
layers, owing to the charge imbalance, which is in agreement with
recent experiments22,23. This is because the suppression of the
superconducting order parameter in the inner layers will enhance
the pseudogap. The single-particle excitation spectra as observed in
angle-resolved photoemission spectroscopy (ARPES) of multilayer
copper oxides should be sensitive to the doping imbalance of the
layers; there is already some indication of this in experiments26,27

involving the triple-layer material Bi2223. Although bilayer splitting
is observed in optimally doped Bi2212, trilayer and higher-multi-
layer splittings will be increasingly difficult to observe, because of
the induced pseudogap of the inner layers.

We also predict that the maximum superconducting gap
measured in ARPES will be a bell-shaped curve as a function of n
with a maximum at n ¼ 3. It would be worth investigating whether
the recently developed Fourier-transform scanning tunnelling spec-
troscopy (FT-STS)28 could provide layer-specific information. The
change in the spectra with increasing n should be detectable, as the
tunnelling rate falls off exponentially with the distance. For this, it
would be interesting to consider an underdoped sample. As n
increases, the spectra, which would be dominated by the outer
layer, will change because of its increased doping. A
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Martensitic transformations are diffusionless, solid-to-solid
phase transitions, and have been observed in metals, alloys,
ceramics and proteins1,2. They are characterized by a rapid
change of crystal structure, accompanied by the development
of a rich microstructure. Martensitic transformations can be
irreversible, as seen in steels upon quenching1, or they can be
reversible, such as those observed in shape-memory alloys3,4. In
the latter case, the microstructures formed on cooling are easily
manipulated by loads and disappear upon reheating. Here, using
mathematical theory and numerical simulation, we explain these
sharp differences in behaviour on the basis of the change in
crystal symmetry during the transition. We find that a necessary
condition for reversibility is that the symmetry groups of the
parent and product phases be included in a common finite
symmetry group. In these cases, the energy barrier to lattice-
invariant shear is generically higher than that pertaining to the
phase change and, consequently, transformations of this type can
occur with virtually no plasticity. Irreversibility is inevitable in
all other martensitic transformations, where the energy barrier
to plastic deformation (via lattice-invariant shears, as in twin-
ning or slip) is no higher than the barrier to the phase change
itself. Various experimental observations confirm the import-
ance of the symmetry of the stable states in determining the
macroscopic reversibility of martensitic transformations.

Martensitic transformations have numerous technological appli-
cations, particularly in steel, where the transformation induced by
quenching (fast cooling) is exploited for enhancing the alloy’s
strength1. Another application is the fascinating shape-memory
effect in alloys like Nitinol, used in medical and engineering
devices3. Martensitic phase changes are also exploited to toughen
structural ceramics5 such as zirconia, and are observed in biological
systems such as the tail sheath of the T4 bacteriophage virus6. The
study of these transformations has led to improved materials for
actuation (ferromagnetic shape-memory alloys7,8 and ferroelec-
trics9) and to candidates for artificial muscles10. Finally, the rich
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microstructure (distinctive patterns developed at scales ranging
from a few nanometres to a few micrometres) that accompanies
these transformations provides a valuable test case for the develop-
ment of multi-scale modelling tools11.

In some materials, such as shape-memory alloys, the martensitic
phase change is almost perfectly reversible (often termed ‘thermo-
elastic’)3,4. When cooling a shape-memory alloy like Nitinol from
high temperature, the transformation produces a microstructure
with a (twinned) plate-like morphology. This microstructure can
easily be changed by the application of loads. The transformation
can be completely reversed, with the disappearance of the micro-
structure upon reheating and the appearance of little or no dislo-
cation or twinning in the parent (high temperature, high symmetry)
phase.

In contrast, the martensitic transformation is not reversible in
materials like steel and other alloys, such as CoNi1. In steels, the
microstructure forms in a sudden burst with a lath-like morphology
upon cooling, and is immobile on loading. Moreover, the trans-
formation is irreversible and the microstructure does not disappear
upon reheating. In CoNi the phase change is also irreversible, as
successive microstructures form both on heating and cooling.
Materials that undergo irreversible transformations are character-
ized by significant dislocations and twinning in the parent phase.

We provide an explanation for this difference in reversibility on
the basis of the symmetry change during the transformation. We
label as ‘weak’ the martensitic transformations in which the sym-
metry group of both the parent and product phase are included in a
common finite symmetry group12 (which includes symmetry break-
ing), and all others as ‘reconstructive’13 (note that this is different
from the usage of the term ‘reconstructive’ to mean ‘diffusional’: all
the transformations considered here are diffusionless). We show
through rigorous mathematical theory and numerical simulation
that irreversibility is inevitable in a reconstructive phase transfor-
mation, but not in a weak one.

Figure 1 illustrates our main idea through a square-to-hexagonal
reconstructive phase change in a two-dimensional crystal. Consider
the square lattice shown on the left, and suppose the solid square
unit cell is transformed to the solid unit cell of the hexagonal lattice
(middle). By symmetry the solid and dashed unit cells shown in the
middle are equivalent. If the crystal is transformed back to the
square phase, the dashed hexagonal cell can go to, say, the dashed
cell on the right. Crucially, the square cell on the left is then
transformed to the sheared cell of the square lattice on the right.
Thus, upon transforming, performing a symmetry operation, and
transforming back, the crystal has undergone a lattice-invariant
shear, that is, a shearing deformation that leaves the entire (ideal,

infinite) lattice invariant. This also holds for finite lattices if
boundary effects can be neglected, as illustrated below by means
of numerical simulations, showing dislocations and plastic
deformation.

Various experimental observations confirm our predictions. Pure
iron (Fe) undergoes a temperature-induced reconstructive g–a
(face-centred-cubic to body-centred-cubic, f.c.c.-to-b.c.c.) trans-
formation. As Ni and C are added to obtain steel, the martensite
becomes body-centred-tetragonal (b.c.t.) with an increasing tetra-
gonality, so that the martensitic transformation becomes weak.
Correspondingly, Maki and Tamura14 found that with increasing Ni
and C the reversibility of the phase changes increased, the amount of
plastic deformation decreased, and the morphology changed from
lath to butterfly to lenticular to plate-like. Iron also undergoes a
pressure-induced reconstructive a–e (b.c.c. to hexagonal-close-
packed, h.c.p.) transformation, again accompanied by twins and
dislocations15,16. Another set of observations concern materials
undergoing the reconstructive f.c.c.-to-h.c.p. transformation. Liu
et al.17 considered the CoNi system; they hardened the parent phase
to prevent any plastic deformation, but found that the transform-
ation was still irreversible, with both heating and cooling producing
twins and plastic deformation. Similar observations were made in
FeMnCrSiNi steels18,19. Finally, in a block co-polymer, the (recon-
structive) b.c.c.-to-hexagonal transformation was observed to be
irreversible because of orientation proliferation through twinning
in both phases20.

In spirit, our results are related to those of Otsuka and Shimizu21,
who discuss the effects of ordering on crystallographic reversibility
of martensitic transformation in alloys. They21 observe that in
ordered alloys the transformation path must be such that the
order is not destroyed, whereas in disordered ones only the atomic
positions need to be recovered. Their results are consistent with
many experiments, but they also note that the f.c.c.-to-face-centred-
tetragonal (f.c.t.) transformation is an ‘exception’, which, they
argue, is a consequence of the fact that “the lattice correspondence
is unique in the reverse transformation because of the so simple
lattice change and lower symmetry of the f.c.t. phase”. We show here
that the essential difference resides in the crystal symmetry, rather
than in order and disorder. This provides a general framework
which includes both their21 theory and exception, and also extends
to other situations.

The common explanation (in ref. 14, for example) for the
irreversibility in Fe (or low-Ni or -C steels) is based on the volume
change that accompanies the transformation. The idea is that a
partially transformed region causes stress and plastic deformation.
However, a system like the styrene block co-polymer of ref. 20
should be largely unaffected by any volume change. Our expla-
nation is independent of such a volume effect. It is possible,
however, that both mechanisms contribute to the irreversibility in
Fe.

As our result is based only on the symmetry of the energetic
landscape, it is independent of material parameters, such as elastic
moduli. We show that the barrier to lattice-invariant shears in
reconstructive transformations is as high as to the phase transition
itself. A remarkable implication is that reconstructive transform-
ations are accompanied by plastic deformation through dislocations
and twinning in the parent phase, making these phase changes
irreversible. In contrast, weak transformations have the potential
to be reversible, because the energy barriers to lattice-invariant
shears and to the phase transition are independent of each
other. Our numerical simulations indicate that weak transform-
ations are indeed generically reversible. Yet the two energy barriers
might happen to be comparable in particular materials undergoing
a weak transformation. This, for example, is the case in Ni–50Ti,
where plastic deformation masks the reversibility. However, (pre-
cipitate) hardening this material makes these barriers different,
thereby revealing the reversible character of the underlying weak

Figure 1 A lattice-invariant shear can be generated by a forward and reverse square-to-

hexagonal phase transformation. The transformation takes the solid square on the left

to the solid rhombus in the middle. The hexagonal symmetry implies the equivalence of

the solid rhombic cell to the dashed rhombic one. The reverse transformation takes

the latter to the dashed square on the right. In the process, the original solid square on the

left has sheared by a lattice-invariant shear to the solid parallelogram on the right.
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transformation3. In contrast, hardening does not rescue the irrever-
sibility of CoNi17 or FeMnCrSiNi18,19, which undergo reconstructive
transformations. In summary, a transformation must be weak to be
reversible.

Another consequence of our remarks is that materials like FeNi
should be comparatively softer at compositions that are closer to a
reconstructive transformation. This effect, however, may be
obscured by the fact that the very softness of the ideal lattice
produces plastic deformation and the entanglement of dislocations
in the crystal, leading eventually to hardening. None of these
phenomena are present in crystals undergoing weak martensitic
transformations.

We now present the general theory followed by a concrete
example, and numerical simulations. We state the theory for the
simple case of Bravais lattices, which can readily be extended to
crystals whose translational symmetry is continuous across the phase
change. A Bravais lattice LðeiÞ is given by the linear combinations,
with integral coefficients, of three independent vectors {e1, e2, e3}
forming the lattice basis. Another basis { f 1, f 2, f 3} generates the
same lattice, LðeiÞ ¼ Lð f iÞ; if and only if f i ¼

P3
j¼1m

j
iej with a

matrix m belonging to the group12,22,23:

G :¼ {m : m
j
i integers and detðmÞ ¼^1} ð1Þ

which is the global symmetry group of Bravais lattices. Applied to
any given lattice,G consists of rotations, reflections, lattice-invariant
shears and combinations thereof; the restriction to rotations and
reflections gives the lattice group (a matrix representation of the
point group) of that lattice.

The free-energy density F of the crystal is a function of the lattice
basis at a fixed temperature. It is invariant under the global
symmetry group G, as it cannot distinguish among bases generating
the same lattice11,23,24:

FðeiÞ ¼ Fðm
j
iejÞ for every m2G ð2Þ

This global framework takes all possible deformations into account,
including large shearing distortions. From equation (2), the energy
landscape of the crystal has infinitely many wells, which are not
contained in any bounded region in strain space (see Fig. 2).

For weak martensitic transformations the invariance of the
energy (equation (2)) can be limited to a finite subgroup of G
owing to the group–subgroup relation; correspondingly, the
domain of the energy can be restricted to a neighbourhood of the
reference configuration. This neighbourhood does not contain any
lattice-invariant shears and only contains a finite number of energy
wells. Such domains are called Ericksen–Pitteri neighbourhoods
(EPNs)24,25; see Fig. 2. Therefore, the classical framework of Landau
theory and nonlinear elasticity11,23,26 applies in these cases.

For reconstructive martensitic transformations, on the other
hand, the symmetry decreases along the transformation path, but
increases again at the final state, and there is no reference configur-
ation whose lattice group contains those of the two given phases.

We establish the following mathematical fact: the lattice groups of
the two phases in any reconstructive transformation necessarily
generate unbounded shear-like distortions. Consequently, the bar-
rier between the infinitely many energy wells of the crystal is, at
most, equal to that of the underlying phase change. This implies that
the material cannot resist certain arbitrarily large deformations,
which makes the reconstructive transformation necessarily non-
thermoelastic and irreversible, owing to the creation of defects in
the lattice. At the same time, no reduction to a finite number of wells
in a bounded region is possible (no EPN can be extracted) and the
classical approach of the Landau type is not applicable. (Some
authors have extended the Landau framework to encompass recon-
structive transformations by introducing a “transcendental order
parameter”13, which gives a partial description of the lattice period-
icity characterized by the global group G.)

We show in the Methods section that in a reconstructive trans-
formation an unbounded element of G is always generated. Pre-
cisely, we necessarily obtain an element with an infinite period (that
is whose powers can become arbitrarily large), akin to slip and
twinning in the parent phase. We note further that the most
common reconstructive transformations involve phases with maxi-
mal point symmetry: the primitive-cubic, the f.c.c., the b.c.c., or the
hexagonal subgroups ofG. For instance, consider an f.c.c. lattice. For
some transformations to b.c.c., such as the Bain stretch considered
below, the symmetry groups of the two lattices generate the entire
group G, with its full set of lattice-invariant shears. The same
happens for any transformation between phases with maximal
symmetry.

The impossibility of restricting the symmetry to a finite subgroup
of G, and the energy domain to a suitable EPN, has dramatic
implications for the variational treatment of reconstructive phase
transformations. Indeed, if we assume that the deformation at each
time is determined by minimizing the free-energy subject to
external forces and boundary conditions, the invariance of the
energy under the whole group G implies that the solid cannot resist
any shear27. In practice, dynamics and defects, including dislo-
cations, moderate this phenomenon, which we revisit through our
numerical simulations.

We now focus on a concrete case study, demonstrating that the

Figure 2 Schematic representation of weak versus reconstructive transformations in the

space of lattices. a, Weak. A uniaxial deformation (dashed arrows) of the f.c.c. lattice

(represented by squares) can give three equivalent b.c.t. lattices (circles). The reverse

transformation (dotted arrows) returns to the original f.c.c. configuration. All the

transformation strains are confined within a single EPN, such as the dashed circle.

b, Reconstructive f.c.c.-to-b.c.c.. The transformation Bz leads from an f.c.c. lattice to

three equivalent b.c.c. lattices, and the reverse transformation (such as V ) from each

b.c.c. lattice can proceed to three distinct but equivalent f.c.c. lattices, and so on. No EPN

can be singled out.
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composition of an f.c.c.-to-b.c.c. (forward) transformation and a
b.c.c.-to-f.c.c. (reverse) transformation can in fact result in a lattice-
invariant shear. We start from an f.c.c. lattice aligned with the
coordinate axes, and subject it to a uniaxial stretch Uz along the z
axis:

U ðlÞ
z ¼

1 0 0

0 1 0

0 0 1=l

0
BB@

1
CCA;

neglecting volumetric changes. For l between 1 and
ffiffiffi
2

p
; the product

lattice has tetragonal symmetry, and we have a weak transformation.
When l is equal to

ffiffiffi
2

p
; we obtain the Bain stretch U ð

ffiffi
2

p
Þ

z ¼ Bz

which produces the b.c.c. lattice in a reconstructive transformation:
see Fig. 3. Now consider the reverse b.c.c.-to-f.c.c. transformation: it
can occur in three possible ways, owing to the symmetry of the b.c.c.
phase. A crucial point is that the four-fold symmetry axes of the
b.c.c. lattice are different from those of the initial f.c.c. crystal. One
of the three possibilities for the reverse stretch corresponds to B21

z ;
and leads back to the original lattice. The other two are stretches
along the (1,^1, 0) directions (still using the original coordinate
system). For instance, let us consider the reverse stretch V along the
(1, 1, 0)f.c.c. direction, which can be expressed as

V ¼ QB21
z QT

where Q is the 90-degree rotation with axis (1,21, 0), which belongs
to the point group of the b.c.c. phase. After applying V, the final
lattice is again f.c.c.; however, the total transformation gives:

VBz ¼ QB21
z QTBz ¼ RS

where R is a rotation and S is a shear on a {111}f.c.c. plane along a

k112lf.c.c. direction. We can check that S brings the original f.c.c.
basis to a G-equivalent one, that is, the transformation VBz restores
the f.c.c. lattice to itself up to the inessential rigid-body rotation R
(see Fig. 3). Successive iterations of VBz then generate larger and
larger lattice-invariant deformations, and similar strategies can
generate the entire group G. The barrier between the G-related
sheared configurations originated in this way is exactly equal to the
barrier pertaining to the phase transformation. If only part of the
crystal undergoes the VBz transformation, while the rest goes back
to the original state, a Shockley partial dislocation with Burgers
vector 1

6 k112l is formed28. The double transformation (VBz)
2 then

gives the Burgers vector 1
2 k110l: Both kinds are typical of f.c.c.

crystals. When starting from a b.c.c. crystal, this same mechanism
generates dislocations with Burgers vector k111lb.c.c. on {112}b.c.c.

planes, which are among the most common ones in b.c.c. lattices.
We also illustrate the phenomena that are discussed above for

finite domains in the presence of boundary conditions, with
numerical simulations done for simplicity for a square-to-hexago-
nal transformation in two dimensions. We consider a 50 £ 50 grid
of atoms interacting with a three-body nearest-neighbour poten-
tial29, which produces for the crystal a two-dimensional version of
the G-invariant energy in equation (2).

The simulation of a shearing experiment of a crystal close to a
reconstructive phase transformation is shown in Fig. 4b. As the left
and the right boundaries are progressively displaced, dislocations
form in the lattice, which lead to irreversible plastic deformations
and defects in the crystal.

In contrast, Fig. 4d shows the same simulation for a crystal close
to a square-to-rhombic symmetry-breaking (weak) transformation.
In this case, no dislocations arise in the lattice. Instead, typical
layered martensitic twins mixing with the higher-symmetry parent

Figure 3 Shear generated for an f.c.c.-to-b.c.c. transformation in an f.c.c.–b.c.c.–f.c.c.

cycle. a, An f.c.c. lattice, with a b.c.t. cell highlighted. b, The uniaxial Bain stretch Bz

transforms the b.c.t. cell to the b.c.c. one. c, The inverse Bain stretch V ¼ QB21
z QT

transforms the crystal back to f.c.c. (dash-dotted bold f.c.c. cell highlighted), but sheared

relative to the original. The arrows show a basis undergoing the lattice-invariant shear.

Figure 4 Reconstructive transformations generate dislocations, weak ones do not.

a, b, Reconstructive transformation. c, d, Weak transformation. a, Section of the energy

profile of a crystal close to a square-to-hexagonal (s–h) transformation, along a s–h–s

line. The energy has the full invariance (2), with minima s and h plotted respectively at

positions 0, 1, and 0.5, 1.5, and so on. b, An incremental shear test with boundary

conditions on the left and right side results in dislocations. c, Section of the generic energy

profile of a crystal close to a square-to-rhombic (s–r) transformation, along a s–r–h line.

The square states s in 0, 1, and so on are metastable, and additional minima are present

at intermediate rhombic configurations r, with hexagonal maxima at 0.5, 1.5, and so on.

d, The same incremental shear test results in no dislocations, but only reversible

transformation twins, because starting from the square minimum at 0, the ‘faraway’

square at 1 is not reachable by overcoming a small energy barrier.
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phase can be observed, which accommodate the imposed boundary
condition in a reversible way (this is the origin of the memory
effect). A

Methods
To prove that in a reconstructive transformation an aperiodic element of G (called GL(3,
Z) in algebra) is generated, we first note that any lattice group is finite, and conversely any
finite subgroup of G is included in the lattice group of some lattice (see proposition 3.5 in
ref. 23). Thus a transformation is weak if and only if the lattice groups of the two crystal
phases generate a finite group. Therefore a reconstructive transformation produces an
infinite subgroup of G with a finite number of generators. Such a group necessarily
contains an element with no finite period as a consequence of the Burnside–Schur
theorem on periodic groups.

We finally establish that for any pair of Bravais lattices with maximal point symmetry
there are reconstructive transformations that generate the entire group G. Indeed, it is
readily verified that for suitable pairs of subgroups in G belonging to the four arithmetic
classes with maximal point symmetry one can produce all the generators of G, that is, a
suitable reflection, permutation and simple shear30.
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The low-latitude ocean is strongly stratified by the warmth of its
surface water. As a result, the great volume of the deep ocean has
easiest access to the atmosphere through the polar surface ocean.
In the modern polar ocean during the winter, the vertical
distribution of temperature promotes overturning, with colder
water over warmer, while the salinity distribution typically
promotes stratification, with fresher water over saltier. However,
the sensitivity of seawater density to temperature is reduced as
temperature approaches the freezing point, with potential con-
sequences for global ocean circulation under cold climates1,2.
Here we present deep-sea records of biogenic opal accumulation
and sedimentary nitrogen isotopic composition from the Sub-
arctic North Pacific Ocean and the Southern Ocean. These
records indicate that vertical stratification increased in both
northern and southern high latitudes 2.7 million years ago,
when Northern Hemisphere glaciation intensified in association
with global cooling during the late Pliocene epoch. We propose
that the cooling caused this increased stratification by weakening
the role of temperature in polar ocean density structure so as to
reduce its opposition to the stratifying effect of the vertical
salinity distribution. The shift towards stratification in the
polar ocean 2.7 million years ago may have increased the quantity
of carbon dioxide trapped in the abyss, amplifying the global
cooling.

The Subarctic Zone in the North Pacific Ocean and the Antarctic
Zone in the Southern Ocean are both characterized by year-round
availability of the ‘major nutrients’ nitrate and phosphate. Nutrient-
rich deep water is brought to the surface by wind-driven upwelling
and density-driven overturning. Limitation of algal growth by light3

and iron4 prevents complete consumption of the major nutrients.
The Subarctic Pacific maintains a higher degree of nutrient utili-
zation (and thus lower surface nutrient concentrations) than does
the Antarctic5. There are two likely causes for this difference. First,
the exchange between the surface and deep ocean is reduced in the
Subarctic Pacific relative to the Antarctic. This is partially due to the
stronger ‘halocline’, or vertical salinity gradient, in the Subarctic
Pacific6 (Fig. 1). Second, atmospheric deposition supplies more iron
to the Subarctic Pacific than to the Antarctic, which should allow
phytoplankton to consume a larger fraction of the upwelled nitrate
and phosphate4.

Despite the differences between these two polar ocean regions,
the sediments underlying them show a similar change during the
global cooling from the relatively warm mid-Pliocene to the late
Pliocene, when the Earth descended into the Pleistocene cycle of ice
ages. In both of these regions, upon the intensification of major
Northern Hemisphere glaciation 2.7 million years ago (2.7 Myr),
the accumulation of biogenic opal decreased abruptly, just
when the sedimentary evidence indicates an increase in Northern
Hemisphere sea ice and icebergs7,8 (Figs 1 and 2; additional
references in Fig. 1 legend). In the Antarctic, this shift has been
interpreted as the result of increased sea ice cover shortening the
productive season of diatoms8,9, whereas the Subarctic Pacific
change has been explained as the onset of permanent stratification
reducing the nutrient supply to the surface7. Yet the similarity in the
structure and timing of these changes invites a single explanation
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