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Martensitic materials pose good test problems for the analysis of the passage from
atomistic to continuum. The reason is that on the microscopic level, they can
be well approximated by a chain of atoms governed by Newton’s equations; thus,
the system is microscopically Hamiltonian. However, martensitic materials can
undergo phase transitions, and moving phase boundaries can generate dissipation,
so that the system is macroscopically dissipative. The simplest possible situation
for which this phenomenon can be understood is that of a single phase boundary
propagating in a one-dimensional chain of atoms {qj}j∈Z on the real line. Neigh-
bouring atoms are linked by a spring with elastic potential V , and it is convenient
to assume that only nearest neighbours interact. The longitudinal elongation of
atom k is given by uk : R → R. The argument of the elastic potential V is the
discrete strain, that is, the difference of the deformations, uk+1(t) − uk(t). The
springs are bistable, with the two stable states representing two stable phases.
The equations of motion are assumed to be governed by Newton’s law, so that in
suitable units

(1) ük(t) = V ′(uk+1(t)− uk(t))− V ′(uk(t)− uk−1(t))

for every k ∈ Z. A travelling wave ansatz is uk(t) = u(k− ct) for k ∈ Z; with this
formulation, Equation (1) becomes

(2) c2ü(x) = V ′(u(x+ 1)− u(x))− V ′(u(x)− u(x− 1)).

We remark that the Hamiltonian is∫
R

[
1
2c

2u̇(t)2 + V (u(t+ 1)− u(t))
]

dt.

Equation (2) is an instance of a so-called lattice differential equation. Models
of crystal lattices, photonic structures, and Josephson junctions, furnish other
examples of lattice differential equations. A number of interesting papers [2, 4, 5]
demonstrates the variety of problems and methods encountered in this field.

It is convenient to reformulate the travelling-wave formulation (2) in terms of
the discrete strain ε(x) = u(x)− u(x− 1); it then simply reads

(3) c2ε′′(x) = ∆1V
′(ε(x)),

where ∆1g(x) := g(x + 1) − 2g(x) + g(x − 1) is the discrete Laplacian. Though
one would like to treat smooth nonconvex potentials, rigorous results are presently
only available for the special interaction potential

(4) V (ε) =
1
2

min{(ε+ 1)2, (ε− 1)2}.

This potential also appears in other works [9, 10]. For this choice of V , (3) becomes

(5) c2ε′′(x) = ∆1ε(x)− 2∆1H(ε(x)),
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with H denoting the Heaviside function. The wave travels with speed c.
To formulate the result, we introduce the dispersion relation Dc(κ) = 4 sin2

(
κ
2

)
−

c2κ2. We choose a velocity regime so that the the dispersion relation vanishes for
exactly one positive value, which we denote κ0. This assumption restricts the
analysis to fast subsonic, almost sonic wave speeds. We remark that for marten-
sitic phase transitions, there is a distinction between fast (umklapp) and slow
(schiebung) martensitic transformations. The former move with a velocity close to
that of an elastic wave, the latter are observable under an optical microscope [3, 8].

It is then possible to show that there exists, for fixed wave speed c close to the
sound speed c0 := 1, a family of solutions of (5). Every family is heteroclinic in the
sense that the strain is negative (positive) for negative (positive) arguments. This
corresponds to solutions with the strain in one well for negative arguments and in
the second well for positive arguments. The precise formulation is as follows.

Theorem 1. Suppose the dispersion relation has one positive zero κ0 with κ2
0 <

1
2 .

Then there exists a family of heteroclinic wave solutions, parametrised by a real
number ξ with |ξ| ≤ 1. The solutions are such that ε(x) > 0 for x > 0 and ε(x) < 0
for x < 0 for all admissible values of the parameter ξ.

We briefly discuss the Rankine-Hugoniot condition, and introduce the notation
[[f ]] for f(s(t)+, t)−f(s(t)−, t), where s(t) is the position of the interface. We write
f(s−) respectively f(s+) for the one-sided limit of f in s from the left respectively
from the right.

The Rankine-Hugoniot conditions for strain ux and velocity u̇ read

[[σ(ux)]] = −ρc [[u̇]] ,

c [[ux]] = − [[u̇]] .

We combine these conditions and write for ε = ux

(6) ρc2 [[ε]] = [[σ(ε)]] .

Here, the solution can be shown to oscillate on both sides of the interface. It is,
however, meaningful to consider the averaged strains, e.g.,

ε̄+ := lim
x→∞

lim
s→∞

1
s

∫ x+s

x

ε(ξ)dξ.

A direct calculation shows that the Rankine-Hugoniot condition holds,

(7) ε̄+ − ε̄− = 2
1

1− c2
.

To motivate kinetic relations, let us consider a heat-conducting thermoelastic
body. We denote the heat flux by q, the specific entropy by s, the absolute
temperature by T , and the material velocity (mass flux) by c. For a moving
surface of discontinuity with normal n, the surface entropy production is R :=
c [[s]] +

[[
q·n
T

]]
. The second law of thermodynamics imposes the inequality R ≥ 0.

One can see that this restricts possible jumps for supersonic waves (shocks) as well
as the constitutive structure of entropy production R for subsonic waves (kinks) [7].
For subsonic waves, this yields an additional condition R = R(c).
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A moving interface is exposed to the so-called configurational force f . Since
the entropy production R is related to the configurational force, it is reasonable
to define a kinetic relation as a functional relationship between f and wave speed
c. We refer the reader to [6, 1] for more information on kinetic relations. The
configurational force is given by

(8) f :=
∫ ε̄+

ε̄−

σ(ε)dε− {σ} [[ε]] .

Here, ε̄± is taken to be the limit of the averaged strain, [[ε]] := ε(s(t)+, t) −
ε(s(t)−, t) and {σ} := 1

2 (σ(s(t)+, t) + σ(s(t)−, t)). For the problem under consid-
eration, one computes directly

(9) f = − 2c2

c2 − sin(κ0)
κ0

· ξ.

We remark that contrary to the common assumption, f is not a function of c alone,
but depends on a two-parameter family, with the wave speed being one parameter,
and the other parameter ξ as in Theorem 1. This form of the kinetic relation is
only valid for subsonic wave speeds with κ2

0 ≤ 1
2 as in Theorem 1. Evidently, the

kinetic relation is trivial, f = 0, for the symmetric wave, ξ = 0.
We close by pointing out that one would want to impose the validity of the

entropy inequality fc ≥ 0 for the solutions of Theorem 1. For c > 0, this inequality
is violated for any solution with ξ > 0, while it holds for ξ ≤ 0. Conversely,
solutions with ξ ≥ 0 satisfy the entropy inequality for c < 0; the symmetric
solution, with trivial kinetic relation, satisfies the entropy inequality for positive
and negative wave speeds.
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[6] L. Truskinovskĭı, Dynamics of nonequilibrium phase boundaries in a heat conducting non-
linearly lastic medium, Prikl. Mat. Mekh. 51 (1987), 1009–1019.

[7] L. Truskinovsky, Inertial effects in the dynamics of martensitic phase boundaries, in Shape-
Memory Materials and Phenomena — Fundamental Aspects and Applications (Liu, C. T.

and Wuttig, M. and Otsuka, K. and Kunsmann, H., eds.) 48 (1992), 103–108.
[8] L. Truskinovsky, Transition to detonation in dynamic phase changes, Arch. Rat. Mech.

Anal. 125 (1994), 375–397.
[9] L. Truskinovsky, A. Vainchtein, Kinetics of martensitic phase transitions: Lattice model,

SIAM J. Appl. Math. 66 (2005), 1205–1221.

[10] L. Truskinovsky, A. Vainchtein, Quasicontinuum models of dynamic phase transitions, Con-

tin. Mech. Thermodyn. 18 (2006), 1–21.

3


