MA10207: Exercise sheet 13
Please hand in solutions to homework problems by Monday, 4th March, 2:15pm.

(Continuity)

Warmup problems

Problem T 13.1. Let \(f : D \rightarrow \mathbb{R} \); suppose that \(\forall \delta > 0 : (D \setminus \{x\}) \cap (x-\delta, x+\delta) \neq \emptyset \), i.e., \(x \in D \) is not “isolated”. Prove that \(f \) is continuous at \(x \) iff \(\lim_{y \to x} f(y) = f(x) \). What can be said at “isolated” points \(x \in D \)?

Problem T 13.2. Formulate and prove an Inertia Property for continuous functions.

Homework problems

Problem H 13.1. Let \(f \in C^0(\mathbb{R}) \) and \(A \subset \mathbb{R} \) open. Prove that \(f^{-1}(A) := \{x \in \mathbb{R} \mid f(x) \in A\} \) is open.

Problem H 13.2. Let \((x_n)_{n \in \mathbb{N}} \) be a sequence and \(l \in \mathbb{R} \); let \(D := \{\frac{1}{n} \mid n \in \mathbb{N}\} \cup \{0\} \) and define \(f : D \rightarrow \mathbb{R}, \ x \mapsto f(x) := \begin{cases} l & \text{if } x = 0 \\ x_n & \text{if } \frac{1}{x} = n \in \mathbb{N}. \end{cases} \)

Prove that \(f \in C^0(D) \) if and only if \(x_n \to l \) as \(n \to \infty \).

Problem H 13.3. Prove from the definition that \(\exp : \mathbb{R} \rightarrow \mathbb{R} \) is continuous at \(x = 0 \).

Use the functional equality \(e^{x+y} = e^x e^y \) to conclude that \(\exp \) is continuous at every \(x \in \mathbb{R} \).

Quiz questions

Problem Q 13.1.
(i) Let \(f : \mathbb{R} \rightarrow \mathbb{R} \). If there is a sequence \(x_n \to 0 \) so that \(f(x_n) \to f(0) \) then \(f \) is continuous at 0.

(ii) There is a function \(f : \mathbb{R} \rightarrow \mathbb{R} \) that is nowhere continuous. [Hint]

(iii) A function \(f : \mathbb{Z} \rightarrow \mathbb{R} \) is everywhere continuous. [Hint]

(iv) If \(f \) is a polynomial then \(f \in C^0(\mathbb{R}) \). [Hint]

Evaluate

Problem Q 13.2.
(i) If \(f, g : I \rightarrow \mathbb{R} \) and \(f \) and \(f \cdot g \) are continuous at \(x \in I \) then so is \(g \). [Hint]

(ii) If \(f : I \rightarrow J \) is continuous at \(x \in I \) and \(g : J \rightarrow \mathbb{R} \) is continuous at \(y = f(x) \) then \(g \circ f : I \rightarrow \mathbb{R} \) is continuous at \(x \). [Hint]

(iii) If \(f : I \rightarrow J \) is continuous at \(x \in I \) and \(g : J \rightarrow \mathbb{R} \) so that \(g \circ f \) is continuous then \(g \) is continuous at \(y = f(x) \). [Hint]

(iv) If \(f : I \rightarrow J \) and \(g : J \rightarrow \mathbb{R} \) are functions so that \(g \circ f \) is continuous at \(x \in I \) and \(g \) is continuous at \(y = f(x) \) then \(f \) is continuous at \(x \). [Hint]

Evaluate