

WN/—z



3 Virtual levels

Singularity of the resolvent at threshold:

[Birman %', Faddeev %3, Vainberg %8, Yafaev 74, Vainberg >, Simon 7%, Rauch 78]...
g g

Dependence of dispersive estimates on the presence of a virtual level:

Schrodinger operators:

[Jensen & Kato 7, Yafaev %, Erdogan & Schlag %, Yajima *°];

Dirac operators:

[Boussaid “°, Boussaid %, Erdogan & Green 7, Erdogan et al. '°]...
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Virtual levels of selfadjoint Schrodinger operators in R¢

“ 29

d = 3: [Yafaev 7>, Jensen & Kato 7] at most one virtual state

d > 4: [Jensen 80 Yafaev ®3, Jensen %4] at most one virtual state in R*;

only eigenstates for d > 5

d = 1: [Bollé et al. 3>, Bollé et al. 8] at most one virtual state
= 2: [Bollé et al. ] (if [, V(2) dz # 0) up to three virtual states: “s'”, “p*”
d > 1: [Jensen & Nenciu '] boundedness of [V [2(—A + V — )YV |2
(bad weights)
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Equivalent characterizations of virtual levels

H=-A+V(z), z€R%, d>1, V € Ceomp(RY)
Following properties seem equivalent:

(P1) Hvy = 2y has a nonzero solution in L? or a slightly larger space;
(P2) (H — zI) ' : LARY) — L* ,(R") has no limit as z — z Vs, s’ > 1;

(P3) Under an arbitrarily small perturbation, an eigenvalue can bifurcate from zj.

(P1) — (P3) are satisfied for —85 on R near zy = 0;
(P1) — (P3) are not satisfied for —A in R near z, = 0.

Such equivalence for general exterior elliptic problems: [Vainberg ']
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From Schrodinger operators in 1D to general theory

(=0*+V — 2)u=0, u(z) € C, xeR; Je(1+|z)|V(z)| dz < oo.
e_yx_y’\/__z
Y] ﬁ

Bad at z — 2, = 0 since Jost solutions 6_(x), 6, (x) are linearly dependent!

V=0 = (=07—zI)"

0%0_(x) =0 00, (z) =0 0_(x 0. ()
0_(z) N~ 1, 0. (x) L 1, 0 T
2 1 1 ~(@)0+(y), z<y
(_5)33 - O) ~ G(-f, y) W[9+, ]( ) { (y) ( )7 i~ does not work.

Instead, V(z) =0_(z) =0, (x) =1 € L*(R): virtual state.
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From Schrodinger operators in 1D to general theory

(=0*+V — 2)u=0, u(z) € C, xeR; Je(1+|z)|V(z)| dz < oo.

» No virtual level at z; =0:

o I lim(—2+V —zl)t: L2

e 3/2+0

e FVeI®R), VA0, (—P2+V —z)=0.

9

(R) — L=(R);

» Virtual level at z; =0:

e I lm(-02+V -z

Z—r2()

o JUEI®R), WAO, (~82+V —z)0 =0
Corresponding virtual state: (—02+V+W —20)¥ = WU, W € Ceonp(R)
= U= (R VAW — D) W
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Definition 3.1 (Virtual levels) X: Banach space; A € ¢ (X); {2 C p(A).
E—X<—F Banach spaces, continuous embeddings

e Spaces are not necessarily reflexive

e Embeddings are not necessarily dense

Assume that A has a closable extension onto F

> 2) € Tess(A) N OS2 regular point of o relative to 2, E, F if there is LAP:

3 (A—xl)ggp = w-lim (A—zl)"': E—=F

2— 20, 2€82

> 2y € 0us(A) virtual level of rank » € N relative to (2, E. F if it is the
smallest 7 such that 3B € HBy(F, E), rank B = r, so that

3 (A+B—=xl)ggp = Ww-lim (A+B—z[)"': E=F

2— 20, 2€82
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Remark 3.2 For T' € M,,«,,,

For T =

dimker(T") = min { rank B; B € M,,»,,, det(T + B) # 0}.

we take B = indeed, dim ker(7") = 1.

o O O
o O =
o = O
_ o O
o O O
o O O
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Example 3.3 A= —A in L*(R%), D(A) = H*(R?).
> 2z > 0 is regular point of oe(—A) relative to 2 = C,, L L2 if s > 1:

1
3 w-lim  (—A — %) L2RY — L2 (RY), s> 5 =1

z—20>0, 2eC

» 2, = 0 is a regular point of o.(—A) relative to C \ R,

ifd > 3, s, s’>%,s+s’>2
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Example 3.4 V € LY(R)
0,4V —2Ju=f, A=0,+V: I}R) — LXR), D(A)= H'(R).
If Rez <0,

X

(A=zD)"" fou(e) = / AW () dy,

—0o0

V 20 € 0ess(A) = iR is regular relative to {Rez < 0}, LY(R), L>=(R):

3 (A—2D)p..o:=w-lim(A - 2I)"": LYR) — L™(R)

Z—r2()
Re z<0
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Example 3.5 (Zero operator)
dmX =00, N:X—=0eX, 0(N)=o0(N)={0}.

Let E — X < F (continuously), dimE = co. Let B € By (F, E).

1
H@%mmmmka@ﬂcﬁkﬂp:—?f (B —¢I) tdc.
1
¢l=e
Then

(N+B—zI)'Pp=—2"'P,: E=F, z2#0,
cannot be bounded uniformly in z € C \ {0}.

Hence, 2z, = 0 is not an exceptional point of finite rank relative to C \ {0}, E, F.
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Example 3.6 Left shift:
L : KQ(N) %EQ(N), (331,562,...) —> (372,333,...), O'(L) = ;.

—z 1 0 271 272 273
—z 1 ... 0 1 o2
[ — o] — 0 z e (L—Z])_lz_ Z

(L= 2D) )] < 27l + [2 | + - < lallps

= (L —z2I)~": (}(N) — ¢>(N), uniformly in |z| > 1.

V|z| =1 isa regular pointof i(L): 3 lim (L — )7 H(N) — 2(N).
|z|>1
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To construct A € ZB(¢*(N)) with a virtual level at 2, € C, |z]| = 1:

Fix ¢el'(N)., K=zo®(s )eBu(*N),AN): Ko=g
A =L — K(L — z) has a virtual level at 2, € 0.(A) relative to
Q2 =C\Dy, 0+, =

since z is regular point of o5 (A + B), B := K(L — 2)) € Py ((>*(N), (}(N)).
I

The corresponding virtual state: W = (L — z/ );2151 @ € L°(N).
Note:

(A—20)¥ = (L—-K(L- 20) —20) (L — 200) o et = (I = K)o = 0.
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Similar concepts:

1. Spectral singularities [Naimark >*, Schwartz ®°, Pavlov ],
[Ljance ®7, Konotop et al. !°]

Absent for selfadjoint operators.

2. Birman’s approach [Birman ®', §1.7] for semibounded selfadjoint operators.

E.g.,if H = —A + V, consider the closure of X with respect to

ali] = / (1l + Vigl).

Related: subcritical/critical Schrédinger operators [Simon 8!, Murata 8¢],

[Gesztesy & Zhao o1 Weidl *°, Pinchover & Tintarev %, Lucia & Prashanth '%].
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Key lemma (abstract version of [Jensen & Kato ”, Lemma 2.4]):

Lemma 3.7 (Left and right inverse of A — zy1)
Let zy € 0es(A) be regular relative to 2 C p(A):

3 (A—2zD),' = wlim (A—z2I)"': E—F.

2—20, 2€02

Then (A — zI),," is both the left and the right inverse of
A~ %I : Range ((A — %I);') — E.

Above, A is closed extension of A onto F.

Note: (=07 +V —z)u=¢ € Coomp(R), V€O, (R),  2=0,
has a unique L°°-solution if there is no virtual level;

has no L°°-solution if there i1s a virtual level.
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Space of virtual states, 0, pr(A — 20/)

[Jensen & Kato 7], [Birman ®', §1.7]

If 2y € 0es(A) is of rank r € N relative to 2 C p(A):

Morr(A—2zI) = {V e Range ((A+B—zI),') : (A— )0 = 0} CF,
with some B € % (F, E).
Theorem 3.8 1. Mg r(A — 29]) does not depend on the choice of 5;
2. ENker(A—z) C Mopr(A—20]);
3. dimMopr(A—2l) =7

IfMoer(A—200) ¢ X: 2 is a genuine virtual level;

U eMopr(A—2I)\ Xis a virtual state.
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Independence on the choice of ‘“‘regularizing” spaces E and F

This is similar to [Agmon *®] (in the context of resonances)

Theorem 3.9 A € ¥ (X), {2 C p(A) connected open set, zp € 02 N ges(A).
E, - X — F,,7 =1, 2, Banach spaces with dense continuous embeddings.
Assume: E; N Es is dense in both E; and E-;

F, and F> are dense in F'; + Fy;

(Fy + Fy)* is dense in F'] and in F3;

A has closable extension onto F'; + F.
Let zy be a virtual level with respect to both E; — F; and Es — Fs.
Then ri=ry and Mog, r(A—2])=Mog,r,(A—21).

25



Dependence on the choice of ‘“‘regularizing” spaces E and F

We know: (—A —zI)"! : L%(R) — L? ,(R),z € C\ R,
€_|x_y|\/__z

K((—A =27 (2,y) = A

has no limit as z — zy = 0. Yet,

Example 3.10 (Roman Romanov) Let s, s' > 1/2, 7> 1;

A ] | ale
B {ue L2®): [ = 0P}, lulle = fulz + lmsup 14
il
S 0

Then z, = 0 is regular relative to (C \ R, E, L* ,(R)):
Iw-lim(—A — zI)"': E — L? ,(R)

220
Note: E and L? are not mutually dense, although both are dense in L”
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LAP vs. bifurcations from o (A)

Let 2y € 0es(A) be of rank r > 0, r < oo relative to 2 C p(A).

d a (desired) bifurcation of a family of eigenvalues from z; into {2 iff » > 1 !!

Theorem 3.11 Let 2) € 0(A) be of rank r > 0, r < oo relative to {2 C p(A).

1. If 4 V7 c %(F,E), hm HV7||F—>E =0, Zi &€ ad(A—i—V})ﬂ{Z, Zj = 20,

J—00

thenr >1; ie. I w-lim (A—zI)"': E—F

2—20, 2€02

2. If 2y € 0es(A) is of rank > 1 relative to {2, then V z; € 2, z; — 2,
3V, € Bo(F,E) such that ||V}||lpog — 0, 2z, €0a(A+V;), jeEN,

One can choose V; = (;V, (; — 0.
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Virtual levels of adjoint operators

Let E — X — F (continuous embeddings).

Let A have closable extension onto F', A* have closable extension onto E*.

Lemma 3.12 If Z) € 0.(A*) of rank s > 0 relative to 2% := {f S !2}, F*, E*,
then 2y € 0es(A) is of rank r < s relative to 2, E, F.

If, additionally, E is reflexive, then r = s.

If E, F were reflexive, just notice that

Iw-lim(A+B—z2I)7:E>F & Fw-lim(A" + B* — z)7t FHE*
RTr2() Z—2
z€(? zed*

28



The Fredholm alternative

Ae?(X), D(A) Cc X; E— X < F (continuously)

Assume that A has closable extension onto F

Lemma 3.13 (Fredholm alternative)
Assume: 2y € 0e(A) of rank r € Ny relative to 2 C p(A).
Then: 3 P € End(E), P? = P, rank P = r, such that

(A_ZO)UZ¢7 QbGE,

has a solution u € Range ((A+ B — %), 5p) CF iff P =0.

This solution is unique under extra constraint Qu = 0,

where () € End (F) is any projection onto M, g r(A — 20])

29



4 Application to Schrodinger operators

Uniform resolvent bounds for selfadjoint Schrédinger operators: [Kenig et al. 3],
[Gutiérrez %], [Frank '], [Frank & Simon 7], [Bouclet & Mizutani '8],

[Ren et al. '#], [Mizutani '°].

To approach general nonselfadjoint Schrodinger operators in all dimensions:
Derive estimates for A = —A + V withe.g. V(z) = €l <; ford < 2!

Prior to [Boussaid & Comech ?!], nonselfadjoint case has not been considered;
even in the selfadjoint case, the LAP in dimension d = 2 was not available.

30



Theorem4.1 A= —A+Vin L?*(R%), d € N, D(A) = H*(R?);
V()| <Cl{x)™", p>2, p>s+5.

» If 2p = 0 € 0.(A) is regular relative to 2 = C\ R, then:

1 .
s+s>2 5 8>3, d=1;

s+ s > 2, s,s’>2—‘§l, s, s’ >0, d>2;

(A— 2D, L* — L, {

Also, (A — zI)g' : L2(R?Y) — L>*(RY), Vs>2-2, d<3.

> Ifz) =0 € 0es(A) is a virtual level, then IV #£0, (A — 2))V =0,

4.

)

L=(R), d <2 L2(RY), d
veq 5 5 U e
L7, (R)NLXRY), d=3; LARY), d>5.

2
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Theorem 4.2 (LAP / virtual levels in R?) A= —A+V(z)in L*(R?
» Ifzy =0 € 0e(A) is regular:
forany s >1 and |V(z)| < C(z)™", p> max(2,2s),

(A—zD)": LR — L2 (R?),

(A—zI)"': LYR?*) — L* (R?),

(A—z2D)"": L2(R?) — L®(R?),
uniformly in z € C\ R,

» 2z = 0is a virtual level: FT € L¥(R?), (—A+V)¥ =0.
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Regularized Laplacian in R?

Lemma4.3 Fors, s' > 1, g >0, 3 w-lim(—A + gl — )7 L2 L7

z—0

L (-Atgly -z L2

s,radial

(R*) — L* ,(R?) has a limit as z — 0.

Oo(r,z) =1, O0<r<Il;

1
Consider (—83—— T+gﬂ(0_1)—z)9(r, z) =0; let
r | O(r,z) =1, 7> 1.

Oo( O ()

0 N
Define G(T, 0, Z) — 1 {90(7“’ Z)Qoo(p, Z), O0<r< 0;
TW[QO; 900} (T) HOO(T, Z)eo(p, Z>, 0<p<r.

2. (=A—zI)7t: (L2

s,radial

(RQ))L — L? ,(R?) hasalimitas z — 0
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