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Banach spaces.
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1 Virtual levels, virtual states

Scattering of neutrons on protons [Wigner 33]

just a year after discovery of neutron [Chadwick 32].

• p↑ + n↑ ⇒ deuteron (Deuterium’s nucleus); Ebinding ∼ 2.2MeV

• p↑ + n↓ ⇒ Ebinding ∼ 0

[Fermi 35]: real or virtual?

[Amaldi & Fermi 36]: virtual, Ebinding ∼ −67KeV.
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2 Radiation principle. Vladimir Ignatowsky

Helmholtz equation: (−∆− z)u(x) = f (x) ∈ L2(R3), x ∈ R
3, z ∈ C

If z 6∈ R+: unique L2-solution,

u(x) = (−∆− zI)−1f = e−|x|
√
−z

4π|x| ∗ f, Re
√
−z > 0.

If z = k2, k ≥ 0: could be no L2-solution; then a solution is not unique.

Radiation principle: a way to specify a unique solution.

[Smirnov 41] credits [Ignatowsky 05] and [Sommerfeld 12].
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◮ Limiting absorption principle, or LAP [Ignatowsky 05], [Sveshnikov 50]:

u(x) = lim
ε→0+

(−∆− (k+iε)2I)−1f (x), u(x) ∼ lim
ε→0+

e+i(k+iε)r ∼ eikr.

[Sveshnikov 50], [Povzner 53], [Eidus 62], [Vainberg 66]...

◮ Sommerfeld radiation condition [Sommerfeld 12]:

lim
r→∞

r
(∂u

∂r
− iku

)

= 0; u ∼ eikr

◮ Limiting amplitude principle [Tikhonov & Samarskii 48]

∂2tψ −∆ψ = f (x)e−ikt, (ψ, ∂tψ)|t=0
= (0, 0); ψ ∼ eik(r−t);

u(x) = lim
t→+∞

ψ(x, t)eikt ∼ eikr.
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Further development of LAP

• Eigenfunction expansions [Weyl 10, Carleman 34, Titchmarsh 46];

• Krein’s method of directing functionals [Krein 46, Krein 48];

• Gelfand–Kostyuchenko theory [Povzner 50, Povzner 53],

[Gelfand & Kostyuchenko 55, Berezanskii 57, Birman 61];

• Rigged (or equipped) spaces [Gelfand & Vilenkin 61];

• Limit of the resolvent at the essential spectrum in certain spaces:

[Rejto 69], [Agmon 70], [Yamada 72/73] (for Dirac operators), [Agmon 75].
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Recent meaning of LAP. Shmuel Agmon and E →֒ X →֒ F

LAP for A ∈ C (X): lim(A− zI)−1 as z → σess(A)

While no limit as a map X −→ X when z → σ(A)...

[Agmon 70, Agmon 75]:

∃ lim
z→z0>0
z∈C+

(−∆− zI)−1 : L2
s(R

d) → L2
−s(R

d), ∀s > 1
2, ∀d ≥ 1.

‖u‖L2
s(R

d) := ‖(1 + |x|)su‖L2(Rd)
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Near the threshold: what if z → 0 ?

d = 3: (−∆− zI)−1 ∼ e−|x−y|
√
−z

4π|x− y| , ∃ limit as z → 0

d = 1: (−∂2x − zI)−1 ∼ e−|x−y|
√
−z

2
√
−z , no limit as z → 0
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3 Virtual levels

Singularity of the resolvent at threshold:

[Birman 61, Faddeev 63, Vainberg 68, Yafaev 74, Vainberg 75, Simon 76, Rauch 78]...

Dependence of dispersive estimates on the presence of a virtual level:

Schrödinger operators:

[Jensen & Kato 79, Yafaev 83, Erdoğan & Schlag 04, Yajima 05];

Dirac operators:

[Boussaı̈d 06, Boussaı̈d 08, Erdoğan & Green 17, Erdoğan et al. 19]...
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Virtual levels of selfadjoint Schrödinger operators in R
d

d = 3: [Yafaev 75, Jensen & Kato 79] at most one virtual state “s”

d ≥ 4: [Jensen 80, Yafaev 83, Jensen 84] at most one virtual state in R
4;

only eigenstates for d ≥ 5

d = 1: [Bollé et al. 85, Bollé et al. 87] at most one virtual state

d = 2: [Bollé et al. 88] (if
´

R2 V (x) dx 6= 0) up to three virtual states: “s1”, “p2”

d ≥ 1: [Jensen & Nenciu 01] boundedness of |V |12(−∆+ V − zI)−1|V |12

(bad weights)
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Equivalent characterizations of virtual levels

H = −∆+ V (x), x ∈ R
d, d ≥ 1, V ∈ Ccomp(R

d)

Following properties seem equivalent:

(P1) Hψ = z0ψ has a nonzero solution in L2 or a slightly larger space;

(P2) (H − zI)−1 : L2
s(R

d) → L2
−s′(R

d) has no limit as z → z0 ∀s, s′ ≫ 1;

(P3) Under an arbitrarily small perturbation, an eigenvalue can bifurcate from z0.

(P1) – (P3) are satisfied for −∂2x on R near z0 = 0;

(P1) – (P3) are not satisfied for −∆ in R
3 near z0 = 0.

Such equivalence for general exterior elliptic problems: [Vainberg 75]
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From Schrödinger operators in 1D to general theory

(−∂2x + V − z)u = 0, u(x) ∈ C, x ∈ R;
´

R
(1 + |x|)|V (x)| dx <∞.

V = 0 ⇒ (−∂2x − zI)−1 ∼ e−|x−y|
√
−z

2
√
−z

Bad at z → z0 = 0 since Jost solutions θ−(x), θ+(x) are linearly dependent!







∂2xθ−(x) = 0

θ−(x) ≈
x→−∞

1,







∂2xθ+(x) = 0

θ+(x) ≈
x→+∞

1,

θ−(x) θ+(x)

0 x
s ✲

(−∂2x− 0)−1 ∼ G(x, y) = 1

W [θ+, θ−](y)

{

θ−(x)θ+(y), x < y

θ−(y)θ+(x), x > y
does not work.

Instead, Ψ(x) = θ−(x) = θ+(x) = 1 ∈ L∞(R): virtual state.
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From Schrödinger operators in 1D to general theory

(−∂2x + V − z)u = 0, u(x) ∈ C, x ∈ R;
´

R
(1 + |x|)|V (x)| dx <∞.

◮ No virtual level at z0=0:

• ∃ lim
z→z0

(−∂2x + V − zI)−1 : L2
3/2+0(R) → L∞(R);

• ∃
/
Ψ ∈ L∞(R), Ψ 6= 0, (−∂2x + V − z0)Ψ = 0.

◮ Virtual level at z0=0:

• ∃
/

lim
z→z0

(−∂2x + V − zI)−1;

• ∃Ψ ∈ L∞(R), Ψ 6= 0, (−∂2x + V − z0)Ψ = 0;

Corresponding virtual state: (−∂2x+V+W −z0)Ψ = WΨ, W ∈ Ccomp(R)

⇒ Ψ = (−∂2x + V+W − z0I)
−1WΨ.
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Definition 3.1 (Virtual levels) X: Banach space; A ∈ C (X); Ω ⊂ ρ(A).

E →֒ X →֒ F Banach spaces, continuous embeddings

• Spaces are not necessarily reflexive

• Embeddings are not necessarily dense

Assume that A has a closable extension onto F

◮ z0 ∈ σess(A)∩ ∂Ω regular point of σess relative to Ω,E,F if there is LAP:

∃ (A− z0I)
−1
Ω,E,F := w-lim

z→z0, z∈Ω
(A− zI)−1 : E → F

◮ z0 ∈ σess(A) virtual level of rank r ∈ N relative to Ω,E,F if it is the

smallest r such that ∃B ∈ B00(F,E), rankB = r, so that

∃ (A + B − z0I)
−1
Ω,E,F := w-lim

z→z0, z∈Ω
(A + B − zI)−1 : E → F
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Remark 3.2 For T ∈ Mn×n,

dimker(T ) = min
{
rankB; B ∈ Mn×n, det(T + B) 6= 0

}
.

For T =





0 1 0

0 0 1

0 0 0



 we take B =





0 0 0

0 0 0

1 0 0



; indeed, dimker(T ) = 1.
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Example 3.3 A = −∆ in L2(Rd), D(A) = H2(Rd).

◮ z0 > 0 is regular point of σess(−∆) relative to Ω = C+, L
2
s, L

2
−s if s > 1

2:

∃ w-lim
z→z0>0, z∈C+

(−∆− z0I)
−1 : L2

s(R
d) → L2

−s(R
d), s >

1

2
, d ≥ 1

◮ z0 = 0 is a regular point of σess(−∆) relative to C \ R+

if d ≥ 3, s, s′ > 1
2, s + s′ > 2

17



Example 3.4 V ∈ L1(R)

(∂x + V − z)u = f , A = ∂x + V : L2(R) → L2(R), D(A) = H1(R).

If Re z < 0,

(A− zI)−1 : f 7→ u(x) =

ˆ x

−∞
ez(x−y)+W (y)−W (x)f (y) dy,

W (x) :=

ˆ x

−∞
V (y) dy

∀ z0 ∈ σess(A) = iR is regular relative to {Re z < 0}, L1(R), L∞(R):

∃ (A− z0I)
−1
Re z<0 := w-lim

z→z0
Re z<0

(A− zI)−1 : L1(R) → L∞(R)
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Example 3.5 (Zero operator)

dimX = ∞, N : X → 0 ∈ X, σ(N) = σess(N) = {0}.

Let E →֒ X →֒ F (continuously), dimE = ∞. Let B ∈ B00(F,E).

Projection onto ker(B) ⊂ E: P0 := − 1

2πi

‰

|ζ|=ǫ

(B − ζI)−1 dζ .

Then

(N + B − zI)−1P0 = −z−1P0 : E → F, z 6= 0,

cannot be bounded uniformly in z ∈ C \ {0}.

Hence, z0 = 0 is not an exceptional point of finite rank relative to C \ {0},E,F.
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Example 3.6 Left shift:

L : ℓ2(N) → ℓ2(N), (x1, x2, . . . ) 7→ (x2, x3, . . . ), σ(L) = D1.

L− zI =








−z 1 0 · · ·
0 −z 1 · · ·
0 0 −z · · ·
...

...
... . . .







, (L− zI)−1 = −








z−1 z−2 z−3 · · ·
0 z−1 z−2 · · ·
0 0 z−1 · · ·
...

...
... . . .







.

|((L− zI)−1x)i| ≤ |z−1xi| + |z−1xi+1| + · · · ≤ ‖x‖ℓ1;

⇒ (L− zI)−1 : ℓ1(N) → ℓ∞(N), uniformly in |z| > 1.

∀ |z0| = 1 is a regular point of σess(L): ∃ lim
z→z0
|z|>1

(L− zI)−1 : ℓ1(N) → ℓ∞(N).
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To construct A ∈ B(ℓ2(N)) with a virtual level at z0 ∈ C, |z0| = 1:

Fix φ ∈ ℓ1(N), K = 1
〈φ,φ〉φ⊗ 〈φ, · 〉 ∈ B00

(
ℓ∞(N), ℓ1(N)

)
; Kφ = φ.

A = L−K(L− z0) has a virtual level at z0 ∈ σess(A) relative to

Ω = C \ D1, ℓ
1, ℓ∞

since z0 is regular point of σess(A + B
︸ ︷︷ ︸

L

), B := K(L− z0) ∈ B00

(
ℓ∞(N), ℓ1(N)

)
.

The corresponding virtual state: Ψ = (L− z0I)
−1
Ω,ℓ1,ℓ∞φ ∈ ℓ∞(N).

Note:

(A− z0)Ψ =
(
L−K(L− z0)
︸ ︷︷ ︸

A

−z0
)
(L− z0I)

−1
Ω,ℓ1,ℓ∞φ = (I −K)φ = 0.
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Similar concepts:

1. Spectral singularities [Naimark 54, Schwartz 60, Pavlov 66],

[Ljance 67, Konotop et al. 19]

Absent for selfadjoint operators.

2. Birman’s approach [Birman 61, §1.7] for semibounded selfadjoint operators.

E.g., if H = −∆+ V , consider the closure of X with respect to

a[ϕ] :=

ˆ

(|∇ϕ|2 + V |ϕ|).

Related: subcritical/critical Schrödinger operators [Simon 81, Murata 86],

[Gesztesy & Zhao 91, Weidl 99, Pinchover & Tintarev 06, Lucia & Prashanth 18].
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Key lemma (abstract version of [Jensen & Kato 79, Lemma 2.4]):

Lemma 3.7 (Left and right inverse of A− z0I)

Let z0 ∈ σess(A) be regular relative to Ω ⊂ ρ(A):

∃ (A− z0I)
−1
Ω := w-lim

z→z0, z∈Ω
(A− zI)−1 : E → F.

Then (A− z0I)
−1
Ω is both the left and the right inverse of

Â− z0I : Range
(
(A− z0I)

−1
Ω

)
→ E.

Above, Â is closed extension of A onto F.

Note: (−∂2x + V − z0)u = φ ∈ C∞
comp(R), V ∈ C∞

comp(R), z0 = 0,

has a unique L∞-solution if there is no virtual level;

has no L∞-solution if there is a virtual level.
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Space of virtual states, MΩ,E,F(A− z0I)

[Jensen & Kato 79], [Birman 61, §1.7]

If z0 ∈ σess(A) is of rank r ∈ N0 relative to Ω ⊂ ρ(A):

MΩ,E,F(A− z0I) :=
{
Ψ ∈ Range

(
(A+B − z0I)

−1
Ω

)
; (Â− z0)Ψ = 0

}
⊂ F,

with some B ∈ B00(F,E).

Theorem 3.8 1. MΩ,E,F(A− z0I) does not depend on the choice of B;

2. E ∩ ker(A− z0) ⊂ MΩ,E,F(A− z0I);

3. dimMΩ,E,F(A− z0I) = r.

If MΩ,E,F(A− z0I) 6⊂ X : z0 is a genuine virtual level;

Ψ ∈ MΩ,E,F(A− z0I) \X is a virtual state.
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Independence on the choice of “regularizing” spaces E and F

This is similar to [Agmon 98] (in the context of resonances)

Theorem 3.9 A ∈ C (X), Ω ⊂ ρ(A) connected open set, z0 ∈ ∂Ω ∩ σess(A).
Ei →֒ X →֒ Fi, i = 1, 2, Banach spaces with dense continuous embeddings.

Assume: E1 ∩ E2 is dense in both E1 and E2;

F1 and F2 are dense in F1 + F2;

(F1 + F2)
∗ is dense in F∗

1 and in F∗
2;

A has closable extension onto F1 + F2.

Let z0 be a virtual level with respect to both E1 → F1 and E2 → F2.

Then r1 = r2 and MΩ,E1,F1
(A− z0I) = MΩ,E2,F2

(A− z0I).
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Dependence on the choice of “regularizing” spaces E and F

We know: (−∆− zI)−1 : L2
s(R) → L2

−s′
(R), z ∈ C \ R+,

K
(
(−∆− zI)−1

)
(x, y) =

e−|x−y|
√
−z

2
√
−z ,

has no limit as z → z0 = 0. Yet,

Example 3.10 (Roman Romanov) Let s, s′ > 1/2, τ > 1;

E :=
{

u ∈ L2
s(R) ; |û(ξ)| = O(|ξ|τ )

}

, ‖u‖E = ‖u‖L2s(R) + lim sup
ξ→0

ξ∈R\{0}

|û(ξ)|
|ξ|τ

Then z0 = 0 is regular relative to
(
C \ R+, E, L

2
−s′(R)

)
:

∃w-lim
z→z0

(−∆− zI)−1 : E → L2
−s′

(R)

Note: E and L2
s are not mutually dense, although both are dense in L2
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LAP vs. bifurcations from σess(A)

Let z0 ∈ σess(A) be of rank r ≥ 0, r <∞ relative to Ω ⊂ ρ(A).

∃ a (desired) bifurcation of a family of eigenvalues from z0 into Ω iff r ≥ 1 !!

Theorem 3.11 Let z0 ∈ σess(A) be of rank r ≥ 0, r <∞ relative to Ω ⊂ ρ(A).

1. If ∃ Vj ∈ B(F,E), lim
j→∞

‖Vj‖F→E = 0, zj ∈ σd(A+Vj)∩Ω, zj → z0,

then r ≥ 1; i.e. ∃
/

w-lim
z→z0, z∈Ω

(A− zI)−1 : E → F

2. If z0 ∈ σess(A) is of rank r ≥ 1 relative to Ω, then ∀ zj ∈ Ω, zj → z0,

∃ Vj ∈ B00(F,E) such that ‖Vj‖F→E → 0, zj ∈ σd(A + Vj), j ∈ N.

One can choose Vj = ζjV , ζj → 0.
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Virtual levels of adjoint operators

Let E →֒ X →֒ F (continuous embeddings).

Let A have closable extension onto F, A∗ have closable extension onto E∗.

Lemma 3.12 If z̄0 ∈ σess(A
∗) of rank s ≥ 0 relative toΩ∗ :=

{
ζ̄ ∈ Ω

}
, F∗, E∗,

then z0 ∈ σess(A) is of rank r ≤ s relative to Ω,E,F.

If, additionally, E is reflexive, then r = s.

If E, F were reflexive, just notice that

∃w-lim
z→z0
z∈Ω

(A + B − zI)−1 : E ✮F ⇔ ∃w-lim
z̄→z̄0
z̄∈Ω∗

(A∗ + B∗ − z̄I)−1 : F∗
✮E∗.

28



The Fredholm alternative

A ∈ C (X), D(A) ⊂ X; E →֒ X →֒ F (continuously)

Assume that A has closable extension onto F

Lemma 3.13 (Fredholm alternative)

Assume: z0 ∈ σess(A) of rank r ∈ N0 relative to Ω ⊂ ρ(A).

Then: ∃ P ∈ End (E), P 2 = P, rankP = r, such that

(Â− z0)u = φ, φ ∈ E,

has a solution u ∈ Range
(
(A + B − z0I)

−1
Ω,E,F

)
⊂ F iff Pφ = 0.

This solution is unique under extra constraint Qu = 0,

where Q ∈ End (F) is any projection onto MΩ,E,F(A− z0I)
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4 Application to Schrödinger operators

Uniform resolvent bounds for selfadjoint Schrödinger operators: [Kenig et al. 87],

[Gutiérrez 04], [Frank 11], [Frank & Simon 17], [Bouclet & Mizutani 18],

[Ren et al. 18], [Mizutani 19].

To approach general nonselfadjoint Schrödinger operators in all dimensions:

Derive estimates for A = −∆+ V with e.g. V (x) = ε1|x|≤1 for d ≤ 2 !!

Prior to [Boussaı̈d & Comech 21], nonselfadjoint case has not been considered;

even in the selfadjoint case, the LAP in dimension d = 2 was not available.
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Theorem 4.1 A = −∆+ V in L2(Rd), d ∈ N, D(A) = H2(Rd);

|V (x)| ≤ C〈x〉−ρ, ρ > 2, ρ > s + s′.

◮ If z0 = 0 ∈ σess(A) is regular relative to Ω = C \ R+, then:

(A− z0I)
−1
Ω : L2

s → L2
−s′,

{

s + s′ ≥ 2, s, s′ > 1
2, d = 1;

s+ s′ ≥ 2, s, s′ > 2− d

2
, s, s′ ≥ 0, d ≥ 2;

Also, (A− z0I)
−1
Ω : L2

s(R
d) → L∞(Rd), ∀s > 2− d

2
, d ≤ 3.

◮ If z0 = 0 ∈ σess(A) is a virtual level, then ∃ Ψ 6= 0, (A− z0)Ψ = 0,

Ψ ∈
{

L∞(Rd), d ≤ 2;

L2
−1

2
−0
(R3) ∩ L∞(R3), d = 3;

Ψ ∈
{

L2
−0(R

4), d = 4;

L2(Rd), d ≥ 5.
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Theorem 4.2 (LAP / virtual levels in R
2) A = −∆+ V (x) in L2(R2)

◮ If z0 = 0 ∈ σess(A) is regular:

for any s > 1 and |V (x)| ≤ C〈x〉−ρ, ρ > max(2, 2s),

(A− zI)−1 : L2
s(R

2) → L2
−s(R

2),

(A− zI)−1 : L1(R2) → L2
−s(R

2),

(A− zI)−1 : L2
s(R

2) → L∞(R2),

uniformly in z ∈ C \ R+.

◮ z0 = 0 is a virtual level: ∃ Ψ ∈ L∞(R2), (−∆+ V )Ψ = 0.
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Regularized Laplacian in R
2

Lemma 4.3 For s, s′ > 1, g > 0, ∃ w-lim
z→0

(−∆+ g1
B2
1
− zI)−1 : L2

s → L2
−s′.

1. (−∆+ g1
B2
1
− zI)−1 : L2

s,radial(R
2) → L2

−s′(R
2) has a limit as z → 0.

Consider
(

−∂2r−
1

r
∂r+g1(0,1)−z

)

θ(r, z) = 0; let

{

θ0(r, z) ≈ 1, 0 < r ≪ 1;

θ∞(r, z) ≈ 1, r ≫ 1.

θ0(x) θ∞(x)

0 1
xs s ✲

Define G(r, ρ, z) =
1

rW [θ0, θ∞](r)

{

θ0(r, z)θ∞(ρ, z), 0 < r ≤ ρ;

θ∞(r, z)θ0(ρ, z), 0 < ρ ≤ r.

2. (−∆− zI)−1 :
(
L2
s,radial(R

2)
)⊥ → L2

−s′(R
2) has a limit as z → 0
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