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This manual provides an introduction to MATLAB with exercises which are specifically oriented to the MATLAB
service provided by Bath University Computing Service (BUCS). However much of the information provided
here is applicable to any MATLAB installation, PC, Mac or UNIX.

This manual has a dual role: it serves first as a set of directed tutorials to be carried out in the laboratory
and second as a general reference manual for MATLAB.

Each chapter of the manual represents one tutorial, and includes exercises to be done during private
study time. For each tutorial you should read through the relevant chapter, trying out the various features
of MATLAB which are described, and then you should do the exercises.

You may extend the chapter by doing your own experiments with the system. Responsible experimenta-
tion is essential when learning computing.



Contents

0 Introduction: What is MATLAB? 1

1 First Tutorial: Simple Calculations and File Management 1
1.1 Starting MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Simple arithmetic in MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 The MATLAB Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 The MATLAB demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Recording a MATLAB session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Printing out from MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Further information on MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.8 Exercises for Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Second Tutorial: Variables and Graphics 6
2.1 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Simple Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Exercises for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Third Tutorial: Loops and Logical Branching 11
3.1 The for loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 The while loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 The if-elseif-else statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Exercises for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Fourth Tutorial: scripts and functions 16
4.1 The MATLAB workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Script files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Function files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 The general form of a function file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 Exercises for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Fifth Tutorial: A Population Dynamics Example 19
5.1 Cellular Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 A simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 A programming exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4 Exercises for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Sixth Tutorial: Further Experiments on Population Dynamics 22

7 The Matlab Symbolic Math Toolbox 23
7.1 Exercises on Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A Appendix: Solutions to selected exercises 24

B Appendix: Glossary of UNIX commands 25

C Appendix: Some useful MATLAB commands 26



0 Introduction: What is MATLAB?

MATLAB is a package that has been purpose-designed to make computations easy, fast and reliable. It is
installed on machines run by Bath University Computing Services (BUCS), which can be accessed in the
BUCS PC Labs such as those in 1 East 3.9, 1 West 2.25 or 3 East 3.1, as well as from any of the PCs in the
Library. The machines which you will use for running MATLAB are SUN computers that run on the UNIX
operating system. (If you are a PC or Mac fan, note that this is a quite different environment from what
you are used to. However you will need only a small number of UNIX commands when you are working
with MATLAB. There is a glossary of common UNIX commands in Appendix B.)

MATLAB started life in the 1970s as a user-friendly interface to certain clever but complicated programs
for solving large systems of equations. The idea behind MATLAB was to provide a simple way of using these
programs that hid many of the complications. The idea was appealing to scientists who needed to use high
performance software but had neither the time nor the inclination (nor in some cases the ability) to write
it from scratch. Since its introduction, MATLAB has expanded to cover a very wide range of applications and
can now be used as a very simple and transparent programming language where each line of code looks very
much like the mathematical statement it is designed to implement.

Basic MATLAB is good for the following.
• Computations, including linear algebra, data analysis, signal processing, polynomials and interpolation,

numerical integration (quadrature), and numerical solution of differential equations.
• Graphics, in 2-D and 3-D, including colour, lighting, and animation.
It also has collections of specialised functions, called toolboxes, that extend its functionality. In particular,
it can do symbolic algebra, e.g. it can tell you that (x+y)^2 is equal to x^2+2*x*y+y^2.

It is important not to confuse the type of programming that we shall do in this course with fundamental
programming in an established high-level language like C, JAVA or FORTRAN. In this course we will
take advantage of many of the built-in features of MATLAB to do quite complicated tasks but, in contrast
to programming in a conventional high-level language, we shall have relatively little control over exactly
how the instructions which we write are carried out on the machine. As a result, MATLAB programs for
complicated tasks may be somewhat slower to run than programs written in languages such as C. However
the MATLAB programs are very easy to write, a fact which we shall emphasise here. We shall use MATLAB as
a vehicle for learning elementary programming skills and applications. These are skills which will be useful
independently of the language you choose to work in. Some students in First Year will already know some
of these skills, but we shall not assume any prior knowledge.

You will meet a course in JAVA programming in the second semester of the First Year.

1 First Tutorial: Simple Calculations and File Management

In this tutorial, you will start to become familiar with the MATLAB development environment and some of
its facilities. You will learn
• how to start and quit MATLAB,
• how to do simple arithmetic calculations,
• how to assign values to variables,
• how to use some of MATLAB’s built-in functions,
• how to copy files from my filespace to yours, and
• what a script is and how to write, save and run one.

1.1 Starting MATLAB

This is explained in a separate handout, see http://www.maths.bath.ac.uk/~jz203/teaching/matlab/
matlab-starting.pdf.

1

http://www.maths.bath.ac.uk/~jz203/teaching/matlab/matlab-starting.pdf
http://www.maths.bath.ac.uk/~jz203/teaching/matlab/matlab-starting.pdf


1.1.2. Running MATLAB. After you have typed matlab, a MATLAB logo will come up and then a MATLAB
command window with a prompt >>. Now you are ready to use MATLAB. When MATLAB is starting you should
get a flash of the MATLAB graphics window on your screen. If this did not happen, something is wrong with
your set-up and you will not get graphics when you want them. ASK YOUR TUTOR FOR HELP (and/or
go to the BUCS help desk in the library after your first tutorial) if this happens.

1.1.3. Terminating your session. To finish a MATLAB session, type exit to the >> prompt. Then type
exit to the $ prompts. Then log out from your Windows session. It is essential that you log out completely
after you have finished with any machine.

From now on, when you are instructed to type various commands, unless you are explicitly told to type
them elsewhere, they should be typed to the prompt >> in the MATLAB command window.

1.2 Simple arithmetic in MATLAB

The basic operations are +, -, *, /, and ^, which stand for add, subtract, multiply, divide and exponen-
tiate, or “raise to the power of”. Work through the following example, which shows the results of typing
some simple arithmetic commands to the MATLAB prompt. The commands typed by the user are those
immediately following the >> prompt. A % symbol means a comment: the rest of this line is ignored by
MATLAB. When a computation produces a response, this is displayed immediately below the command that
produced it.

% script tutorial1.m Lines beginning % are comments

>> clear % removes any old variables from the workspace
% (There are none if you’ve just started a session,
% but this could be important later.)

>> format short % outputs results in decimal form
% with 5 digit accuracy

>> 2+2 % trivial computation, result displayed on screen

ans =

4

>> x = 2+2 % same computation, result loaded into new
% variable x and displayed

x =

4

>> y = 2^2 + log(pi)*sin(x); % more complicated computation
% illustrates built-in functions
% log and sin and built-in constant pi
% The ; at the end suppresses output

>> y % prints the contents of y

y = 3.1337
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>> format short e % changes format of output
>> y

y = 3.1337e+00

>> format long % changes format of output again
>> y

y = 3.13366556593561

more on % This allows text to be presented page by page
% on the screen. Without it the text just scrolls
% around very quickly and is impossible to read

>> help format % prints the contents of the manual
% for the command ‘‘format’’

FORMAT Set output format.
All computations in MATLAB are done in double precision.
FORMAT may be used to switch between different output
display formats as follows:
FORMAT Default. Same as SHORT.
FORMAT SHORT Scaled fixed point format with 5 digits.
FORMAT LONG Scaled fixed point format with 15 digits.
FORMAT SHORT E Floating point format with 5 digits.
FORMAT LONG E Floating point format with 15 digits.
FORMAT SHORT G Best of fixed or floating point format with 5 digits.
FORMAT LONG G Best of fixed or floating point format with 15 digits.
FORMAT HEX Hexadecimal format.
FORMAT + The symbols +, - and blank are printed

for positive, negative and zero elements.
Imaginary parts are ignored.

FORMAT BANK Fixed format for dollars and cents.
FORMAT RAT Approximation by ratio of small integers.

Spacing:
FORMAT COMPACT Suppress extra line-feeds.
FORMAT LOOSE Puts the extra line-feeds back in.

>> who % Displays the current variables in
% the workspace

Your variables are:

ans x y

This sequence of instructions has been saved to the file ~masigg/ma20014/matlab/manual/tutorial1.m.
This file is a MATLAB program or M-file. In fact it is a particular kind of M-file called a script, which is simply
a sequence of MATLAB instructions in a file. (We shall learn about other kinds of programs in Tutorial 4
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below.)
Copy the file ~masigg/ma20014/matlab/manual/tutorial1.m over to your own filespace. In your second

UNIX window, type cp ~masigg/ma20014/matlab/manual/tutorial1.m tutorial1.m (where  represents
a space) to copy it to the directory you are working in and give it the same name tutorial1.m. (See the
glossary of UNIX commands in Appendix B below.) Bring up an editor/debugger window by typing edit.
(You may have to type this twice, as the first time may implement an initialisation process.) Now you can
• see what is in the file by clicking on File --> Open in the editor/debugger window and then selecting

the file name from the drop-down menu, and
• run it by typing tutorial1 in the MATLAB command window.
Do so now. Note that the actual script file contains a number of pause statements that cause execution to
stop (so that you can read the result). It starts again when any key is pressed on the keyboard.

1.3 The MATLAB Development Environment

This consists of
• the MATLAB command window, created when you start a MATLAB session, possibly supplemented with
• a figure window which appears when you do any plotting,
• an editor/debugger window, used for developing and checking MATLAB programs, and
• a help browser.
The command window is the one with the >> prompt. In version 7 it has three subwindows,
• the current directory window, listing all the files in your current directory,
• the workspace window (click on the tab), listing all the variables in your workspace, and
• the command history window, containing all your commands going back over multiple sessions.
You can do things like running M-files from your directory, plotting variables from your workspace, and
running commands from your command history or transferring them to a new M-file, by clicking (or right-
clicking or double-clicking) on them.

To see the figure window in action, type

Z = peaks; surf(Z)

and then hit RETURN. (Note that it is crucial to get the punctuation in the above command correct.) You
should get a 3D plot of a surface in the Figure window called Figure 1. (Note that peaks is a built-in
function that produces the data for this plot, and surf is a built-in function that does the plotting. When
you come to do your own plots you will be creating your own data of course.) You can play with the buttons
at the top of the Figure window (for example to rotate the figure and see it from different perspectives).

To obtain the editor/debugger, type edit. You can then create files by typing them into this window,
and save them by clicking on File --> Save As. You must call the file something like file1.m, i.e. save it
with a .m extension to its name, so that MATLAB recognises it as an M-file. If the file is a script, you can run
it by typing its name (without the .m). Create a script file containing the single line Z = peaks; surf(Z),
save it as file1.m, and run it.

To obtain help you can type helpwin, which produces a simple browser containing the MATLAB manual.
A much more sophisticated web-based help facility is obtained by typing helpdesk, but at peak times this
may be slow in starting up. If you have MATLAB on your home PC you may well prefer the helpdesk.

Finally, if you know the name of the command you are interested in, you can simply ask for help on it at
the MATLAB prompt. For example to find out about the for command, type help for or doc for. Do each
of these now: for is one of the loop-constructing commands that will be used in the programs you write in
this course.

Use any help facility to find the manual page for the command plot, which resides in the directory
graph2d. Read the manual page for plot.

4



1.4 The MATLAB demo

Type demo. A MATLAB demo window comes up. This contains examples of the use of many MATLAB features
listed on the left-hand side of the window. You should work through the demos on Graphics, Language
and Gallery. Some of the items there are quite advanced: you should not feel that you need to understand
everything you see, but try to get a feel for a range of available commands. When you have completed this
you may find it entertaining to look at some of the other features in More Examples.

1.5 Recording a MATLAB session

Often you may need to make a permanent record of parts of your MATLAB sessions. Any MATLAB session may
be recorded by typing diary filename, where filename is any name you care to choose. Everything that
appears in your MATLAB window is then recorded in the file filename until you type diary off. Type help
diary to find out about this. After you have finished recording you may choose simply to look at the file
filename, which can be done for example by reading it into your editor/debugger window. You may also
wish to print it out. To do this, see the section below on printing.

1.6 Printing out from MATLAB

Anything printed from the BUCS machines will come out on the laser printer in the reprographics section
of the library and you will have to pay a fee per page. To find out about printing in general from the UNIX
machines, look at the BUCS web site at http://www.bath.ac.uk/BUCS/print.html.
Inside MATLAB, if you have created a graph and you want to print it out, make sure that the current
graph window contains what you want to print and then click on File --> Print. Clicking Print in the
dialog box will send the figure to the library laser printer. To check if your job went into the queue, type
lpq -Pll ma****, (where ll stands for library laser and ma**** is your userid), to a $ prompt. (This
again illustrates the usefulness of a second UNIX window.) If you have any trouble with this, ask the BUCS
helpdesk.

1.7 Further information on MATLAB

Look in the library catalogue for titles containing the keyword MATLAB. In particular, the following are useful.

• Getting started with MATLAB 6: a quick introduction for scientists and engineers, by Rudra Pratap.
This is a user-friendly book that you might wish to buy.

• Essential MATLAB for scientists and engineers, by Brian D. Hahn

• The MATLAB 5 handbook, by Eva Part-Enander and Anders Sjoberg

• The MATLAB handbook, by Darren Redfern and Colin Campbell

• MATLAB Guide, by D.J. Higham and N.J. Higham

The MATLAB web-site http://www.mathworks.com is maintained by the company The MathWorks which
created and markets MATLAB.

1.8 Exercises for Chapter 1

1. Using MATLAB, do the following calculations:

(i) 1 + 2 + 3, (ii)
√

2, (iii) cos(π/6).

Note that MATLAB has pi as a built-in approximation for π (accurate to about 13 decimal places), and
built-in functions sqrt and cos. Look up the manual pages for these if necessary.
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2. After MATLAB has done a calculation the result is stored in the variable ans. After you have done (iii)
above, type ans^2 to find cos2(π/6). The true value of this is 3

4 . (Check that you know why!) Print
out ans using both format short and format long and compare with the true value. On the other
hand use MATLAB to compute ans-3/4. This illustrates rounding error: the fact that the machine is
finite means that calculations not involving integers are done inexactly with a small error (typically
of size around 10−15 or 10−16). The analysis of the effect of round-off error in calculations is a very
interesting and technical subject, but it is not one of the things that we shall do in this course.

3. The quantities ex and log(x) (log to base e) are computed using the MATLAB commands exp and log.
Look up the manual pages for each of these and then compute e3, log(e3) and eπ

√
163.

4. Compute sin2 π
6 + cos2 π

6 . (Note that typing sin^2(x) for sin2 x will produce an error!)

2 Second Tutorial: Variables and Graphics

In this tutorial, you will learn
• how to create row and column vectors (one-dimensional arrays) and matrices (two-dimensional arrays),
• how to do simple arithmetic operations (addition, subtraction, and multiplication by a scalar) on arrays,
• how to do array operations, i.e. term-by-term multiplication (.*), division (./), and exponentiation e.g.

by a scalar (.^),
• how to use built-in functions with array arguments,
• how to set up and plot two-dimensional line plots, and
• how to produce animated plots.

2.1 Arrays

The basic data type in MATLAB is the rectangular array, which contains numbers (or even strings of symbols).
MATLAB allows the user to create quite advanced data structures, but for many scientific applications it is
sufficient to work with matrices. These are two-dimensional arrays of data in the form

A =


a1,1 a1,2 . . a1,m

a2,1 a2,2 . . a2,m

. . . . .
an,1 an,2 . . an,m

 .
Note that the notation implies that ai,j is the element of A which is stored in the ith row and jth column.
The number of rows n need not be the same as the number of columns m. We say that such a matrix A is
of dimension n ×m. When n = 1 we have a column vector and when m = 1 we have a row vector. When
n = m = 1, A has a single entry, and is commonly known as a scalar.

You do not need any prior knowledge of matrices to follow this part of these notes.
A matrix can be created in MATLAB using any name starting with a letter and containing only letters,

numbers and underscores (_). A major distinction between MATLAB and many other programming languages
is that in MATLAB one does not have to declare in advance the size of an array. Storage of arrays is dynamic
in the sense that an array with a given name can change size during a MATLAB session.

The MATLAB command

x = exp(1);

creates a single number whose value is e and stores it in the variable whose name is x. This is in fact a 1×1
array. The command

y = [0,1,2,3,4,5];
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creates the 1×6 array whose entries are equally spaced numbers between 0 and 5 and stores it in the variable
y. A quicker way of typing this is y = [0:5]. (More generally, the command [a:b:c] gives a row vector
of numbers from a to c with spacing b. If the spacing b is required to be 1, then it can be left out of the
specification of the vector.) Matrices can change dimension, for example if x and y are created as above,
then the command

y = [y,x]

produces the response

y =

Columns 1 through 7

0 1.0000 2.0000 3.0000 4.0000 5.0000 2.7183

In the example above we created a row vector by separating the numbers by commas. To get a column
vector of numbers you separate them by semi-colons, e.g. the command z = [1;2;3;4;5]; creates a 5× 1
array of equally spaced numbers between 1 and 5.

Matrices of higher dimension are created by analogous arguments. For example, the command

A = [[1,2,3];[4,5,6];[7,8,10]];

puts the matrix  1 2 3
4 5 6
7 8 10


into the variable A. Complicated matrices can be built up from simpler ones, for example four matrices A1,
A2, A3, A4 of size n×m can be combined to produce a 2n× 2m matrix A = [[A1,A2];[A3,A4]].

On the other hand, if an n ×m matrix A has been created then we can easily extract various parts of
it. To extract the second column of A type A(:,2) and to extract the third row type A(3,:). Here is an
extract of a MATLAB session in which various parts of the matrix A created above are extracted.

>>A(:,2) % all rows, column 2

ans =

2
5
8

>>A([1,2],[2,3]) % rows 1 and 2, columns 2 and 3

ans =

2 3
5 6

Vectors and matrices can be created in your MATLAB workspace by various methods. For example there
are many built-in commands: zeros(n,m) and ones(n,m) produces n×m matrices of zeros and ones. The
command rand(n,m) produces a random n×m matrix. The command eye(n,n) produces the n×n identity
matrix with ones on its diagonal (from top left to bottom right) and zeros elsewhere. Try these out for some
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values of n and m. Type help command for each of these commands and read the MATLAB manual page for
each of them. Don’t worry if you don’t understand all about random numbers.

If the entries of a vector or matrix are given by a formula then there is a simple way to create them,
called a for loop. For example, if we wish to create a vector x whose entries are the squares of the natural
numbers from 1 to 10 we can use the command for i=1:10; x(i) = i^2; end. We shall return to for
loops in tutorial 3.

2.2 Simple Functions

If A and B are two matrices (which must be of the same size) then A+B gives a new matrix, each element of
which is the sum of the corresponding elements of A and B. A-B is defined similarly. 5*A multiplies each
element of A by 5. The pointwise product A.*B produces a new matrix, the entries of which are the products
of the corresponding entries of A and B. Note that the . before the * indicates that the multiplication is
done pointwise (or elementwise). Similarly the pointwise quotient is A./B.

Some of you may also know about the matrix product AB which is defined even when A and B are not
of the same size, as long as the number of columns of A is the same as the number of rows of B. This (quite
different) product is obtained in MATLAB with the command A*B, but we will not discuss it further here.
Please remember, therefore, that if you really want to compute the pointwise product or quotient, leaving
out the . could be catastrophic, as the machine may well compute a wrong answer without giving you a
warning.

Every function can be applied to a whole matrix (or more generally array) of numbers. The result will
be an array of the same size, each element of which is the the result of the function in question applied
to the corresponding element of the array. For example, with y as created in the previous subsection, the
command

z = log(y)

produces the response

Warning: Log of zero.

z =

Columns 1 through 7

-Inf 0 0.6931 1.0986 1.3863 1.6094 1.0000

Note that log is the built-in function which computes loge (or ln) and that the resulting vector y above
is the result of applying loge to each entry of the previous vector y. MATLAB handles an infinite answer by
recording it as Inf and producing a warning. (Why is it -Inf?) Note that these calculations verify that
loge(1) = 0 and loge(e) = 1.

At ~masigg/ma20014/matlab/manual/tutorial2a.m is a short MATLAB script illustrating some elemen-
tary arithmetic. You should copy it and run it.

2.3 Graphics

The simplest plotting command is plot. If x and y are any two vectors of the same size, then the command

plot(x,y,’r*’)

plots the components of y in turn against the components of x, using red asterisks. There are several
variations of this command. Type help plot or doc plot or run demo --> Graphics --> Line plotting
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to find out more about this command. Other simple plotting commands, for which you should consult the
help pages or see demo --> Graphics --> 2-D Plots, include fplot, bar, hist, stem, stairs and
pie.

The following script file (available at ~masigg/ma20014/matlab/manual/tutorial2b.m) produces three
simple plots. The first is a static plot comparing the function sin(x) with its approximation x− x3/3!. The
second is a static plot producing a helix (spiral). The third plots this dynamically using the comet commnd.
The plots come up in the Figure window. They can be printed or copied and pasted into another document
if required.

% script file tutorial2b.m
% program to explore the use of some simple plotting commands

% First example discusses a cubic approximation to sin(x)

x = pi*([0:100]/100); % row vector of 101 equally spaced
% points between 0 and pi

hold off % means that the next plot will be
% drawn on a clean set of axes

plot(x,sin(x),’r*’) % plots sin(x) against x using
% red *’s

hold on % next plot will be drawn on top
% of the present one

plot(x,(x-x.^3/factorial(3)),’bo’) % plots values of x - (x^3)/3!
% against x using blue o’s

pause % causes execution to stop until you next hit
% any key (useful for admiring intermediate plots)

% second example draws a 3D helix composed of the points
% (sin(t),cos(t),t) for t ranging over
% 301 equally spaced points between 0 and 100

t = [0:300]/3;

hold off

plot3(sin(t),cos(t),t,’r*’,sin(t),cos(t),t,’g-’)

pause

% now lets do an animated plot of this set of values
% using the command ‘‘comet’’

comet3(sin(t),cos(t),t)
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Finally the script tutorial2c.m demonstrates another animated plot. It plots the waves given by the
functions

sin(x− t) , cos(x− t)

for values of x between 0 and 8π and for time t = 0, 1, 2, ..., 100. Here a for loop is used to advance time in
an obvious way. Note the very important drawnow command, which causes the plot to be put on the screen
at each time step, thus allowing the animation to be seen.

% script file tutorial2c.m
% animated plot showing the behaviour of the
% waves sin(x-t) and cos(x-t) for 201 equally spaced points in the range
% 0 <= x <= 2*pi
% and t ranging from 0 to 10 in steps of 0.1

x = 8*pi*[0:200]/200; % 201 equally spaced points between
% 0 and 8*pi

for t = 0:1:100 % start of for loop
% plot will be drawn for t=0,1,2,...,100

drawnow % is needed to ensure that animated plots
% are drawn

plot(x,sin(x-t),’b-’) % plot sin wave

hold on % ensures next plot drawn on the same axis
% as first

plot(x,cos(x-t),’r--’) % plot cosine wave

hold off % ensures next plot is drawn on fresh
% axes

end % end of for t loop

2.4 Exercises for Chapter 2

1. Create the 3 × 3 matrix whose entries in the first row and first column are all equal to 1 and all the
other entries are equal to e.

2. Plot the function exp(−x) sin(8x) for 0 ≤ x ≤ 2π.

3. Generate a row vector x of even integers, each component x(i) of which lies in the range 0 ≤ x(i) ≤ 10.
Compare the effects of the operations (i) sin(x), (ii) x.^2, (iii) x.^(-1).

4. Generate the 1× 10 row vector v whose i-th component is cos(iπ/4).

5. Modify the script file tutorial2c.m in the editor/debugger window to do an animated plot of the
functions sin(4(x− t)) and 4 cos(x− t) for x between 0 and 8π and t from 0 to 10. Experiment with
different line colours and types.

10



3 Third Tutorial: Loops and Logical Branching

In most of the scripts we have seen so far the commands are executed consecutively, working down the script
from the top to the bottom. In real programs you may want to repeat the same command several times,
or perform different calculations in different situations. Statements that tell the computer which command
is to be executed next are fundamental building blocks for computer programs, and are called control-flow
statements. In this tutorial you will learn how to use three control-flow statements for MATLAB programs,
• the for loop, for repeating a statement or group of statements a fixed number of times,
• the while loop, for repeating a statement or group of statements an indefinite number of times while a

condition remains true, and
• the if-elseif-else statement, which tells the computer to perform different calculations in different

situations.

3.1 The for loop

A simple form of such a loop is

for index = 1:n
statements
end

The statements are executed n times with index = 1, 2, 3, . . . , n. Here n is a number that must be fixed
before we enter the loop. More generally, the loop may start with the line for index = j:m:k. Usually j,m
and k are integers and k-j is divisible by m. The statements are executed repeatedly starting from index
= j with index incremented by m each time and continuing until index = k (which is the last time round
the loop). If m = 1, we can replace j:m:k in the first line of the loop by j:k. Even more generally, we can
begin with the line

for index = v

where v is a vector. The statements inside the loop are repeatedly executed with index set to each of the
elements of v in turn. Type help for and read the manual page for the for loop.

As an example, consider the computation of the series

1− 1/2 + 1/3− 1/4 + 1/5− . . . (3.1)

This is implemented in the script file tutorial3a.m:

% script tutorial3a.m
% computes the sum of the series
%
% 1 - 1/2 + 1/3 - 1/4 + ...
%
N = input(’type the number of terms to be added up: ’)

% asks the user to provide a value for N

sign = 1; % initialise the sign for the term
sum_series = 0; % initialise the sum of the series

for n = 1:N
sum_series = sum_series + sign/n;
sign = -sign; % changes sign for alternating series
end
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sum_series % prints out the sum of the series to N terms

When you have worked with MATLAB for a while you will find that program speeds can be improved by
using (if possible) vector or matrix operations instead of loops. For example, to sum the series (3.1) to an
even number of terms N, we can use the following very short script.

% script tutorial3b.m
% computes the sum of the series
%
% 1 - 1/2 + 1/3 - 1/4 + ...
%
% to an even number of terms
% using vector operations

N = input(’type the number of terms N (with N even): ’)

sum_series = sum(1./(1:2:N-1) - 1./(2:2:N))

Exercise: Make sure you understand how this program works. Use help sum.
To compare the speed of the programs tutorial3a.m and tutorial3b.m, we can add the commands

tic and toc (see the manual pages) at the beginning and end of each of the scripts. I did this and found
the following elapsed times (in seconds), which illustrates the benefit in terms of speed of avoiding the loops
if possible.

tutorial3a tutorial3b

N = 10^4 4.4 2.9
N = 10^6 83.3 8.1

We have seen how to use a for loop to create a vector whose entries are given by a formula. If the
entries of a matrix are given by a formula then we can use nested for loops to create it. For example the
Hilbert matrix H is an n× n matrix whose entry in the ith row and jth column is 1/(i+ j − 1). If a value
has been assigned to n, we can write

for i = 1:n
for j = 1:n
H(i,j) = 1/(i+j-1);

end % for j
end % for i

I have added the comment after the end statements to show which loop is ended. This is useful when
there are several nested loops.

For the MATLAB beginner, double for loops are the easiest way to create the matrix H. However they are
actually very inefficient in terms of computing time. The reason for this is quite technical; it’s to do with
the way each MATLAB command is interpreted into machine instructions. As you get better at using MATLAB
you will find faster ways of creating matrices which are given by a formula.

Nevertheless it is very important for you to gain experience with nested loops here, since in other
languages they are not slow and are the preferred method for doing many array operations.
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3.2 The while loop

The general form of the while statement is

while (condition)
statements
end

The condition is a logical relation and the statements are executed repeatedly while the condition
remains true. The condition is tested each time before the statements are repeated. It must eventually
become false after a finite number of steps, or the program will never terminate.
Example. Suppose we have invested some money in a fund which pays 5% (compound) interest per year,
and we would like to know how long it takes for the value of the investment to double. Indeed we would
like to obtain a statement of the account for each year until the balance is doubled. We cannot use a for
loop in this case, because we do not know beforehand how long this will take, so we cannot assign a value
for the number of iterations on entering the loop. Instead, we must use a while loop.

%script tutorial3c.m

format bank % output with 2 dec places
invest = input(’type initial investment: ’)

r = 0.05; % rate of interest
bal = invest; % initial balance
year = 0; % initial year
disp(’ Year Balance’) % header for output

% (You can experiment with this)
while (bal < 2*invest) % repeat while balance is

% less than twice the investment,
% and stop when balance exceeds this

bal = bal + r*bal; % update bal
year = year + 1; % update year
disp([year,bal])

end

3.3 The if-elseif-else statement

A simple form of the if statement is
if (condition)
statements
end

Here condition and statements are the same as in the while loop, but in this case the statements are
executed only once if condition is true and are not executed at all if condition is false. For example the
following script divides 1 by i, provided i is non-zero; otherwise, j is not assigned a value.

if (i ~= 0)
j=1/i;
end

The symbol ~= is a relational operator and stands for is not equal to. Other relational operators include ==,
<=, >=, etc. Type help ops to find out about these. Note the difference between the relational operator ==
and the usual use of the symbol =, which assigns a value to a variable.
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The if-else statement allows us to choose between two courses of action. For example the following
script reads in a number and prints out a message to say if it is negative or non-negative.

x = input(’ Type x : ’)

if (x<0)
disp(’x is negative’)

else
disp(’x is non-negative’)

end

Note that indenting of statements inside loops and if statements helps make your program more readable.
Going further, adding elseif allows us to choose between a number of possible courses of action.

x = input(’ Type x : ’)

if (x<0)
disp(’x is negative’)

elseif (x>0)
disp(’x is positive’)

else
disp(’x is zero’)

end

A more general form is

if (condition1)
statementsA

elseif (condition2)
statementsB

elseif (condition3)
statementsC

...
else

statementsE
end

This is sometimes called an elseif ladder. Its effect is the following.

• First condition1 is tested. If it is true then statementsA are executed and execution then skips to
the next statement after end.

• If condition1 is false, then condition2 is tested. If it is true, then statementsB are executed and
execution skips to the next statement after end.

• Continuing in this way, all the conditions appearing in elseif lines are tested until one is true. If
none is true, then statementsE are executed.

There can be any number of elseifs but only one else.

Example. Suppose a bank offers annual interest of 3% on balances of less than £5,000, 3.25% on balances
of £5,000 or more but less than £10,000, and 3.5% for balances of £10,000 or more. The following program
calculates an investor’s new balance after one year.
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% script tutorial3d.m

bal = input(’type balance: ’)

if (bal < 5000)
rate = 0.03;
elseif (bal < 10000)
rate = 0.0325;
else
rate = 0.035;
end

disp([’new balance is : ’,num2str((1+rate)*bal)])

The logical relations that make up the condition in a while or if statement can quite complicated.
Simple relations can be converted into more complex ones using the three logical operators & (and), | (or)
and ~ (not). For example the quadratic equation ax2 + bx + c = 0 has two equal roots, −b/(2a), provided
that b2 − 4ac = 0 and a 6= 0. This can be programmed as:

if((b^2 - 4*a*c == 0)&(a~=0))
x = - b/(2*a);

end

3.4 Exercises for Chapter 3

In the following exercises you should write script programs for each of the tasks, i.e. you should create
files (using the MATLAB editor/debugger) which are saved (by clicking on Files --> Save As) in M -files
(with the .m extension). These should contain the sequence of MATLAB commands necessary to do the tasks
required.

1. Write a simple loop to list the squares of the first 10 integers.

2. Compute 20!. Devise two different ways, one with a for loop and one without. Find out about the
MATLAB built-in function factorial and use it to check your answers. You might wish to make use of
the MATLAB command prod.

3. Using the script tutorial3a.m, show by experiment that the series (3.1) sums to loge(2).

4. For a series of terms with alternating sign of the form
∑∞

i=1(−1)n+1an, where an ≥ 0, let

L =
∞∑
n=1

(−1)n+1an, SN =
N∑
n=1

(−1)n+1an.

There is a theorem that says that (under certain additional conditions) the absolute value of the error
incurred in summing the series up to a finite number of terms is no more than the absolute value of
the first term not included in the sum. With the above notation this means that, for any integer N ,

|L− SN | ≤ aN+1.

Investigate the correctness of this theorem for the series (3.1) by checking it for a number of (large)
values of N . (You will also need the MATLAB command abs.)
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5. Using a simple while loop, write a script to sum the series 1 + 2 + 3 + ... such that the sum is as
large as possible without exceeding 100. The program should display how many terms are used in the
sum.

6. Write a script that takes as input an integer n and creates the n×n matrix A with (i, j)th component
given by A(i, j) = sin(1/(i+ j − 1)).

7. Here is a guessing game. Use MATLAB to generate a random integer between 1 and 10. This can be
done with the command:

matnum = floor(10*rand + 1);

(Use the manual pages to make sure you understand this command.)

You have to guess the random integer without printing it out. Write a script that computes the
random integer as above and that also takes as input your guess and produces as output a message
which tells you if your guess was correct or not, and if not whether your guess was too low or too high.

8. Modify the script tutorial3b.m to compute the sum of the series (3.1) for any number of terms (even
or odd). Use an if statement.

9. Write a script that takes as input three numbers a, b and c and prints out either the solutions of the
quadratic equation ax2 + bx + c = 0, when these solutions are real, or a message indicating that the
solutions are not real.

4 Fourth Tutorial: scripts and functions

As you have seen, there are two ways of using MATLAB: (i) interactively, where you type a series of commands
at the command line, and (ii) by writing programs in which instructions are saved in an M -file, a file with
the .m extension. There are two types of MATLAB programs: scripts and functions. A script file is run by
typing its name (without the .m extension) to the MATLAB prompt. We have called (run) built-in functions
like exp by writing e.g. y = exp(1). In this tutorial you will learn
• how to write new functions,
• how to call (or run) them,
• how scripts and functions differ in their construction, and
• how they differ in their handling of variables.

4.1 The MATLAB workspace

You have seen by now that when you use MATLAB you create variables in your workspace. At any stage of a
MATLAB session you can type

who

to find out what variables are in your current workspace. A variation on this is the command whos which
gives more information. Look up the help pages for these commands.

Variables that are lying around in your current workspace are typically called global variables. When
you type a command to the >> prompt that involves any symbol, MATLAB first looks to see whether this
symbol is the name of a variable in your current workspace. If so, it uses the current value of that variable
in the computation. If not, it looks to see whether the symbol is the name of a built-in constant, in which
case it uses the built-in value. If not, it looks to see whether the symbol is a script or function name, in
which case it runs it. Finally, if the symbol is none of these things, an error message will usually result.

For example, if we start a new MATLAB session and to the prompt we type pi, the response is
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ans =
3.1416

and in response to the command 3*pi, we get

ans =
9.4248

However, if we are feeling perverse, we may choose to use the symbol pi as the name of a new variable,
with a different value. For example we may type to the prompt: pi = 3. After doing this the response to
the command 3*pi will be

ans =
9

On the other hand if we type (for example by accident) pii, we get the response:

??? Undefined function or variable ’pii’.

This illustrates that whenever you type a MATLAB command interactively, all your current variables are
visible and may be operated on by the command that you type.

4.2 Script files

All the MATLAB programs that I have written for you so far have been scripts. These consist simply of a
sequence of MATLAB commands that are saved to a file. When the script is run the effect is exactly the same
as is achieved by simply typing the commands interactively to the MATLAB prompt.

These commands operate on the variables in your current workspace in the same way as they would if
you typed them interactively.

Script files can also create new variables which may be left lying around in your workspace after the
script has finished running.

4.3 Function files

By using functions you can create much more flexible MATLAB programs than would be possible just with
scripts. In a function file you specify an input or inputs and generate an output or outputs. If you call a
function from the MATLAB prompt then the input(s) and output(s) are part of your MATLAB workspace, but
any other variables that are created inside the function itself are local to the function and will not be seen
from your MATLAB workspace. This is useful in many ways; in particular it reduces the build-up of variables
in your workspace and aids in splitting up a complex task into simpler independent tasks.

All programming in high-level languages makes use of such splitting techniques.
Here is an example of a function file called bell.m, which calculates the bell-shaped function f =

exp(−ax2/2)/
√

2π for given scalar inputs x and a.

% function bell.m

function f = bell(x,a)
f = exp(-0.5*a*(x^2))/sqrt(2*pi);

One of the important rules for functions is that they must be saved to a file which has the same name
as the name of the function. Thus the above function should be saved to the file bell.m.
To run this, for example, type

bell(1,2)

The response is
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ans =
0.1468

This is less useful than it might be. If, for example, we want to draw a plot of this function it would be
much better if we could feed a vector of x values to the function bell and get out a whole vector of function
values. A small change to the definition allows this:

% function vbell.m

function f = vbell(x,a)
f = exp(-0.5*a*(x.^2))/sqrt(2*pi);

The only difference between this and bell.m is that by employing the elementwise exponentiation .^, the
variable x can be a vector and vbell produces a vector output. The output is obtained by typing (either
interactively or inside a script):

vbell(x,a)

which gives a vector of values of the bell function evaluated at each of the entries of x. An application of
this to plot the bell function is contained in the following script:

%script tutorial4a.m
a = 1;
x = (0:1000)/100; % equally spaced points between 0 and 10
plot(x,vbell(x,a),’b*’)

The effect will be to plot the function bell at 1001 equally spaced points between 0 and 10 and with a set
to be 1.

Copy bell.m, vbell.m and tutorial4a.m. Run tutorial4a and afterwards type whos. Note that
the variable f which appears in the function vbell is local to that function and does not appear in your
workspace.

What happens if you replace the call to vbell inside the plot command in tutorial4a.m with a call to
bell?

4.4 The general form of a function file

Functions are incredibly useful and need considerable care when they are implemented.
A function file always begins with a function definition line of the form

function [output variables] = functionname(input variables)

Here functionname must be the same as filename, where filename.m is the name of the file in which the
function is stored. The output variables are variables whose values may be determined by the function,
and which may depend on the variables in the list of input variables.

To use the above function (e.g. in a script or interactively) you would type

[my output variables] = functionname(my input variables)

where my input variables are the actual input variables which you want to apply the function to and
my output variables are the names of the variables where you would like to put the result.

There are a number of rules about constructing functions that I shall not attempt to reproduce here,
but authors of advanced functions need to be aware of them. Type help function or doc function for
more information.
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Perhaps the best way to learn about functions is to look at functions that other people have written.
Many (but not all) of the functions provided in MATLAB are given as M -files that you can copy and use for
your own purposes. Try typing the command

type factorial

to see the listing of the MATLAB-provided function that produces the factorial of an integer. Repeat this with
the functions why, pascal and roots. There are many others that you can look at.

Many contributed functions that can be freely copied are also to be found at the MATLAB website
http://www.mathworks.com.

4.5 Exercises for Chapter 4

1. Write and test a function twice(x) that doubles the value of its input variable (i.e. the statement x
= twice(x) should double the value of x).

2. Write and test a function swop(x,y) that swops the values of its input variables, (i.e. the statement
[x,y] = swop(x,y) should swop the values of x and y).

3. Write your own MATLAB function to compute the exponential function using the Taylor series expansion:

ex = 1 + x+
x2

2!
+
x3

3!
+ . . .

Remember to give your function a name that is different from the MATLAB built-in function exp.
Make your own decision about when to stop adding more terms from the expansion. Compare the
performance of the function that you have written with the built-in function exp.

4. If a is a positive number, then it is known that the sequence yk, k = 0, 1, 2, . . ., generated iteratively
by

y0 = a, yk+1 = (yk + a/yk)/2 , k = 0, 1, . . . ,

has the property that yk converges to (i.e. gets closer to)
√
a as k increases. (In fact this is Newton’s

method for finding the square root of a number, which you may have seen before.)

Use this given iteration to design your own function for computing the square root of any number and
test it against the MATLAB built-in function sqrt.

(In fact many computers and calculators use such an iteration in their built-in sqrt functions.)

5 Fifth Tutorial: A Population Dynamics Example

In this tutorial you will use the skills you have developed to investigate a program on Cellular Automata.

5.1 Cellular Automata

Cellular automata (CA) provide a simplified way of modelling physical, biological or social phenomena. In a
CA model the universe is divided up into small cells. Each cell can take any one of a finite number of states
(e.g. live or dead, or perhaps something more complicated). A single generation is determined by assigning
a single state to each of the cells. Then a strict (and often quite simple) set of rules is used to determine how
a given generation evolves into the next one. The model then consists of repeated iterative application of the
rules to obtain each successive generation from the previous one. In principle this iteration can go on forever;
in computer implementations it goes on for a finite (possibly quite large) number of generations. There is
much interest in CA models among mathematicians and applied scientists such as ecologists or biologists.
This arises from the often observed fact that a simple model with relatively few states and relatively simple
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rules can often produce very realistic and complicated behaviour. There is also a huge interest amongst
computer scientists, especially those concerned with the theory of artificial intelligence. Let us consider a
flat square universe, divided up into an n×n array of small cells, denoted (i, j), for i, j = 1, . . . , n. The states
of these cells may be represented as the elements A(i, j) of a matrix A, for i, j = 1, . . . , n. The immediate
neighbours of cell (i, j) are defined to be those cells that touch it (excluding cell (i, j) itself). So an interior
cell (i, j) (where i = 2, . . . , n − 1 and j = 2, . . . , n − 1) has immediate neighbours (i − 1, j − 1), (i − 1, j),
(i− 1, j + 1), (i, j − 1), (i, j + 1), (i+ 1, j − 1), (i+ 1, j) and (i+ 1, j + 1) (see Fig. 1). With this universe
we can consider different types of states for the cells and different sets of rules for determining the model.

j − 1 j j + 1

i− 1
i

i+ 1

?

?

?

?

?

?

?

?

Figure 1: Immediate neighbours of an interior cell (i, j)
.

5.2 A simple example

Let us suppose that each cell can occupy only two states (we shall say alive or dead, but other interpretations
are of course possible). We may represent these by setting A(i, j) = 1 when the cell (i, j) is alive and
A(i, j) = 0 when it is dead. To decide how each generation is determined from the previous one, let us take
the simple example of majority vote:

• A live cell dies in the next generation if more than 4 of its immediate neighbours at the present
generation are dead; otherwise it stays alive.

• A dead cell comes to life in the next generation if more than 4 of its immediate neighbours at the
present generation are alive; otherwise it stays dead.

Since the computer is finite, our universe has to end somewhere. To apply these rules consistently, we need
to define the states of the cells that lie just outside the boundary of the universe. For the purpose of this
example, we shall say that

• All cells outside the boundary of our universe are assumed to be dead.

This means that we can effectively extend the boundary of our universe to include cells (0, j), (n + 1, j),
j = 0, . . . , n+ 1, and (i, 0), (i, n+ 1), i = 0, . . . , n+ 1, all of which are defined to be dead. To compute the
next generation from any given one, we can then proceed as follows:

• For each cell (i, j), i, j = 1, . . . , n, compute the number of live neighbours and store these in another
matrix, say L(i, j). Take particular care to get the computation correct at the edges of the universe.

• Then, using the information in the matrices A and L, the next generation of live and dead cells can be
computed by applying the two rules above. Since each generation is computed only from the previous
one, the new generation should be computed in a separate matrix, say ANEW , and the old A should
only be overwritten with ANEW when all of ANEW has been found.

Many successive generations can be computed by using a suitable loop.
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5.3 A programming exercise

Suppose we are asked to write a program to implement and visualise 1000 generations of the population model
in the previous subsection, starting from a random initial state of ones and zeros. A suitable pseudocode
would be:

1. Read in n, the number of cells in each direction.

2. Create an initial n× n random distribution A containing only 0’s and 1’s.

3. Visualise A.

4. Initialise ANEW and L to be matrices of zeros of the same size as A (it turns out to be convenient,
but not essential, to define ANEW and L to be n+ 2× n+ 2 matrices - see below).

5. Then enter a loop to compute successive generations. (The variable gen no will count the number of
generations which have been computed.)

• for gen no = 1 : 1000

(a) Implement the boundary condition by adding a border of zeros to A:

A =


0 ...... 0
. .
. A .
. .
0 ...... 0

 .
A is then an (n+ 2)× (n+ 2) matrix.

(b) For i, j = 2, ..., n + 1, compute the number of live cells that are nearest neighbours of cell (i, j).
Put it in the matrix entry L(i, j).

(c) To find ANEW , initialise by setting ANEW = A. Then change some entries of ANEW as
appropriate:

(d) For i = 2, ..., n+ 1 and j = 2, ..., n+ 1,

• If A(i, j) = 1 and L(i, j) < 4 set ANEW (i, j) = 0;
• If A(i, j) = 0 and L(i, j) > 4 set ANEW (i, j) = 1.

(e) Create a new n×nmatrixA that consists of the interior values of ANEW (i, j), for i, j = 2, . . . n+1.

(f) Visualise A.

• end of for loop

The MATLAB code for this pseudocode can be found at ~masigg/ma20014/matlab/manual/majority.m.
In order to visualise each generation, a small MATLAB function lookat.m is also provided. It draws a blue dot
for every live cell and leaves the dead ones blank. It incorporates the drawnow command and so supports
animated plots. It labels the plot with the generation number (gen_no), which is one of the inputs to
lookat.m. Note that lookat visualises the matrix A by plotting the j index on the vertical axis and i on
the horizontal, with the origin at the bottom left-hand corner.

Note also that the program majority.m has used the dynamic storage facility in MATLAB extensively. In
the program the matrix A switches from being n× n to (n+ 2)× (n+ 2) and back again during each cycle
of the for loop. This dynamic storage facility is not present in all programming languages and is a feature
which can be used here to simplify the coding substantially.
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5.4 Exercises for Chapter 5

1. Play with the programs majority.m and lookat.m until you understand them fully. Remember that
by removing a semicolon at the end of a line and adding a pause statement you can see the result of
each computation line by line. This will help you understand the program, but note that printing the
matrix A on the screen will be helpful only for small values of n. Here are some further hints to help
you gain some understanding.

2. Look up the help page for the command round. Explain to yourself how the initial random distribution
of 1’s and 0’s is computed in majority.m.

3. Look up the help page for the command size. By putting the line size(A);pause; at appropriate
places in the program majority.m, illustrate to yourself the dynamic storage mentioned above.

4. For small n (e.g. n = 4) print out the matrix A and the corresponding matrix L. Check manually that
the program is doing the correct computation.

5. Perform similar investigative work on lookat.m. What happens if the drawnow command is removed?
Experiment with different plot colours and point markers. More detailed information on plot can be
got by typing doc plot.

6 Sixth Tutorial: Further Experiments on Population Dynamics

This tutorial extends tutorial 5 from investigation to modification of the CA program.

1. Run the program majority.m a few times. Try different values of n and different random initial states.
You should observe that a very irregular random initial state is smoothed out by the birth and death
rules, and eventually arrives at a pattern of blue and white regions with quite smooth interfaces between
them. (Some discussion of this can be found in What’s happening in the Mathematical Sciences, by
B. Cipra, American Mathematical Society, Providence, 1996, pages 70-81.)

2. Rewrite the program majority.m so that it reads in an integer p as a variable and then replaces the
majority rule above with a variable rule:

• A live cell dies in the next generation only if more than p of its immediate neighbours at the
present generation are dead; otherwise it stays alive.

• A dead cell comes to life in the next generation only if more than p of its immediate neighbours
at the present generation are alive; otherwise it stays dead.

Perform experiments with your program to see how the choice of p changes the outcome.

3. Modify the program majority.m to model the case where all cells outside the boundary of the universe
are assumed to be live instead of dead.

Think of further generalisations of the rules and add them to your program. The next item is one
suggestion.

4. Consider a modified population model where the fate of a cell is determined not just by its 8 immediate
neighbours but also by their immediate neighbours, (excluding the initial cell, of course), a total of
24 cells in all. Call these cells the near-immediate neighbours and replace the majority rule by the
following.

• A live cell dies in the next generation only if more than 12 of its near-immediate neighbours at
the present generation are dead; otherwise it stays alive.
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• A dead cell comes to life in the next generation only if more than 12 of its near-immediate
neighbours at the present generation are alive; otherwise it stays dead.

Rewrite the program to implement and visualise this model.

5. Can you devise a alternative version of the program majority.m where the matrices A, L and ANEW
are always n× n? Write such a program and test it by comparing the results with those produced by
majority.m.

7 The Matlab Symbolic Math Toolbox

This tutorial investigates the symbolic algebra capabilities of MATLAB. You will learn
• how to use MATLAB to solve algebraic equations and systems of equations,
• an easy way to plot graphs and surfaces given by formulae,
• how to use MATLAB to differentiate and integrate, and
• how to use MATLAB to solve differential equations.

Up till now all the computation we have done has been numerical or floating point computation. Numbers
which do not have a finite decimal expansion are approximated by finite decimal expansions, creating a
(small) error which remains throughout the computation. This error is sometimes referred to as rounding
error. An example of rounding error was given in Example 2 of Chapter 1 of the MATLAB manual.

Although much computation done in science and technology is of floating point type, there also exist
some computational systems that do not suffer from rounding error. Mathematical formulae, equations
etc are manipulated symbolically without approximation. MATLAB provides a toolbox (the Symbolic Math
Toolbox) that enables this type of computation. This is not available automatically with MATLAB - usually
it has to be purchased separately. The UNIX MATLAB system on BUCS has a large number of Symbolic
Math toolboxes available for use. These toolboxes are based on the Maple symbolic manipulator (see
http://www.maple.com). Maple is also available as a stand-alone package on BUCS UNIX machines (type
xmaple to the $ prompt).

We choose to introduce this type of computation via the MATLAB Symbolic Math Toolbox because students
will already be familiar with the MATLAB computational environment and hence should be able to progress
more quickly than in a completely new environment. The student who feels confident with the MATLAB
Symbolic Math Toolbox is invited to progress on to working on Maple proper in order to gain further
experience with this type of computation.

7.1 Exercises on Chapter 7

1. Copy the file ~masigg/ma20014/matlab/manual/tutorial7.m to your workspace and run it.

2. Type demo to the >> prompt, double-click in the Toolboxes item and run the demo on the Symbolic
Math Toolbox. It might take some time.

3. Read the help pages for the commands solve and ezplot. Let f be the cubic f(x) = x3 +6x2 +9x+2.
Solve the equation f(x) = 0, and plot a graph of f . It should be clear from the graph that the cubic
has three real roots.

4. Find out how solve can be used to solve simultaneous equations. Hence solve the three simultaneous
equations x + 2y + 3z = 1, 4x + 5y + 6z = 2, 7x + 8y + 8z = 3. What happens if the last equation
is changed to 7x + 8y + 9z = 3? What happens if it is changed again to 7x + 8y + 9z = 4? Can you
explain the results?

23



5. Find out how to use the symbolic differentiation command diff and the substitution command subs.
(NB: there is also a diff command in vanilla MATLAB; you must therefore type help sym/diff.)
Consider the function f(x) = sin(tan(x)) − tan(sin(x)). Find the derivatives of f , dif(x)/dxi, for
i = 1, . . . , 6. Evaluate f and each of its derivatives at x = 0. What do you find? Use the command
ezplot to draw a graph of this function. Does the graph support your computations?

6. Look up the help page for the integrator int. Find the indefinite integral of the function
√

tan(x).
Use the command pretty to make a more readable output.

7. Read the help pages for the differential equation solver dsolve. Use it to solve the differential equation
d2y/dt2 + y = 0 for y = y(t). The solution will contain two arbitrary constants C1 and C2. Find the
particular solution of this differential equation which satisfies y = 1 and dy/dt = 1 at t = 0. Plot a
graph of the solution you have found. Repeat the exercise with the differential equation replaced by
d2y/dt2 + 100y = 0.

8. Read the manual page for ezsurf. Plot the function 1/
√
x2 + y2.

A Appendix: Solutions to selected exercises

All the programs mentioned below can be found in the directory ~masigg/ma20014/matlab/manual and
copied using the UNIX command cp.

Chapter 3

7. Program in guess.m.

9. Program in myquadratic.m

Chapter 4

1. Solution in twice.m

To compute twice 2, for example, type twice(2).

2. Solution in swop.m.

To swop the the order of the numbers 1 and π, type [a1,a2] = swop(1,pi). The swopped numbers
will be loaded into the variables a1 and a2.

3. Solution in myexp.m.

To compute an approximation to e4, type myexp(4). This function will only agree with the MATLAB
built-in function exp up to about 7 decimal places. What happens if we compare exp(-20) with
myexp(-20)?

4. Solution in mysqrt.m.

To compute an approximation to
√
π, type mysqrt(pi). Note that the program also takes care of the

cases a < 0 (when there is no real answer) and a = 0 (when the iteration fails but the answer is 0).
The MATLAB commands error and break are used in the handling of these cases.
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B Appendix: Glossary of UNIX commands

Note that the spaces (marked with a  ) in the statements of these commands are crucial. You will get errors
if you leave them out.

Creating a file: Type touch filename to create the file filename. If this file already exists then the
effect of the command will be to change the time when it was last updated to the present time. (You
can also create a file using an editor such as pico; type pico filename.)

Copying a file: Type cp ~masigg/ma20014/matlab/manual/tutorial1.m ~ma**** to copy the file named
tutorial1.m in masigg’s directory ma20014 to the home directory of ma****.
If you are in ~masigg/ma20014/matlab/manual, just type cp tutorial1.m ~ma****.

Listing a file: Type more tutorial1.m to list the contents of the file tutorial1.m on the screen. You
must be sitting in the directory in which tutorial1.m is stored. If not you must type the full name
of the file, (e.g. more ~masigg/ma20014/matlab/manual/tutorial1.m).

Printing a file: Type lwf tutorial1.m | lpr -Pll to print out tutorial1.m on the library laser printer.

Removing a file: Type rm rubbish.m to remove the file rubbish.m. (Make sure you get it right, as you
will not get a chance to change your mind after removing it!)

Finding what directory you are in: Type pwd to find your current working directory.

Listing the contents of a directory: Type ls to get the names of all the files in the current directory.
Type ls -l to get a listing of the files together with their read, write and execute permissions.

Creating a directory: Type mkdir directoryname to create a subdirectory directoryname of the cur-
rent directory. (A directory in UNIX is analogous to a folder in Windows/DOS.)

Changing directory: Type cd ~masigg to change to the home directory of user masigg. To change to
directory ma20014, a subdirectory of masigg’s home directory, type cd ~masigg/ma20014. Type cd
to change to your own home directory. If you’re in your home directory, type cd subdir1 to change
to subdir1, a subdirectory of your home directory.

Changing the permissions on a file or directory: Type chmod u+x filename to add execute (x) per-
mission for the owner (u). Other versions of the same command can be constructed by replacing u
by g (group) or o (others) or replacing x by r (read) or w (write). Change + to - to take away the
permission rather than add it.
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C Appendix: Some useful MATLAB commands

On-line help
help lists topics on which help is available
helpwin opens the interactive help window
helpdesk opens the web-browser-based help facility
help topic provides help on topic
lookfor string lists help topics containing string
demo runs the demo program

Workspace information and control
who lists variables currently in the workspace
whos as above, giving their size
what lists M -files on the disk
clear clears the workspace, removing all variables
clear all clears all variables and functions from the workspace

Command window control
clc clears command window, command history is lost
home same as clc
↑ recall previous command

Graphics
plot plots a graph
xlabel(’x’) labels x axis x
ylabel(’y’) labels y axis y
title(’title’) gives a figure a title title
axis fixes figure axes
clf clears figure from figure window
cla clears figure from figure window, leaving axes

Controlling program execution
break terminates execution of a for or while loop
error(’message’) aborts execution, displays message on screen
return exit from function, return to invoking program

Input from and output to terminal
x=input(’type x:’) asks user to give a value to be assigned to x
disp(’string’) outputs string to terminal

String-number conversion
num2str converts a number to a string (so it can be output e.g. as part of a message)

Logical functions
isempty true (=1) if a matrix is empty
find finds indices of non-zero elements of a matrix

Arithmetic functions
sum(x) calculates the sum of the elements of the vector x
prod(x) calculates the product of the elements of the vector x

Termination
^c (Control-c) local abort, kills the current command execution
quit quits MATLAB
exit same as quit
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