MA10207: Exercise sheet 18
Please hand in solutions to homework problems by Monday, 22nd April, 2:15pm.

(Derivatives and extrema & the MVT; Revision)

Warmup problems

Problem T 18.1. Let \(n \in \mathbb{N} \). Prove from the definition that \(f : \mathbb{R} \rightarrow \mathbb{R}, \ x \mapsto f(x) = x^n \) is differentiable with \(f'(x) = nx^{n-1} \). [Hint: use the binomial theorem.]

Problem T 18.2. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be differentiable. Suppose that \(f \) has \(n + 1 \) distinct zeroes in \(\mathbb{R} \). Prove that \(f' \) has at least \(n \) distinct zeroes in \(\mathbb{R} \).

Homework problems

Problem H 18.1. Let \(k \in \mathbb{Z} \) be an integer and \(f : (0, \infty) \rightarrow \mathbb{R}, \ x \mapsto f(x) := x^k \). Prove that \(f \) is differentiable for every \(x \in (0, \infty) \) with \(f'(x) = kx^{k-1} \).

Problem H 18.2. Find the minimum and maximum values of \([-1, 1] \ni x \mapsto 9x^4 - 10x^3 + 3x^2 \in \mathbb{R} \).

Problem H 18.3. Use Rolle’s Theorem to prove that a polynomial of degree \(n \geq 1 \) has at most \(n \) zeroes.

Problem H 18.4. Suppose that \(f : (0, \infty) \rightarrow \mathbb{R} \) solves the initial value problem \(f'(x) = \frac{1}{x}; \ f(1) = 0 \). Prove from the differential equation that \(f(xy) = f(x) + f(y) \) for \(x, y \in (0, \infty) \).

Quiz questions

Problem Q 18.1. Let \(f : I \rightarrow \mathbb{R} \) be differentiable on an open interval \(I \subset \mathbb{R} \).

(i) If \(f \) has no critical points then \(\frac{1}{f} \) is differentiable with \(\left(\frac{1}{f}\right)' = \frac{1}{f^2} \). [Hint]

(ii) If \(p \) is a polynomial then \(p \circ f \) is differentiable. [Hint]

(iii) If there exists \(x_0 \in I \) such that \(f'(x_0) = 0 \) then \(f \) has a global extremum on \(I \). [Hint]

(iv) If there exists \(x_0 \in I \) such that \(f'(x_0) = 0 \) then \(f \) has a local extremum on \(I \). [Hint]

(v) If \(f \) has at least two local minima in \(I \) then \(f \) has at least three critical points in \(I \). [Hint]

Evaluate

Problem Q 18.2. Let \(I \subset \mathbb{R} \) be an open interval and \(f : I \rightarrow \mathbb{R} \) be differentiable.

(i) For every \(\xi \in I \) there are \(a, b \in I \) with \(a < \xi < b \) so that \(f'((b-a) = f(b) - f(a) \). [Hint]

(ii) The function \(x \mapsto f'(x) \) is continuous on \(I \). [Hint]

(iii) If \(f'(a) < 0 < f'(b) \) for some \(a, b \in I \) with \(a < b \) then \(f \) has a critical point in \((a, b) \). [Hint]

(iv) If \(f \) is Lipschitz continuous then \(f' \) is bounded. [Hint]

(v) If \(f' \) is bounded then \(f \) is Lipschitz continuous on \(I \). [Hint]

Evaluate

Revision problems

These problems are meant as ideas of how you could revise during the Easter vacation (or in general). The idea is that R 18.1 be discussed in tutorials after the break, you could hand your graph of R 18.2 in to your tutor to receive some feedback.
Problem R 18.1. Make a list of all terms that were defined in Sect 4 of the course. Revise and discuss those that were difficult.

Problem R 18.2. List the important theorems of Sect 4 of the course. Revise their statements (clearly distinguishing between assumptions and claims) and proofs (main ideas and flow of arguments) without writing them down.

Create a dependency graph: represent each theorem by a node and connect two nodes by an arrow if one theorem was used to prove the other. Indicate which definitions/notions play a role in each theorem or its proof.

Problem R 18.3. Go through all previous quiz questions carefully again, making sure that you not only get the correct answers but also fully understand the reasons for why a statement is true or not.