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Abstract

Many problems across fluid dynamics include effects that are exponentially small
as certain parameters tend to zero. These may be visible features in the solution
profiles, or solvability conditions which are obtained only when the exponentially-
small components of the mathematical formulation are considered. The techniques
required for the resolution of these features are known as exponential asymptotics.

In this thesis, special attention is placed on the limits of small surface tension
and weak shear. Many physically-occurring water waves exist in the regime of small
surface tension. We focus on the ideal formulation of an inviscid, irrotational, and
incompressible fluid. In this formulation, the limit of small surface tension is a singular
perturbative problem as the order of the governing equations differs from that found
in the absence of surface tension. This is a sign that crucial exponentially small effects
may appear under this limit. Numerical investigations are performed for both steadily-
travelling waves and time-dependent standing waves. In fixing the energy of these
waves to be large, such that their solution profiles are highly nonlinear, exponentially
small parasitic ripples are observed in the solution profile. In both of these cases, we
characterise the bifurcation space that emerges. These parasitic capillary ripples are
derived asymptotically for the steadily travelling solutions; in addition to describing
these using exponential asymptotic techniques, a solvability condition is also derived.

The second limit of physical importance considered in this thesis is that of weak
shear, which we consider for the equatorial Kelvin wave. We demonstrate analytically
that the exponentially-small component of the eigenvalue of this problem is imaginary.
This is an exponentially small instability, as the imaginary component of the eigenvalue
destabilises the travelling wave.

The results contained within this thesis mark a significant milestone in our
understanding of exponentially-small effects in water waves, both for surface waves
in low-surface tension regimes for which we have uncovered delicate structures of
solutions, and geophysical waves that are destabilised by the inclusion of weak shear.
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INTRODUCTION 1
1.1 Summary of thesis

We begin in Chapter 22 with an overview of the methods in exponential asymptotics
that will be used and extended upon throughout this thesis. These techniques are
used to determine the exponentially-small component of the asymptotic solution of
various water wave problems. These exponentially small components of the asymptotic
solution correspond to many of the physical effects that we seek to describe, such as
high-frequency parasitic ripples in steady and unsteady water waves studied in Part II,
and geophysical instabilities considered in Part IIII.

Part II

This first part of the thesis is motivated by the high-frequency parasitic capillary
ripples that are observed experimentally to form on steep travelling water waves.
We focus on the parasitic ripples which emerge on the free surface of an inviscid,
irrotational, and incompressible fluid. These are studied both numerically, to classify
the resultant solutions that emerge, and analytically to derive these exponentially-
small effects. Fundamental issues arising from the works of Longuet-HigginsLonguet-Higgins (19631963),
Chen and SaffmanChen and Saffman (19791979), and Chen and SaffmanChen and Saffman (19801980), concerning the limit of
small surface tension, are resolved.

Chapter 33 contains the work of Shelton et al.Shelton et al. (20212021), in which the numerical
bifurcation structure of steadily travelling gravity-capillary waves is calculated. The
fluid surface, y = ζ(x), is specified by Bernoulli’s equation, which demands that

F 2

2
(ϕ2x + ϕ2y) + y −B

ζxx

(1 + ζ2x)
3

2

= 0,

where the Bond number,B, and Froude number, F , are constants, and ϕ is the velocity
potential.
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Figure 1.1: A numerical solution of the steady gravity-capillary wave equations is shown. This free surface y = ζ(x) has the

values of B = 00227 and F = 0.4299.

It is demonstrated that the solutions associated with the (B,F ) bifurcation space
contain highly-oscillatory parasitic ripples, as shown in figure 1.11.1, whose amplitude is
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exponentially small in the surface tension parameter, B. This is the first work that has
clarified the complex bifurcation structure at small values of the Bond number.

Chapter 44 contains the work by Shelton and TrinhShelton and Trinh (20222022), in which steady gravity
capillary waves are considered analytically. Asymptotic solutions are found for small
surface tension, and these contain parasitic ripples whose amplitude,

yripples = O
(
e−χ/B

)
,

is exponentially small as B → 0. This exponential scaling is shown in figure 1.21.2.
Their derivation requires the use of exponential asymptotics and the understanding
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Figure 1.2: The exponential scaling of the parasitic ripple amplitude is shown for the numerical solutions of chapter 33 (circles)

and the analytical prediction of chapter 44 (line).

of singularities in the analytic continuation of the leading order solution, a travelling
gravity wave.

Chapter 55 considers the numerical bifurcation structure of gravity capillary stand-
ing waves. These are time-dependent water waves that oscillate vertically, whose free
surface, y = ζ(x, t), is characterised by Bernoulli’s equation

F 2ϕt +
F 2

2
(ϕ2x + ϕ2y) + y −B

ζxx

(1 + ζ2x)
3

2

= 0,

such that the wave motion is temporally periodic in the interval between t = 0

and t = 1. The solution profiles contain high-frequency parasitic ripples, shown in
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Figure 1.3: A gravity-capillary standing wave calculated numerically in chapter 55 is shown. This solution has B = 0.002795

and F = 0.4161.

figure 1.31.3, that visually appear to be a perturbation about the B = 0 standing gravity
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wave. the asymptotic scaling of these ripples is likely to be exponentially small as
B → 0.

Chapter 66 contains a pre-print by Shelton & Trinh, in which free surface waves
with underlying point vortices are studied asymptotically in the low-speed limit. The
vorticity is located at a single point, near to which the complex potential f = ϕ + iψ
behaves as

f ∼ z − iΓ
2π

log (z − z∗),

where z = x+ iy. Here, z∗ is the location of the vortex, and Γ is the circulation of the
vortex. The asymptotic solutions contain high-frequency waves with an exponentially-
small amplitude. The derivation of these is connected to singularities associated with
the submerged point vortices.When only one submerged vortex is considered, waves in
the free surface extend to the far field. For two vortices submerged at the same depth,

Γ Γ

x

y

U = 1

Figure 1.4: A free surface solution generated by two submerged vortices of circulation Γ is shown.

the far field oscillations produces by each vortex cancel for certain parameter values
yielding trapped waves. A numerical trapped wave solution is shown in figure 1.41.4.

Part IIII

This second part of the thesis considers the weak shear limit of the equatorial
Kelvin wave. This is a significant problem because while the equatorial Kelvin wave
travels without change of form, the presence of a small amount of shear destabilises
the travelling wave. This instability is exponentially small, and its resolution requires
the use of exponential asymptotic techniques. This study is motivated by the divergent
eigenvalue expansions encountered in part II, and we begin by studying this instability
for a model equation before proceeding to the geophysical system.

Chapter 77 contains a pre-print by Shelton, Chapman, & Trinh, in which we study
the exponential asymptotics of the Hermite-with-pole equation,

d2u
dz2 +

[
1

z
− λ−

(
z − 1

ϵ

)2
]
u = 0,

as ϵ → 0. This linear second-order differential equation models the latitudinal
shear perturbation of the equatorial Kelvin wave. In addition to the eigenfunction
u(z), whose asymptotic series diverges, the equation contains an eigenvalue, λ. It

§1.1 · SUMMARY OF THESIS 3



is demonstrated how the divergence of this eigenvalue may be captured through
exponential asymptotic techniques. Furthermore, the imaginary component of the
eigenvalue is shown to be exponentially small with respect to the weak shear. This
component destabilises the travelling wave.

Chapter 88 contains a pre-print by Shelton, Griffiths, Chapman, & Trinh, where
we study the exponentially small instability of the equatorial Kelvin wave for small
latitudinal shear. In writing the solution as a travelling wave

u(x, y, t) = Re
[
û(y)eik(x−ct)

]
,

the eigenvalue, c, contains an imaginary component given by

Im[c] ∼ ± iϵ3

4
√
π
e−1/ϵ2 .

This is exponentially small as ϵ→ 0, and corresponds to a growing temporal instability
of the travelling solution, u(x, y, t). This result is derived asymptotically with two
different methods. First, the domain is restricted to real values y ∈ R, for which
the instability is derived by matched asymptotics performed between special function
solutions. Secondly, the global behaviour is considered in the analytically continued
domain y ∈ C, for which the instability is derived through the application of
exponential asymptotic techniques.

Appendices

Appendix AA derives the time-dependent conformal map used for the numerical
investigation of chapter 55.

Appendix BB modifies the asymptotic work of chapter 44 to consider the late-term
eigenvalue divergence for the small surface tension limit of gravity capillary waves.

Appendix CC considers solitary waves in a three layer flow. Numerical solutions
are found that, for certain parameter values, contain no oscillatory ripples. It is
demonstrated, both numerically and analytically, that the magnitude of these ripples
is algebraic with respect to the parameter distance in bifurcation space from a solution
with no ripples.
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INTRODUCTION TO EXPONENTIAL ASYMPTOTICS:
THE FORCED HARMONIC OSCILLATOR 2

2.1 Historical overview

Unsurprisingly, the Stokes phenomenon was first observed by George Gabriel Stokes
(StokesStokes 18511851, 18641864). In his study of the Airy equation,

d2u
dz2 − 9zu = 0, (2.1)

Stokes noted that one could solve this problem as a convergent series of the form

u(z) = A

(
1 +

9z3

2 · 3
+

92z6

2 · 3 · 5 · 6
+ · · ·

)
+B

(
z +

9z4

3 · 4
+

92z7

3 · 4 · 6 · 7
+ · · ·

)
,

(2.2)

where A and B are constants. Given a value of z, no matter how large in magnitude,
(2.22.2) converges as the number of terms in the series increases. However, given the
computational limitations of his time, this convergence was too slow and inspired
Stokes to develop an alternative representation of the solution for large |z|, given by

u(z) = Cz−
1

4 e−2z3/2

(
1− 5

144z3/2
+

5 · 7 · 11
2 · 1442z3

+ · · ·
)

+Dz−
1

4 e2z3/2

(
1 +

5

144z3/2
+

5 · 7 · 11
2 · 1442z3

+ · · ·
)
.

(2.3)
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From our modern understanding of asymptotic analysis, we recognise (2.32.3) as a
divergent asymptotic series, for which a finite number of terms become more accurate
under the limit of |z| → ∞. Note that while C and D are constants, Stokes
noted that they somehow must be discontinuous with respect to the domain to allow
the asymptotic representation (2.32.3) to yield the same value upon rotation by 2πi.
This apparent discontinuity is the Stokes phenomenon, which he verified to occur
numerically through evaluation of the convergent series (2.22.2). Furthermore, this was
justified by Stokes through the consideration of further terms of the series (2.32.3), in
which consecutive terms may be approximately equal in magnitude as the number of
them tends to infinity.

The contours across which this “discontinuous” change occurs are known as Stokes
lines. Our modern understanding of the Stokes phenomenon stems from the work of
BerryBerry (19891989), who demonstrated, by Borel resummation of the divergent expansion,
that this change in fact occurs smoothly across a boundary layer of diminishing width
under the asymptotic limit. This procedure is known as Stokes smoothing, the derivation
of which relies on the understanding of the divergence of the late-terms of the
asymptotic series pioneered by DingleDingle (19731973). Throughout this thesis, we will derive
the Stokes phenomenon through the application of matched asymptotic methods
directly to the governing equations, which is analogous to the approach first considered
by Olde Daalhuis et al.Olde Daalhuis et al. (19951995).

2.2 The forced harmonic oscillator

We now provide a detailed introduction to the general procedures used in exponential
asymptotics throughout this thesis. As an example, we study the forced harmonic
oscillator,

ϵ2uxx − ϵu2 + u = sech(x), (2.4a)

u(x) ∼ A cos
(
x

ϵ
+ δ

)
+ 2ex as x→ −∞, (2.4b)

considered by Akylas and YangAkylas and Yang (19951995) and GrimshawGrimshaw (20102010) as a toy model for
generalised solitary waves, which contain oscillations of finite amplitude in the far field.
The solution, u(x), is defined over the domain −∞ < x < ∞, and A and δ in
(2.4b2.4b) are two specified real-valued constants. A typical asymptotic solution profile
is shown in figure 2.12.1. As we shall demonstrate, high-frequency ripples appear in the

-10 5 0 5 10

0

0.5

1

Figure 2.1: An asymptotic solution of equations (2.4a2.4a) and (2.4b2.4b), solved for in section 2.2.82.2.8, is shown for ϵ = 0.2.

solution profile, and these are exponentially small as ϵ → 0. We show that a family
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of asymptotic solutions is obtained, corresponding to whether the exponentially-small
ripples are predominantly found for x < 0 or x > 0. For instance when A = 0 in
boundary condition (2.4b2.4b), oscillatory ripples are present only for x > 0.

These family of solutions, containing high-frequency ripples with an exponentially
small magnitude, relate to the small surface tension limit for parasitic gravity capillary
waves studied later in chapter 44, in which one solution is selected from a family
of solutions by enforcing periodicity. The result is a symmetric oscillatory wave, in
addition to the algebraic asymptotic series, whose amplitude is exponentially small.

2.2.1 An initial asymptotic expansion

We begin by considering the following asymptotic expansion for the solution,

u(x; ϵ) =

∞∑
n=0

ϵnun(x). (2.5)

Substituting this expansion into the governing equation (2.4a2.4a) yields distinct equations
at each order of ϵ. These are given by

O(1) : u0(x) = sech(x), (2.6a)
O(ϵ) : u1(x) = [u0(x)]

2, (2.6b)

O(ϵn) : un(x) = −u′′n−2(x) +

n−1∑
p=0

up(x)un−p−1(x), (2.6c)

where this last equation holds for n ≥ 2. Note that the leading order solution (2.6a2.6a)
has the behaviour of u0(x) ∼ 2ex as x→ −∞, and is thus exponentially subdominant
to the first component of behavioural condition (2.4b2.4b), u(x) ∼ A cos (x/ϵ+ δ)+ 2ex.
Thus this solution, and all subsequent orders of the asymptotic solution, are unaffected
by this behavioural condition. This is suspicious, and we will show that as ϵ → 0, the
first component of condition (2.4b2.4b) must be applied to the exponentially-small terms
of the asymptotic solution, requiring A = O(e−π/(2ϵ)).

Note that due to the nonlinearity of the differential equation (2.4a2.4a), evaluating the
higher order equations becomes considerably more difficult as n increases. However,
as n → ∞, only a finite number of terms in the O(ϵn) equation (2.6c2.6c) will form the
leading order dominant balance. This is due to later orders of the asymptotic solution
requiring repeated differentiation of earlier orders. Since these earlier orders of the
asymptotic solution will be singular at certain points in the domain, the strength of
these singularities will grow as n → ∞, leading to divergence of the solution. These
singular points are discussed next.

2.2.2 Singularities of the asymptotic solution

It is a near universality that asymptotic expansions to singularly perturbed equations,
such as equation (2.4a2.4a), will diverge [cf. DingleDingle (19731973), Chapman et al.Chapman et al. (19981998), BoydBoyd
(19991999)]. This divergence of un(x) is generated by singularities in the early orders of the
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asymptotic solution. However, our leading order solution, u0(x) = sech(x), is smooth
across the real-valued domain, −∞ < x <∞. In writing

u0(x) = sech(x) = 2ex
e2x + 1

, (2.7)

we see that this solution is singular whenever e2x + 1 = 0. That is, these singular
points exist in the complex-valued domain. Therefore, we analytically continue the
domain by relabelling x 7→ z, where z ∈ C. This appearance of singular points in the
complex-valued domain is a common feature in singular perturbative problems. For
our current problem, the analytic continuation proceeds effortlessly by considering the
domain to take complex values for the original differential equation (2.4a2.4a). However,
for certain problems, the analytic continuation of the governing equation requires
subtle considerations of singular effects when Im[z] → 0. An example of this are the
water-wave equations considered in part II of this thesis. Since one of the governing
equations is a principal valued integral with singular behaviour in the integrand, the
analytic continuation of x 7→ z yields residue contributions associated with the singular
point of the principal valued integral.

The singularities of the leading order solution occur when e2z+1 = 0. This permits
a countably infinite number of solutions, given by

z =
iπ
2
(1 + 2k), (2.8)

where k takes integer values. Each of these singular points will generate divergence
of the late-terms, un(z), of the asymptotic expansion. However, since this behaviour
as n → ∞ will contain an integral starting from the corresponding singular point,
shorter paths of integration (from the singularities closest to the real-valued domain)
typically yield the dominant behaviour as n → ∞. Thus, we will focus on the two
singularities closest to the real axis, at z = iπ/2 and z = −iπ/2, which we denote
to be the principal singularities for our problem. For convenience, we write these in
compact form as z = ai/2, where the constant a is defined by

a =

{
+1 for the UHP singularity,
−1 for the LHP singularity.

(2.9)

In Taylor expanding u0(z) ∼ sech (z) as z → aiπ/2, we find the singular
behaviour of the leading order solution to be given by

u0(z) ∼
−ai

(z − aiπ
2 )

. (2.10)

From this, we may also determine the singular behaviour of u1(z) as z → aiπ/2, the
equation for which is u1(z) = [u0(z)]

2 from (2.6b2.6b). This yields

u1(z) = O

((
z − aiπ

2

)−2
)

as z → aiπ/2. (2.11)

We see that the strength of the singular behaviour has increased. Moreover, based on
the form of the O(ϵn) equation (2.6c2.6c), we anticipate that in general, we will have

un(z) = O

((
z − aiπ

2

)−(n+1)
)

as z → aiπ/2. (2.12)
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2.2.3 Late-term divergence of the asymptotic expansion

We demonstrated in equation (2.122.12) that the singular behaviour as z → aiπ/2 of
the late-terms, un(z), of the asymptotic solution increases as n → ∞. Moreover,
differentiation of this growing singular behaviour will result in factorial divergence,
which we now demonstrate. Since successive terms in the asymptotic expansion are
determined by differentiation of earlier orders, approximately by un(z) ≈ u′′n−2(z), we
see that if un−2(z) = O

(
(z−aiπ/2)−(n−1)

)
, then un(z) = O(n2(z−aiπ/2)−(n+1)).

This leads to factorial divergence of the asymptotic solution, which we capture in the
limit of n→ ∞ with the factorial over power ansatz

un(z) ∼
Q(z)Γ(n+ α)

χ(z)n+α
. (2.13)

Here, both Q and χ are functions of z. We call χ the singulant as it will capture
the growing singular behaviour through the condition of χ(z∗) = 0 at any singular
points, z = z∗. This condition for the singulant arises as matching criteria when the
inner boundary layer analysis is considered near the singular points in z. The functional
prefactor, Q, is often called the amplitude function. Note that α is assumed to be
constant. This is almost universally the case, however very rarely it may be necessary
to consider α = α(z), such as in chapter 4 of MortimerMortimer (20042004).

Each singular point in the early orders of the asymptotic solution will generate a
separate contribution to the late terms. Thus, in general, we will have

un(z) ∼
∑
k∈Z

Q(k)(z)Γ(n+ αk)

χ(k)(z)n+αk
, (2.14)

where χ(k)(z) = 0 at z = iπ(1 + 2k)/2. However as briefly noted earlier, closer
singular points typically result in smaller values of χ(z) along the free surface Im[χ] =

0, and thus produce dominant contributions to the late-term divergence. Thus only the
singular points of z = aiπ/2 will be considered, where a = ±1.

We now find equations for the amplitude function, Q, and the singulant, χ, by
substituting ansatz (2.132.13) into theO(ϵn) equation (2.6c2.6c). Due to the divergent form for
un as n→ ∞, not every term in the O(ϵn) need be considered. Only those appearing
at the first two leading orders, as n → ∞, are required to obtain equations for Q and
χ, yielding

un(z) = −u′′n−2(z) + 2u0(z)un−1(z) + · · · . (2.15)

Differentiating (2.132.13) twice to find an expression for u′′n−2 yields

u′′n−2(z) ∼
(χ′)2QΓ(n+ α)

χn+α
− (χ′′Q+ 2χ′Q′)

Γ(n+ α− 1)

χn+α−1
+ · · · , (2.16a)

un−1(z) ∼
QΓ(n+ α− 1)

χn+α−1
. (2.16b)

At the leading order of n in equation (2.152.15), O(Γ(n+ α)/χn+α), we find

[χ′(z)]2 = −1, (2.17)

§2.2 · THE FORCED HARMONIC OSCILLATOR 9



and the next order, O(Γ(n+ α− 1)/χn+α−1), yields the equation

Q′(z)

Q(z)
= −u0(z)

χ′(z)
. (2.18)

There are two solutions to the singulant equation (2.172.17), given by χ(z) = const.±
iz. Enforcing the boundary condition χ(aiπ/2) = 0 yields

χ(z) = ±i
(
z − aiπ

2

)
. (2.19)

Thus each singular point, for instance z = iπ/2, generates two singulants discerned

χ = i(z − iπ/2) Stokes line

χ = −i(z + iπ/2) Stokes line

χ = −i(z − iπ/2) Stokes line

χ = i(z + iπ/2) Stokes line

Re[z]

Im[z]

a = 1, z = iπ/2

a = −1, z = −iπ/2

Figure 2.2: The Stokes lines (bold) which begin from each of the two singular points (circles) are shown. The singularity

z = iπ/2 has two associated Stokes lines, both along the imaginary axis. One Stokes line has Im[z] > π/2, and the other

with Im[z] < π/2 intersects with the real-axis. The singularity at z = −iπ/2 also has two Stokes lines along the imaginary

axis. The first has Im[z] < −π/2, and the second with Im[z] > −π/2 intersects the real-axis.

by ± in the solution above. Only one of these will generate Stokes lines that intersect
with the free surface. For a = +1, this is the (+) sign, and for a = −1, the (−) sign,
demonstrated in figure 2.22.2. Note that the concept of a Stokes line has not yet been
introduced; this will be discussed in section 2.2.72.2.7. Thus, to capture the behaviour of
the relevant singulant for each singularity, we will consider the solution to be given by

χa(z) = ai
(
z − aiπ

2

)
. (2.20)

We now have χ′ = ai, and therefore may solve the amplitude equation (2.182.18) to find
the solution

Qa(z) = Λa exp
(
ai
∫ z

0
u0(t)dt

)
= Λa exp

(
ai
∫ z

0
sech(t)dt

)
. (2.21)

Here,Λa is the constant of integration that depends on the starting point of integration,
which has been chosen to be the origin. To conclude, we have found the functional
form of the divergence of un to be given by

un(z) ∼
∑
a=±1

Λa exp
(
ai
∫ z

0
sech(t)dt

) Γ(n+ α)(
ai
[
z − aiπ

2

])n+α . (2.22)

Note that while each component of (2.222.22) is complex-valued in general, when evalu-
ated on the free surface, Im[z] = 0, they will be the complex conjugate of one another,
yielding a real-valued divergent solution. Verification of this requires knowledge of
the constant, Λa. This is determined in the next section along with the other unknown
constant, α.
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2.2.4 Inner analysis at the principal singularities

We now determine the two unknown constants in the late terms of the outer expansion
by considering the inner boundary layer problem near z = aiπ/2. First, we note that
the early orders of the outer expansion reorder whenever u0(x) ∼ ϵu1(x). Since u1 =
u20 from solution (2.6b2.6b), this yields u0 = sech(z) ∼ 1/ϵ. From the singular behaviour
in equation (2.102.10), u0 ∼ −ai/(z − aiπ/2), we find

ϵ ∼ ai
(
z − aiπ

2

)
, (2.23)

which motivates our definition of the inner variable, η, given by

ϵη = ai
(
z − aiπ

2

)
. (2.24)

Thus, we will have η = O(1) in the inner region.
In writing the inner limit of u0 in terms of the inner variable, η, we have u0 ∼

1/(ϵη). Thus, we define the inner variable by

uouter =
1

ϵη
ūinner(η). (2.25)

Substitution of the inner solution, ū, and the inner variable, η, into the outer equation
(2.4a2.4a) yields the inner equation,

ū′′ − 2ū′

η
+

(
2

η2
− 1

)
ū+

ū2

η
+ 2aiϵη e−aiϵη

(1− e2aiϵη) = 0. (2.26)

The inner limit of the outer divergent solution is calculated next in §2.2.52.2.5. It is
found that the dominant divergent terms, as n → ∞, reorder into the leading-order
component of the inner solution. Thus, only the leading-order component of the inner
equation (2.262.26), as ϵ → 0, must be studied in order to match with the inner limit of
the outer solution.

Expanding (2.262.26) as ϵ→ 0 yields the leading-order inner equation as

ū′′ − 2ū′

η
+

(
2

η2
− 1

)
ū+

ū2

η
+ 1 = 0. (2.27a)

For most of the problems contained in this thesis, only the leading-order component of
the inner problem will be considered. The exception to this is the Hermite-with-pole
equation in chapter 77, for which the inner limit of the late-terms of the outer expansion
do not reorder into the leading-order, in ϵ, inner problem. The inner equation (2.27a2.27a)
is subject to the boundary condition

ū(η) ∼ 1 as η → ∞, (2.27b)

which is the value found upon taking the inner limit of the leading-order outer solution,
u0, written in inner variables.
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2.2.5 Inner limit of un and determination of α

We now determine the constant α by ensuring that the factorial-over-power represen-
tation of the late term solution has the same singular behaviour as that anticipated in
equation (2.122.12), un = O((z − aiπ/2)−n−1). This inner limit is given by

ϵnun ∼ 2aiΛaϵ
neP(aiπ/2)

π

(
z − aiπ

2

)
Γ(n+ α)(

ai
[
z − aiπ

2

])n+α

∼ 2ΛaeP(aiπ/2)

πϵα−1

Γ(n+ α)

ηn+α−1
,

(2.28)

where the first line is the inner limit written in terms of the outer variable, z, and the
second is written in terms of the inner variable, η. In order to evaluate the inner limit
of the integral of sech(t) in the amplitude function, Q(z), we have defined

P(z) = ai
∫ z

0

[
sech(t) + ai

(t− aiπ
2 )

]
dt. (2.29)

Balancing the power of the singularity of un in (2.282.28), 1−n−α, with the anticipated
singularity from (2.122.12), −n− 1 yields

α = 2. (2.30)

2.2.6 Inner solution and determination of Λa

To determineΛa, we will match the inner limit of the outer solution, from (2.282.28), with
the outer limit of an inner solution. We represent this outer limit of the inner solution
as a series expansion as z → ∞ of the form

ū(η) =

∞∑
n=0

ūn
ηn
. (2.31)

Substituting this series expansion into the inner equation (2.27a2.27a) yields

∞∑
n=2

n(n− 1)ūn−2

ηn
+

∞∑
n=1

n−1∑
m=0

ūmūn−m−1

ηn
−

∞∑
n=0

ūn
ηn

+ 1 = 0. (2.32)

Equating terms of O(η0) and O(η−1), we find that

ū0 = 1 and ū1 = 1. (2.33a)

At O(η−n), we find the equation

ūn = n(n− 1)ūn−2 +

n−1∑
m=0

ūmūn−m−1, (2.33b)

which holds for n ≥ 2. Equations (2.33a2.33a) and (2.33b2.33b) form a recurrence relation for
ūn, which may be solved numerically to large values of n.
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We now match the nth term of the outer limit of the inner solution from (2.312.31)
with the inner limit of the O(ϵn) outer solution from (2.282.28), yielding

2ΛaeP(aiπ/2)

πϵ

Γ(n+ 2)

ηn+1
=

ūn
ϵηn+1

, (2.34)

which may be rearranged to find the following expression for the constant Λa,

Λa =
πe−P(aiπ/2)

2
lim
n→∞

ūn
Γ(n+ 2)

. (2.35)

Recurrence relation (2.33b2.33b) may be solved numerically to n = 150 to find ūn/Γ(n +

2) ≈ 0.938. More accurate predictions for this constant can be obtained through the
implementation of Richardson extrapolation.

2.2.7 Optimal truncation and Stokes smoothing

The exponentially-small components of the asymptotic solution are now determined.
These will display the Stokes phenomenon, in which they rapidly (and smoothly) change
in magnitude across contours in the complex z-plane. These contours are known as
Stokes lines, across which this change occurs in a boundary layer of diminishing width
as ϵ → 0. This phenomenon was first derived analytically by BerryBerry (19891989), and the
methodology presented in this section closely follows the works by Chapman et al.Chapman et al.
(19981998) and Chapman and Vanden-BroeckChapman and Vanden-Broeck (20062006)

We consider a remainder, RN (z), to a truncated asymptotic expansion by writing

u(z; ϵ) =

N−1∑
n=0

ϵnun(z)︸ ︷︷ ︸
ur

+RN (z), (2.36)

where we have denoted the truncated algebraic expansion by ur. When N is chosen
optimally by

N =
|χ|
ϵ

+ ρ, (2.37)

the remainder RN will be exponentially small. In the above, we have introduced 0 ≤
ρ < 1 to ensure that N takes integer values. The optimal truncation point (2.372.37) may
be derived in multiple ways. For instance, one can consider the point at which the
base series reorders due to the divergence as n → ∞, given by ϵnun ∼ ϵn+1un+1.
Alternatively, N can be left unspecified until equation (2.442.44) below for the particular
solution of RN , which is minimal when N is chosen optimally in this manner.

Substitution of this truncated expansion into the original differential equation
(2.4a2.4a) yields

ϵ2R′′
N + (1− 2ϵur)RN = −ξeq +O(R2

N ), (2.38)

where the forcing term, ξeq, is defined by

ξeq(z; ϵ) = ϵ2u′′r − ϵu2r + ur − sech(z). (2.39)

Homogeneous solutions to equation (2.382.38), for which the forcing term ξeq is
neglected, are given by

RN (z) = Qa(z)e−χa(z)/ϵ. (2.40)

§2.2 · THE FORCED HARMONIC OSCILLATOR 13



Here, Qa(z) and χa(z) satisfy the same equations as that found for the late-term
factorial-over-power ansatz (2.132.13). We will capture the Stokes phenomenon through
the particular solution of equation (2.382.38) for RN , in which the forcing term ξeq is
retained. Note that each order in ϵ of ξeq is identically zero, up to and including
O(ϵN−1). Thus, ξeq = O(ϵN ), and this dominant component of the forcing term
is given by

ξeq ∼ ϵN
(
u′′N−2 − 2u0uN−1 + · · ·

)
∼ ϵN [χ′

a(z)]
2Qa(z)

Γ(N + α)

[χa(z)]N+α
.

(2.41)

In the above, we have also only retained the leading order divergent term as N → ∞,
which is given by ϵNu′′N−2. The particular solution is found by variation of parameters,
in which wemultiply the homogeneous solution (2.402.40) by an unknown function,Sa(z),
yielding

RN (z) = Sa(z)Qa(z)e−χa(z)/ϵ. (2.42)

Here, Sa is denoted the Stokes prefactor, or Stokes multiplier, as it will display the
Stokes phenomenon that we seek to capture.

Substitution of solution (2.422.42) and the dominant scaling for ξeq from (2.412.41) into
the remainder equation (2.382.38) yields

−2ϵe−χa/ϵχ′
a(z)Qa(z)

dSa

dz ∼ −ϵN [χ′
a(z)]

2Qa(z)
Γ(N + α)

[χa(z)]N+α
, (2.43)

which simplifies to give

dSa

dχa
∼ 1

2
ϵN−1eχa/ϵΓ(N + α)

χN+α
a

. (2.44)

First we substitute for χa = raeiϑa , change derivatives to ϑa, and expand as N → ∞
using Stirlings approximation for the gamma function to find

dSa

dϑa
∼ iraeiϑa

√
2πϵN−1e−N−α+raeiϑa/ϵ(N + α)N+α−1/2

2rN+α
a eiϑa(N+α)

,

∼
√
πiϵra/ϵ+ρ−1e−ρ−α+ra(eiϑa−1)/ϵr

ra/ϵ+ρ+α−1/2
a

√
2r

ra/ϵ+ρ+α−1
a eiϑa(ra/ϵ+ρ+α−1)ϵra/ϵ+ρ+α−1/2

(
1 +

ϵ(ρ+ α)

ra

) ra
ϵ
,

∼
√
πir1/2a e−ra(1−eiϑa )/ϵ

√
2eiϑa(ra/ϵ+ρ+α−1)ϵα+1/2

.

(2.45)

In the second approximation above, we substituted for the optimal truncation point,
N = ra/ϵ+ ρ specified earlier in equation (2.372.37). The right-hand side of (2.452.45) is ex-
ponentially small on account of the exp (−ra(1− eiϑa)/ϵ) component. The exception
to this is near ϑa = 0, for which we expand eiϑa ∼ 1 + iϑa − ϑ2a/2 + · · · to find

dSa

dϑa
∼

√
πir1/2a√
2ϵα+1/2

exp
(
− raϑ

2
a

2ϵ

)
. (2.46)

Thus, we have demonstrated that the main change in the Stokes multiplier, Sa, occurs
about ϑa = 0. This condition, arg[χa] = 0, yields the conditions by DingleDingle (19731973) of

Im[χa] = 0 and Re[χa] > 0. (2.47)
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Contours along which (2.472.47) are satisfied are the Stokes lines for our problem.
Furthermore, we may integrate differential equation (2.462.46) to find a solution for Sa,
which closely resembles the error function. Since the dominant change across the
Stokes line is confined to the region where ϑa = O(ϵ1/2), we may integrate across
this boundary layer to find that

Sa(z) = Sa +

√
2πi
2ϵα

∫ ϑa

√
ra√
ϵ

−∞
e−t2/2dt, (2.48)

where Sa is a constant. On one side of the Stokes line, ϑa < 0, we have Sa = Sa
as ϵ → 0. On the other side, ϑa > 0, integration of the error function yields Sa =

Sa + πi/ϵα. We have thus predicted the jump condition of

Sa(ϑa → 0+)− Sa(ϑa → 0−) =
πi
ϵα

(2.49)

across the Stokes lines. This switching is shown in figure 2.32.3.

S1 +
πi
ϵα

S−1 +
πi
ϵα

S1

S−1

Re[z]

Im[z]

arg[ϑ1] > 0arg[ϑ1] < 0

arg[ϑ−1] > 0 arg[ϑ−1] < 0

Figure 2.3: The Stokes lines (bold) that intersect with the real-axis are shown. Their associated Stokes switching contribution,

from equation (2.492.49), is shown across both of these lines.

2.2.8 The exponentially small solution

The exponentially-small component of the asymptotic solution is given by combining
both contributions, one with a = 1 from the UHP singularity, and the other with
a = −1 from the LHP singularity. This yields

RN (z) ∼ S1(z)Q1(z)e−χ1(z)/ϵ + S−1(z)Q−1(z)e−χ−1(z)/ϵ, (2.50)

which we may write as an outer solution on either side of the Stokes lines by writing

RN ∼


S1Q1(z)e−χ1(z)/ϵ +

(
S−1 +

πi
ϵα

)
Q−1(z)e−χ−1(z)/ϵ for z < 0,(

S1 +
πi
ϵα

)
Q1(z)e−χ1(z)/ϵ + S−1Q−1(z)e−χ−1(z)/ϵ for z > 0.

(2.51)

We may now substitute for each of the components appearing in (2.512.51). It is seen
from solution (2.352.35) for the constant amplitude, Λa, that P(iπ/2) = P(−iπ/2),
yielding Λ1 = Λ−1. Evaluation of (2.512.51) for Im[z] = 0 yields firstly for x < 0,
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RN ∼ Λ1e−
π
2ϵ

[(
S
(r)
1 + S

(r)
−1

)
cos
(
f(x)

)
−
(
S
(i)
1 − S

(i)
−1 −

π

ϵα

)
sin
(
f(x)

)]
+ iΛ1e−

π
2ϵ

[(
S
(i)
1 + S

(i)
−1 +

π

ϵα

)
cos
(
f(x)

)
+
(
S
(r)
1 − S

(r)
−1

)
sin
(
f(x)

)]
,

(2.52a)
and secondly for x > 0,

RN ∼ Λ1e−
π
2ϵ

[(
S
(r)
1 + S

(r)
−1

)
cos
(
f(x)

)
−
(
S
(i)
1 − S

(i)
−1 +

π

ϵα

)
sin
(
f(x)

)]
+ iΛ1e−

π
2ϵ

[(
S
(i)
1 + S

(i)
−1 +

π

ϵα

)
cos
(
f(x)

)
+
(
S
(r)
1 − S

(r)
−1

)
sin
(
f(x)

)]
.

(2.52b)
In the above, we have defined

f(x) = −x
ϵ
+

∫ x

0
sech (t)dt, (2.53)

and written S1 = S
(r)
1 + iS(i)

1 and S−1 = S
(r)
−1 + iS(i)

−1 for the real and imaginary parts
of each of these constants. Condition (2.4b2.4b) requires that Im[RN ] = 0 for x ≤ 0,
yielding

S
(r)
1 − S

(r)
−1 = 0 and S

(i)
1 + S

(i)
−1 +

π

ϵα
= 0. (2.54)

Substitution of these solutions for S(r)
−1 and S(i)

−1 back into equations (2.52a2.52a) and
(2.52b2.52b) yields the real-valued solution,

RN ∼


2Λ1e−

π
2ϵ

[
S
(r)
1 cos

(
f(x)

)
− S

(i)
1 sin

(
f(x)

)]
for x < 0,

2Λ1e−
π
2ϵ

[
S
(r)
1 cos

(
f(x)

)
−
(
S
(i)
1 +

π

ϵα

)
sin
(
f(x)

)]
for x > 0,

(2.55)

for which there are two free constants. These constants may be related to boundary
condition (2.4b2.4b), u ∼ A cos (x/ϵ+ δ) as x → −∞. Since f(x) ∼ −x/ϵ − π/2 as
x → −∞, we enforce this boundary condition on RN from (2.552.55) as x → −∞ to
find

A cos (δ) = 2Λ1S
(i)
1 e−

π
2ϵ and A sin (δ) = 2Λ1S

(r)
1 e−

π
2ϵ , (2.56)

yielding

S
(i)
1 =

A cos (δ)
2Λ1

e
π
2ϵ and S

(r)
1 =

A sin (δ)
2Λ1

e
π
2ϵ . (2.57)

Regardless of the value of these constants, there is always a switching of

−2πΛ1

ϵα
e−

π
2ϵ sin

(
− x

ϵ
+

∫ x

0
sech (t)dt

)
(2.58)

incurred in RN as we pass from x < 0 to x > 0. Three asymptotic solutions, u(x) ∼
u0(x) +RN (x), are shown in figure 2.42.4 for different values of S(r)

1 and S(i)
1 .
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(i)
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(r)
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1 = − π

ϵ2α

Figure 2.4: Three asymptotic solutions, u ∼ u0 + ū, are shown for ϵ = 0.18 and different values of the constants S(r)
1 and

S
(i)
1 .

2.2.9 Conclusion

We have demonstrated how the divergent asymptotic expansion for the solution of a
singularly perturbed equation yields an exponentially small remainder upon optimal
truncation of the initial expansion. This exponentially-small remainder displays the
Stokes phenomenon across Stokes lines for z ∈ C, and these Stokes lines begin
at singular points of the asymptotic expansion. The boundary layer analysis across
each Stokes line predicts only a local change in the magnitude of the exponentially-
small term, and determination of the outer behaviour of these terms thus requires
an additional constraint. We have imposed a behavioural condition as x → −∞
to characterise the exponentially-small component of the asymptotic solution in this
outer region.

2.2.10 Discussion

Each of the problems discussed in this thesis contain various complications to the
exponential asymptotic techniques introduced in this chapter. These are:

(i) Chapters 33 and 44, in which the small surface tension limit of periodic gravity-
capillary waves is firstly considered numerically, and then asymptotically.
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This asymptotic solution contains at leading order a nonlinear travelling
gravity wave, whose form is not known analytically. Numerical values are
required to determine the singular points in the analytic continuation, which
in section 2.2.22.2.2 we determined analytically, that generate Stokes lines and the
Stokes phenomenon.

(ii) Chapter 55, in which time-dependent standing gravity-capillary waves are
considered numerically. Their future analytical treatment would require the
extension of these techniques to a nonlinear set of PDEs.

(iii) Chapter 66, for which we consider the small Froude number (speed) limit
of waves generated by submerged point vortices. This formulation requires
the exponentially-small solution to three coupled equations. When two sub-
merged point vortices are considered, trapped waves confined to lie between
the two vortices emerge for certain values of the Froude number, due to the
Stokes phenomenon of section 2.2.72.2.7 generated by these cancelling out exactly
in the far field.

(iv) Part IIII, in which the exponentially-small instability of the equatorial Kelvin
wave is derived analytically. This problem contains an eigenvalue, whose
asymptotic expansion also diverges. While the base expansion for the eigen-
value is real-valued, the exponentially-small component is imaginary. This
corresponds to a growing temporal instability of the travelling wave solution.
This problem displays two additional features. First, the higher-order Stokes
phenomenon in which the late-terms of the asymptotic series display the Stokes
phenomenon of section 2.2.72.2.7 across higher-order Stokes lines. This can lead
to naive Stokes lines, found by evaluating Dingle’s condition (2.472.47) on the
singulant, being either inactive or partially active. Second, in addition to the
classical Stokes phenomenon generated by a divergent base expansion for
the solution, there is an additional Stokes phenomenon generated by the
exponentially-small component of the eigenvalue.This second feature is analo-
gous to the second-generation Stokes phenomenon, in which exponentials turned
on by the primary Stokes phenomenon themselves generate an additional
Stokes switching. However, our additional Stokes switching is generated by
exponentially-small terms that are universally present, and thus we do not use
the second-generation terminology for this.
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THE NUMERICAL BIFURCATION STRUCTURE OF
TRAVELLING WAVES 3

3.1 Introduction

In the introduction to exponential asymptotics of chapter 22, highly oscillatory ripples
appeared in the solution profile, which were shown to be exponentially small as ϵ→ 0.
This exponentially small behaviour arose due to the singularly perturbed nature of the
governing equation as ϵ→ 0. That is, the order of the differential equation with ϵ = 0

differed from that with ϵ 6= 0, no matter how small this value was taken.

-0.5 0 0.5

-0.03

0

0.03

x

y

Figure 3.1: A numerical solution of the steady gravity-capillary wave equations is shown. This profile has B = 00227 and

F = 0.4299.

Free surface water waves are also singularly perturbed for small surface tension. In
this section we consider Bernoulli’s equation for the steadily travelling free surface of
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an inviscid, irrotational, and incompressible fluid,

F 2

2
(ϕ2x + ϕ2y) + y −B

ηxx

(1 + η2x)
3

2

= 0.

Here, the Bond number,B, represents the surface tension. We see that the differential
equation is first order for B = 0 and second order for B 6= 0, and hence the limit
of B → 0 is a singular perturbation. We therefore anticipate that exponentially small
effects may be present in travelling gravity-capillary wave solutions when the Bond
number, B, is small. Note that this is not guaranteed to be the case. While these
exponentially-small effects will be present in the analytic continued solution on account
of the anticipated Stokes lines and Stokes phenomenon, these Stokes lines may not
intersect with the real-valued free surface.

The first indication that these exponentially small effects may be present in the
solution profile of a steadily travelling gravity capillary wave was numerically detected
by Schwartz and Vanden-BroeckSchwartz and Vanden-Broeck (19791979). In addition to presenting a preliminary
bifurcation picture of the solutions for small values of the surface tension, they
presented one very interesting solution profile in their figure 10, analogous to that
shown in figure 3.13.1. This profile, with B 6= 0, was very close in value to the B = 0

solution, but with one crucial difference: the appearance of high-frequency ripples on
the wave surface, with 11 peaks in the periodic domain. This raised two interesting
questions:
(i) First, can one explore the branch of solutions in the bifurcation space starting

from this solution, and what does this look like?
(ii) Second, are there solutions containing high-frequency ripples that contain

a different number of peaks (for instance 12, 13, and so forth) within the
periodic domain, and how do these behave as the number of peaks tends to
infinity?

The purpose of the paper by Shelton et al.Shelton et al. (20212021) presented in this chapter is
to answer these questions by characterising the numerical branches of solutions, for
fixed amplitude, each of which corresponds to a certain number of peaks in the high-
frequency ripple. It is also observed that the amplitude of these ripples is exponentially
small as B → 0.

22 CHAPTER 3 · THE NUMERICAL BIFURCATION STRUCTURE OF TRAVELLING WAVES



Appendix 6B      QA7 

         Appendix B: Statement of Authorship 
 

 
 

This declaration concerns the article entitled: 
 

On the structure of steady parasitic gravity-capillary waves in the small 
surface tension limit 
 

Publication status: 

Draft 
manuscript 

  Submitted  
In 

review 
 Accepted  Published 

  

 

Publication 
details 

Journal - Journal of Fluid Mechanics, 922, A16 
Authors - Josh Shelton, Paul Milewski, Philippe H. Trinh 

Copyright status: 

The material has been 
published  

with a CC-BY license 

 

The publisher has granted  
permission to replicate the  

material included here 

  

 

Candidate’s 
contribution to 
the paper  

 
All authors contributed equally to the conceptualisation and methodology 
used in the article (33%) 
 
All analytical calculations were performed by the author of this thesis (100%) 
 
All numerical computations were performed by the author of this thesis 
(100%) 
 
The original draft and bulk of the final presentation has been written by the 
author of this thesis (90%) 
 
 
 
 
 

Statement 
from 
Candidate 

This paper reports on original research I conducted during the period of my 
Higher Degree by Research candidature.  

 
Signed 
 

  
Date 

 
30/12/22 

§3.2 · ON THE STRUCTURE OF STEADY PARASITIC GRAVITY-CAPILLARY WAVES IN THE
SMALL SURFACE TENSION LIMIT Shelton, Milewski, Trinh (2021) 23



J. Fluid Mech. (2021), vol. 922, A16, doi:10.1017/jfm.2021.514

On the structure of steady parasitic
gravity-capillary waves in the small surface
tension limit

Josh Shelton1,†, Paul Milewski1 and Philippe H. Trinh1,†
1Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK

(Received 19 January 2021; revised 16 April 2021; accepted 4 June 2021)

When surface tension is included in the classical formulation of a steadily travelling
gravity wave (a Stokes wave), it is possible to obtain solutions that exhibit parasitic ripples:
small capillary waves riding on the surface of steep gravity waves. However, it is not clear
whether the singular small surface tension limit is well posed. That is, is it possible for
an appropriate travelling gravity-capillary wave to be continuously deformed to the classic
Stokes wave in the limit of vanishing surface tension? The work of Chen & Saffman (Stud.
Appl. Maths, vol. 62, issue 1, 1980, pp. 1–21) had suggested smooth continuation was
not possible, while the numerical study of Schwartz & Vanden-Broeck (J. Fluid Mech.,
vol. 95, issue 1, 1979, pp. 119–139) used an amplitude parameter that made it difficult
to understand the structure of solutions for small values of the surface tension. In this
paper we numerically explore the low surface tension limit of the steep gravity-capillary
travelling-wave problem. Our results allow for a classification of the bifurcation structure
that arises, and serve to unify a number of previous numerical studies. Crucially, we
demonstrate that different choices of solution amplitude can lead to subtle restrictions
on the continuation procedure. When wave energy is used as a continuation parameter,
solution branches can be continuously deformed to the zero surface tension limit of a
travelling Stokes wave.

Key words: capillary waves, surface gravity waves

1. Introduction

In this paper we consider the two-dimensional formulation of a travelling gravity-capillary
wave on a fluid of infinite depth. When posed in a travelling frame, the steady
non-dimensionalised problem is to determine a velocity potential, φ(x, y), which is
harmonic in a periodic domain, −1

2 � x � 1
2 and −∞ < y � η(x). On the unknown free
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surface, y = η(x), Bernoulli’s condition requires that

F2

2
|∇φ|2 + η − Bκ = const. (1.1)

Here, the Froude number, F, characterises the balance between inertia and gravity, and the
inverse Bond number, B, characterises the balance between gravity and surface tension;
with this latter effect depending on the surface curvature, κ . These non-dimensional
constants are given by

F = c/
√

gLλ and B = σ/ρgL2
λ, (1.2a,b)

where c is the wave speed, g is the gravitational constant, Lλ is the wavelength, ρ is the
fluid density and σ is the coefficient of surface tension.

Typically, a wave energy or amplitude parameter, E , is fixed and prescribes the
degree of nonlinearity. Solutions are then characterised by bifurcation curves in (B,F)
or (B,F,E )-solution space. The small surface tension limit corresponds to B → 0.

Extensive results are known for the case with B = 0 when surface tension is neglected,
and this originates from the seminal work of Stokes (1847); cf. the reviews by Okamoto &
Shõji (2001) and Toland (1996). Intuitively, we might expect that the inclusion of a small
amount of surface tension results in a small change in the profile of the pure gravity wave.
However, since the limit of B → 0 is singularly perturbed, this is not necessarily the case,
and it is known that the introduction of surface tension has a significant impact on the
existence and uniqueness of solutions, their bifurcations and their profiles.

The goal of this paper is to present a numerical study of nonlinear solutions in the
singular limit of B → 0, for which we know one solution to be the Stokes wave. We
demonstrate the numerical existence of a cohesive structure of branches of solutions
existing under this limit. Importantly this suggests that, with fixed wave energy, E , only
one of a family of solutions approaches the classical Stokes wave as B → 0.

We firstly discuss the analytical and numerical difficulties of the B → 0 limit.

1.1. Longuet-Higgins and parasitic ripples
It is well-known observationally that under the action of both gravity and surface tension,
ripples of small wavelength form on the forward face of a propagating wave. As shown
by the experimental results of Cox (1958) and Ebuchi et al. (1987) for instance, the
amplitude of these parasitic capillary ripples increases when the overall amplitude of the
wave (measured by crest to trough displacement) increases. An example of such parasitic
ripples, as photographed by Ebuchi et al. (1987), is shown in figure 1, where it is seen
that these ripples are asymmetric about the wave crest and unsteady in the frame of the
propagating wave. Note that in this paper we shall refer to solutions exhibiting parasitic
capillary ripples as those where a short wavelength and small amplitude wave is present
on what appears to be a gravity-dominated water wave.

A seminal advance in the modelling of these parasitic capillary waves arose from the
methodology of Longuet-Higgins (1963), who predicted that for small surface tension
these parasitic ripples would be exponentially small in both amplitude and wavelength. In
this simplest steady framework one assumes that the parasitic ripples are fixed to the same
travelling frame of reference as the underlying gravity wave. However, it was noted by
Perlin, Lin & Ting (1993) that these analytical predictions produced poor agreement with
both experimental wave profiles and numerical solutions of the steady nonlinear equations,
a result of asymptotic inconsistencies in his method. We shall provide a preliminary
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Figure 1. Experimental picture showing parasitic ripples located near the crests of steep gravity waves from
Ebuchi, Kawamura & Toba (1987) (reproduced with permission).

discussion of these issues in § 7, in which we comment that the Longuet-Higgins
approximation can be improved through the use of exponential asymptotics.

Nevertheless, it remains an open question as to whether parasitic capillary ripples
similar to those shown in figure 1 may be found as either symmetric or asymmetric
solutions of the steady framework of (1.1). In this work we present clear numerical
evidence that steady symmetric parasitic ripples do exist within the solution space of the
classical potential framework in the B → 0 limit.

1.2. Schwartz & Vanden-Broeck and the complexity of (B,F)-space
In their seminal work Schwartz & Vanden-Broeck (1979) developed a numerical scheme
using a series truncation method to compute periodic gravity-capillary waves of the exact
nonlinear equations. Imposing symmetry at x = 0 and an amplitude condition on the
crest-to-trough displacement, they presented a preliminary classification of solutions in
(B,F)-space of types 1, 2, 3 and 4. Each type number was associated with a distinct branch
of solutions, and corresponded to the number of observed ‘dimples’ or inflexion points on
a (half) wave profile.

A reproduction of their original bifurcation diagram, which is computed at fixed
crest-to-trough amplitude, is shown in figure 2(b). Our intention in reproducing this figure
is to convince the reader that indeed the bifurcation space of the gravity-capillary problem
is certainly non-trivial, and it is difficult to observe any clear structure. We also show the
computed (Schwartz & Vanden-Broeck 1979) bifurcation curves in figure 2 alongside our
solutions of fixed energy.

One of their solutions, Schwartz & Vanden-Broeck (1979, figure 10), is of particular
interest in the context of parasitic ripples. This profile, similar to that shown in figure 3,
appears to contain small-scale capillary ripples as a perturbation to the main Stokes wave.
This is one of the types of solution that we will be expanding upon in this work. Note
in addition that the type 1 to 4 branches, as shown in their figure, have a non-trivial and
unstructured shape in the bifurcation diagram; it is not obvious if a more consistent pattern
emerges upon increasing the type number, or whether these solution curves can be taken
as B → 0. We shall explain the reason for these issues in this work.

Later, in seeking to compare new experimental data with the previous analytical
approximations of Longuet-Higgins (1963) and numerical solutions of Schwartz &
Vanden-Broeck (1979), Perlin et al. (1993) made extensive remarks on the challenges of
navigating the solution space of the full nonlinear problem, noting that ‘there is no known
method for determining the number of solutions to the numerical formulation. . . ’ (p. 618).
Indeed, they state that (p. 598),

Surprisingly little information is available on these waves of disparate scales,
presumably due to the analytical/numerical, as well as experimental, difficulties
involved. Perlin et al. (1993)
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Figure 2. Our solutions of fixed energy from § 5 are shown in (a). Panel (b) shows a reproduction of the fixed
amplitude results previously published in Schwartz & Vanden-Broeck (1979) (reproduced with permission).
These branches of fixed amplitude are shown in the (κ, μ)-plane, where the boxed type number indicates the
number of observed ‘dimples’ or inflexion points on a (half) wave profile. In (c) we show the type-11 fixed
amplitude branch.
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Figure 3. A numerical solution of (4.1a) and (4.1b) is displayed in physical (x, y)-space, with non-dimensional
parameters F = 0.4299, B = 0.002270 and energy E = 0.3804. This has been computed using the scheme
described in § 4. The periodic solution has been repeated three times.
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1.3. Chen & Saffman and the impossibility of the B → 0 limit
Nearly in parallel with the work by Schwartz & Vanden-Broeck (1979), Chen & Saffman
(1979, 1980a,b) produced a series of works where they examined the Stokes wave problem,
largely from the perspective of weakly nonlinear theory (and its numerical consequences
on the full nonlinear problem).

In Chen & Saffman (1979) they considered weakly nonlinear solutions of (1.1) in powers
of a small wave amplitude, ε. Expressing the solution, y = η(x), as a Fourier series, this
permits analytical solutions for the Fourier coefficients, An. They discovered that in fixing
the point of symmetry of the wave profile to be at x = 0, the branches of solutions in
the (κ,An)-bifurcation space (where κ = 4π2B) are discontinuous either side of the point
κ = 1/n. Due to this discontinuity and the analytical criterion, they commented (p. 204):

The gravity wave (κ = 0) is therefore a singular limit which cannot be reached smoothly
by applying the limit κ → 0 to a gravity capillary wave. Chen & Saffman (1979)

In our work we will note how this statement is misleading since their non-smoothness
is a consequence of their initial assumption of a fixed point of symmetry at x = 0. We
demonstrate this in § 6.4, noting that this is due to the presence of a symmetry shifting
bifurcation. Thus, if their enforced symmetry at x = 0 were to be relaxed, the branches of
solutions in (κ,An)-space either side of the point κ = 1/n would be continuous.

In a second work by Chen & Saffman (1980b), the numerical solution space was
explored for waves of finite amplitude. Their choice of amplitude was a linear combination
of Fourier coefficients, typically chosen to be that of the fundamental mode, A1, or the nth
mode An. Nonlinear solutions were computed. However, the resultant branches of solutions
in their bifurcation diagram did not connect, from which they concluded:

These results confirm the impossibility of going continuously from a pure capillary-
gravity wave to a gravity wave by letting κ → 0. Chen & Saffman (1980b)

We later note in § 6.2 that if the wave energy instead is fixed as an amplitude parameter
then the continuous set of solutions as B → 0, discovered within this paper, bifurcate from
solutions with fundamental mode A1 = 0. Hence, if A1 is fixed to be a non-zero constant,
as in the numerical work of Chen & Saffman (1980b), this bifurcation point would remain
undiscovered. We shall conclude that in order to achieve a continuous transition as B → 0,
the first Fourier coefficient should not be fixed.

1.4. Outline of the paper
In this work we shall consider the numerical behaviour of steady symmetric parasitic
ripples for small values of the Bond number, B. Starting in § 2, we introduce the governing
equations for the gravity-capillary wave problem, which we transform to depend on the
velocity potential, φ, alone. In § 3 the well-known linear solutions are derived. These form
a starting point for our numerical method of § 4. Solutions are presented in § 5, which we
use to demonstrate that as B → 0 for fixed energy, E , this bifurcation structure appears to
form a countably infinite number of connecting branches of solutions in the (B,F)-plane.
Each branch forms a ‘finger’ in the solution space, which is connected continuously to
the proceeding branch. These branches then accumulate in the limit of B → 0 such that
solutions are conjectured to exist in an O(1) interval in the Froude number, F. These
branches of solutions are connected at the point where they bifurcate from a wave with
smaller fundamental wavelength, resulting in numerical evidence for the B → 0 limit of
the steep gravity-capillary wave problem having a continuous set of solutions.
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This allows us to show why previous authors have failed to reveal this underlying
structure, which we comment upon in §§ 6 and 6.5. Lastly, in § 7 we comment upon
the asymptotic properties as B → 0 of our discovered solutions, and how this uncovered
structure is likely to be present in other numerical problems for small values of the Bond
number, B.

2. Mathematical formulation

Consider a two-dimensional free surface flow of an inviscid, irrotational and
incompressible fluid of infinite depth. The velocity potential, φ, is defined by u = ∇φ.
We assume that, in the lab frame, the free surface, y = η(x, t), is periodic in x with
wavelength Lλ, and moves to the right with wave speed c. We non-dimensionalise with unit
length, Lλ, and velocity, c. We consider steady travelling-wave solutions by introducing a
subflow of unit horizontal velocity in the opposite direction of wave propagation. This
negates the movement of the free surface. Then ηt = 0 = φt yields the steady governing
equations (compare with Vanden-Broeck 2010, (2.48)–(2.55) for example),

φxx + φyy = 0 for y � η, (2.1a)

φy = ηxφx at y = η, (2.1b)

F2

2
(φ2

x + φ2
y )+ y − B

ηxx

(1 + η2
x)

3/2 = 0 at y = η, (2.1c)

φy → 0 and φx → −1 as y → −∞, (2.1d)

for the travelling wave now in x ∈ [−1
2 ,

1
2 ). Thus, the system is governed by Laplace’s

equation (2.1a) within the fluid, kinematic and dynamic conditions on the free surface
(2.1b) and (2.1c), and uniform flow conditions in the deep-water limit (2.1d). The
horizontal velocity condition (2.1d), our subflow, indicates a uniform flow moving towards
the left. The spatial subscripts in (2.1) correspond to partial differentiation.

Remark on terminology: note that in the mathematical formulation above, we have
non-dimensionalised lengths by a fixed physical wavelength, Lλ, and, hence, we shall
seek solutions that are 1-periodic in the non-dimensional travelling frame. However, these
solutions may have a smaller wavelength which is less than unity. We thus define λ to be
the non-dimensional fundamental wavelength (the smallest such wavelength). Moreover,
in this work we shall refer to a wave with fundamental wavenumber k = 1/λ as a pure
k-wave. Thus, a pure k-wave has a dimensional wavelength of λLλ.

2.1. The conformal mapping to the (φ, ψ)-plane
We now formulate the governing equations (2.1) in the potential (φ, ψ)-plane, as shown
in figure 4. We assume that the free surface is located along ψ = 0, and introduce the
notation of X and Y for the fluid quantities evaluated on the free surface. Thus,

X(φ) ≡ x(φ, 0) and Y(φ) ≡ η(x(φ, 0)). (2.2a,b)

We may now obtain expressions for the surface derivative and curvature by differentiating
(2.2a,b). This yields

ηx = Yφ
Xφ

and ηxx = XφYφφ − YφXφφ
X3
φ

. (2.3a,b)
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x φ

y ψ

z (φ, ψ) = x + iy

x = x (φ, ψ)

y = y (φ, ψ)

Figure 4. The conformal mapping from (x, y) to (φ, ψ) is shown.

We now seek to rewrite the kinematic (2.1b) and dynamic (2.1c) boundary conditions on
the surface in terms of the conformal variables X and Y . First, the velocities, φx and φy,
may be inverted, yielding

φx = xφ
x2
φ + y2

φ

and φy = yφ
x2
φ + y2

φ

. (2.4a,b)

Finally, substitution of (2.4a,b) for φx and φy, (2.3a,b) for ηx and ηxx, and Y(φ) =
η(x(φ, 0)) into Bernoulli’s equation (2.1c) and setting ψ = 0 yields our governing
equation (compare with (6.12) of Vanden-Broeck 2010)

F2

2J
+ Y + B

(YφXφφ − XφYφφ)
J3/2 = 0. (2.5)

Above we have introduced the surface Jacobian, J, via

J(φ) = X2
φ + Y2

φ. (2.6)

Note that in the conformal formulation, the kinematic condition (2.1b) can be verified to
be satisfied identically once (2.3a,b) and (2.4a,b) are used on the streamline ψ = 0.

In addition to Bernoulli’s equation (2.5), in order to close the system, we require a
harmonic relationship between X and Y . Note that within the fluid, y(φ, ψ) can be written
as a Fourier series of the form

y(φ, ψ) = ψ + A0 +
∞∑

n=1

e2nπψ [An cos (2nπφ)+ Bn sin (2nπφ)] , (2.7)

where An and Bn are real-valued for all n. Indeed, the above ansatz satisfies yφφ + yψψ = 0
along with the depth condition y ∼ ψ as ψ → −∞.

We define the Hilbert transform on Y by

H [Y](φ′) = −
∫ ∞

−∞
Y(φ)
φ − φ

′ dφ, (2.8)

where the integral is of principal-value type. Then by the assumed periodicity of the
solution, this implies that

H [Y](φ′) = −
∫ 1/2

−1/2
Y(φ) cot [π(φ − φ′)] dφ. (2.9)

We can then verify that the individual Fourier modes can be related using
H [sin(2nπφ)] = cos(2nπφ) and H [cos(2nπφ)] = − sin(2nπφ). From using the
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Cauchy–Riemann relations of xφ = yψ and xψ = −yφ , we obtain the harmonic
relationships between X and Y on the free surface via

Xφ(φ) = 1 − H [Yφ(φ)] and Yφ(φ) = H [Xφ(φ)− 1]. (2.10a,b)

A choice of any one of the relations in (2.10a,b), combined with Bernoulli’s equation (2.5)
allows X and Y to be solved.

2.2. The energy constraint
In order to fully close the formulation, we shall impose an energy constraint on the
solution, which can be viewed as equivalent to a measurement of the wave amplitude.
We define the wave energy, E, to be

E = F2

2

∫ 1/2

−1/2
Y(Xφ − 1) dφ + B

∫ 1/2

−1/2
(
√

J − Xφ) dφ + 1
2

∫ 1/2

−1/2
Y2Xφ dφ, (2.11)

where the first integral on the right-hand side corresponds to the kinetic energy, the second
to the capillary potential energy and the third to the gravitational potential energy. The
derivation of (2.11) from the bulk energy is given in Appendix A.

For comparison purposes, it will be convenient for us to rescale the energy in (2.11) by
the energy of the highest (fundamental) gravity wave, Ehw. Thus, we write

E = E
Ehw

, (2.12)

where Ehw ≈ 0.00184 (to 5 decimal places) is calculated using the numerical scheme of
§ 4 applied to the pure gravity wave using n = 4096 Fourier coefficients.

The choice of how to define an amplitude or energy condition for the wave is a subtle
one. In this paper we shall comment on the following three choices of amplitude:

A =

⎧⎪⎨
⎪⎩

E [energy definition from (2.11)],
A1 [first Fourier coefficient from (2.7)],
Y(0)− Y(1/2) [crest-to-trough displacement].

(2.13)

The second choice of A1, as used in Chen & Saffman (1980b), designates the amplitude
to be the first Fourier coefficient, while the third choice of Y(0)− Y(1/2), as used by
Schwartz & Vanden-Broeck (1979), is a sensible choice to measure the physical wave
height of the fundamental Stokes wave.

Note that both definitions of amplitude, A1 and Y(0)− Y(1/2), have the problem that
strongly nonlinear waves (as measured by a lack of decay in the Fourier coefficients)
can occur, even at small amplitude values. This is particularly affected by the fact that
gravity-capillary waves may take a variety of shapes beyond the simple fundamental wave
considered by Stokes (1847). Similar difficulties were encountered by Chen & Saffman
(1979, 1980b), who chose A = A1 but commented that:

We found from experience that none of these parameters were universally useful for
describing the bifurcation phenomenon to be described in this work, and in fact we have
been unable to construct a parameter which characterized the magnitude of the wave for
all the phenomena in a satisfactory way. Chen & Saffman (1979)

It may be that using the energetic definition of amplitude with A = E is the modification
required to fix these issues; indeed within the context of our numerical investigations this
does seem to be the case in the small surface tension limit.
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3. Linear theory, Wilton ripples and type (n, m)-waves

It will be useful for us to review linear solutions in the notation of § 2.1. The results
of linear theory are found from the first two terms of a Stokes expansion in powers
of a small amplitude parameter, ε (see, e.g. Vanden-Broeck 2010, § 2.4.2). Thus, we
shall consider equations (4.1a) and (4.1b) and take X ∼ X0 + εX1 and Y ∼ Y0 + εY1.
Solving the resultant equations yields X0 = φ and Y0 = 0 at leading order. At O(ε), we
write X1 and Y1 as Fourier series and assume that the two solutions are respectively odd
and even about φ = 0. This yields the necessary equation that

∞∑
k=1

[
F2(2kπ)− 1 − (2kπ)2B

]
ak cos (2kπφ) = 0. (3.1)

In order to obtain non-trivial solutions, we require the linear dispersion relation of

2kπF2 − 1 − 4k2π2B = 0, (3.2)

and obtain X1 = ak sin(2kπφ) and Y1 = ak cos (2kπφ). Thus, the linear solution, a pure-k
wave, is approximated by

X ∼ φ + ε [ak sin(2kπφ)] and Y ∼ ε [ak cos(2kπφ)] , (3.3a,b)

to the first two orders. Substitution into the energy expression (2.12) yields

E ∼ ε2 2K2π2Ba2
k

Ehw
. (3.4)

The linear solution (3.3a,b) was assumed to satisfy the single dispersion relation (3.2)
for the kth Fourier mode only. Note that other solutions may be constructed that satisfy the
dispersion relation for more than one mode. For instance, if the modes with k = 1 and k =
n are assumed to be non-degenerate, then we require that both 2πF2 − 1 − 4π2B = 0 and
2nπF2 − 1 − 4n2π2B = 0. This yields the so-called Wilton ripples predicted by Wilton
(1915), located wherever

Bwilton = 1
4π2n

and F2
wilton = (1 + n)

2πn
, (3.5a,b)

with n ∈ Z
+. The Wilton ripples are then given by

X1 = a1 sin(2πφ)+ an sin(2nπφ) and Y1 = a1 cos(2πφ)+ an cos(2nπφ). (3.6a,b)

In the numerics of § 4, we shall often initialise the numerical continuation method with
the linear solution (3.3a,b) using a small value of εak. Crucially, since this linear solution
is invalid near points (3.5a,b), we must ensure that our initial choice lies away from the
critical numbers of Bwilton and/or Fwilton.

As introduced by Chen & Saffman (1979), linear solutions that consist of a combination
of pure n- and m-waves, and with fundamental wavelengths of λ = 1/n and 1/m,
respectively, are described as a type (n,m)-wave. Thus, under this terminology, Wilton’s
solution in (3.5a,b) is an example of a type (1, n)-wave. Our numerical results presented
in § 5 will contain solutions that are the nonlinear analogue of a type (1, n)-wave.
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4. The numerical method

In this section we describe the numerical procedure for solving Bernoulli’s equation (2.5)
and the harmonic relationship (2.10a,b) for X(φ) and Y(φ) subject to a given value of the
energy, E , from (2.11). Thus,

F2

2J
+ Y + B

(YφXφφ − XφYφφ)
J3/2 = 0, (4.1a)

Xφ(φ) = 1 − H [Yφ(φ)], (4.1b)

E = F2

2Ehw

∫ 1/2

−1/2
Y(Xφ − 1) dφ + B

Ehw

∫ 1/2

−1/2
(
√

J − Xφ) dφ + 1
2Ehw

∫ 1/2

−1/2
Y2Xφ dφ.

(4.1c)

Recall we define Ehw as the energy of the highest Stokes wave (Ehw ≈ 0.00184).
Solutions of the above problem are regarded as lying within (B,F,E )-space. We solve

these equations using Newton iteration on a truncated Fourier series using the fast Fourier
transform. The procedure is as follows.

(i) An initial guess for Y(φ) is carefully chosen using either linear theory (3.3a,b) or
from a previously computed solution (cf. § 5 for specific details).

(ii) Of the triplet (B,F,E ), we choose to fix two parameters and treat the last parameter
as an unknown.

(iii) The collocation variable, φ, is discretised using N grid points, with φk = −1/2 +
k	φ for k = 0, . . . ,N − 1 and 	φ = 1/N. We define the solution Y(φk) = Yk at
each of these points. Note that once Yk is known for all k, Xk can be calculated using
the harmonic relation (4.1b).

(iv) Combined with the unknown parameter (either B, F or E ), this yields N + 1
unknowns. Bernoulli’s equation (4.1a), evaluated at φk, provides N equations and the
system is closed with the additional energy constraint (4.1c). Newton iteration is then
used to solve the nonlinear system of equations until a certain tolerance (typically
10−11) on the norm of the residual is met.

In our numerical scheme we leverage the Fourier transform for efficient manipulation of
the solutions. In particular, note that the Hilbert transform, H , needed for the harmonic
relation (4.1b), can be evaluated via H [Y] = F−1[i · sgn(k)F [Y]], where F denotes the
Fourier transform and sgn is the signum function. Both the Fourier and inverse-Fourier
transforms are calculated with the fast Fourier transform algorithm. The derivatives of Y
are also computed in Fourier space using the relationship Y(n)(φ) = F−1[(2πik)nF [Y]].
In order to obtain the numerical results presented in § 5, we find it sufficient to use
N = 1024 mesh points. The computations are performed using a desktop computer and
individual solutions are typically computed in under a second.

In essence, our goal will be to study the (B,F,E )-solution space, particularly as B → 0.
We start from a low-energy solution, and increase the parameter E until the desired value
is reached. In order to initialise this continuation procedure at small values of E , we select
an initial Bond number which is chosen away from the Wilton ripples value of Bwilton in
(3.5a,b). Then the Froude number is approximated by the linear dispersion relation (3.2)
with k = 1, and we use the linear approximations of X and Y from (3.3a,b) with a small
arbitrary choice of εak (typically 10−5). For this linear solution, E is then calculated; the
above serves as the initialisation procedure for the Newton scheme which solves for values
of Yi and F.
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B

F

Sn + 1

Sn

Gn → n + 1

Figure 5. A typical component of the bifurcation diagram illustrated in (B,F)-space consisting of a single
finger, Gn→n+1, (shown bolded) and two side curves Sn and Sn+1. This is considered at a fixed value of the
energy, E .

Once solutions are found at desired values of E , we establish the (B,F)-bifurcation
space by continuation from a previously calculated solution. Note that in some cases, it
will be necessary to fix B or F and solve for the other value, depending on the gradient of
the bifurcation curves.

5. Numerical results for fixed energy, E

The numerical results we now present suggest that at a fixed value of E , certain solutions
in the (B,F)-bifurcation space can be classified according to ‘finger’-type structures and
‘side-branch’-type structures. An example of this structure, as drawn in the (B,F)-plane,
is shown in figure 5.

First, let us first define the side branch, Sn, as

Sn = {Bifurcation curve of solutions analogous to type (0, n)-waves}. (5.1)

Thus, Sn corresponds to those points in (B,F)-space associated with a certain type of
solution. These solutions are pure n-waves (1/n-periodic solutions in the interval); they
are the nonlinear analogue of the linear type (0, n)-waves introduced in § 3, i.e. a sine or
cosine wave with wavenumber n about a constant mean value.

In addition, adjacent side branches are connected by fingers, say Gn→n+1. We define
such a structure as

Gn→n+1 = {Bifurcation curve of solutions connecting Sn to Sn+1}. (5.2)

The finger can be interpreted as follows. Along Sn, solutions are pure (n)-waves; following
this set of solutions, there exists a bifurcation point where the 1-mode grows. Following
this new branch, which is labelled Gn→n+1, yields a solution analogous to a type
(1, n)-wave. Continuing along Gn→n+1, the solution transitions to type (1, n + 1) and
then finally to a pure-(n + 1) wave where it connects to Sn+1. An illustration of these
classifications is shown in figure 5.

In the following sections we present solutions along the side branches, Sn, and fingers,
Gn→n+1, for waves that are approximately half the height of the highest fundamental
gravity wave. For our choice of energy in (4.1c), this occurs at E = 0.3804. Starting in
§ 5.1, we describe the structure of solutions across a prototypical finger, G13→14, and then
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in § 5.2 we demonstrate how this finger bifurcates from side branches S13 and S14. Multiple
fingers are then shown in § 5.3 for n = 7 to 28, demonstrating their behaviour as B → 0.

5.1. Analysis of a single finger, Gn→n+1

The prototypical finger G13→14 is shown in figure 6 for a value of E = 0.3804. Note that
solutions near the ‘tip’ of the finger seem to correspond to the phenomena of parasitic
ripples discussed in § 1; that is, we observe a series of small-scale capillary-dominated
ripples riding on the surface of a steep gravity wave. This is shown in insets (c), (d)
and (e) in figure 6. Below, we will continue to refer to solutions as being separated into
capillary ripples and an underlying gravity wave, even though this classification may be
ambiguous.

As we move down either side of G13→14 by decreasing the Froude number, the amplitude
of the ripples increases while the amplitude of the underlying gravity wave decreases. This
is shown in figure 6 via the transitions (c) → (b) → (a) and (e) → ( f ) → (g). It becomes
extremely challenging to numerically compute solutions below (a) and (g).

Finally, as we travel from right to left across the finger, the wavelength of the ripples
decreases as an extra ripple is formed. This can be seen by comparing solutions in insets
(g) and (a), where (g) has 13 maxima and (a) has 14 maxima. The increase in the number
of ripples can be observed as occurring near the tip of the finger between insets (c) and
(e). We will discuss the structure of this process in § 7.

5.2. Analysis of side branches Sn and Sn+1

We now discuss the side branches. In the case of the prototypical finger, G13→14, displayed
in figure 6, we observe that this finger connects two side branches S13 and S14, as shown in
figure 7. The branch S13 contains pure (13)-waves, which have a fundamental wavelength
of λ = 1/13. The branch S14 consists of pure 14-solutions, which have λ = 1/14.

We next observe that at fixed energy, E = 0.3804, the solutions in S13 and S14 reach
a limiting configuration through the trapping of bubbles, shown by solutions (a) and (c).
These branches of solutions are the large amplitude analogue of those predicted by linear
theory in § 3, given by

F2 ∼ 1/(2nπ)+ (2nπ)B and F2 ∼ 1/(2π(n + 1))+ 2π(n + 1)B. (5.1a,b)

These were obtained by taking the values of k = n and k = n + 1 in the linear dispersion
relation (3.2).

In order to compute these branches numerically, an initial pure–n solution was taken
from linear theory with the dispersion relation (3.2) satisfied for k = n. This gives a cosine
profile with n peaks across the periodic domain. Slowly increasing the energy of this
solution across multiple runs yields a single solution for each branch at E = 0.3804, from
which these branches were calculated by continuation at fixed E .

The location along the branch for which solutions reach a limiting configuration through
a trapped bubble can be numerically predicted by the results of Appendix B. These points
are shown in figure 7 for n � 15.

We see that as the value of n for these limiting solutions increases, the value of F at
these points increases beyond that of the original finger. Thus, below a certain value of
the Bond number, we expect that each finger will instead bifurcate from self-intersecting
solutions. As we then proceed to increase the Froude number and transverse the side of
each of these fingers for B < Bcrit, we anticipate that the solutions will turn physical. This
would result in the tip of each finger consisting of purely physical solutions.
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(d ) B = 0.002266 F = 0.4278

a
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d

Figure 7. The finger G13→14 is shown against the two side branches S13 and S14. The two side branches
terminate at points a and c (black circle) through the trapping of bubbles. Circles represent the locations where
solutions of Sn for n � 15, shown for every fifth point, become self-intersecting, found from the numerical
predictions of Appendix B. The (b)–(d) axis limits are the same as inset (c).

5.3. The unveiled structure for B → 0
This process of generating an individual finger may be repeated across different values
of the Bond number, resulting in a remarkable structure that holds in the limit of B → 0.
Many of these fingers are shown in figure 8 from n = 7 to n = 28; for clarity, the side
branches have been omitted from this figure. As the Bond number decreases over each
finger, the wavelength of the ripples decreases from 1/n to 1/(n + 1), resulting in the
formation of an additional crest. Consecutive fingers are connected at the point from
which they bifurcate from the side branches of pure n-waves, demonstrated previously in
§ 5.2 and shown by solutions (d1) and (d2) in figure 8. The solutions at these bifurcation
points display a phase shift of 1/n between them. Due to this phase shift, the nth Fourier
coefficient changes sign between these solutions at this bifurcation point. It is this phase
shift that led Chen & Saffman (1979) to misleadingly state (on p. 204) that the weakly
nonlinear solutions are discontinuous with respect to the nth Fourier coefficient at this
point.

From solutions (a1), (b) and (c), labelled at the top of the fingers in figure 8, we
observe that as B → 0, the amplitude of the ripples decreases and the overall solution
appears to tend towards the fundamental Stokes wave with energy E . Although the profile
in figure 8(a1) seems to indicate a pure gravity wave, the capillary ripples can be detected
under closer inspection. In order to quantify this, we isolate the pure gravity wave solution,
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Figure 9. (a) The corresponding kinetic (dotted), gravitational (dash–dotted) and capillary (solid) energies for
the solutions from figure 8. In the two lower figures, the kinetic, capillary and gravitational energies are also
shown for (b) B vs E and (c) branch arclength vs E for the solutions corresponding to the single finger G28→29.

y0, and plot y − y0 in figure 8(a2). This shows that the ripples are still present in the
solution, but with a very small amplitude. Moreover, one can verify that the profile norm,
|y − y0|, is of O(B) by repeating this procedure for multiple solutions along the top of the
fingers in figure 8. We shall comment on this algebraic error and the exponentially small
ripples in § 7.

We note that the presence of this bifurcation from the side branches Sn to the fingers
Gn→n+1 can be observed by a change in sign of the Jacobian along Sn as the bifurcation
point is passed. Solutions close to this bifurcation point are shown by (a) and (g) in figure 6
for Sn (dashed) and Gn→n+1 (solid). A further change of sign in the Jacobian occurs at
the top of each of the fingers. Since our numerical scheme permits asymmetric solutions
through the retention of the asymmetric coefficients in the Fourier series expression (2.7),
it may be that this additional bifurcation involves symmetry breaking. A brief overview
of gravity-capillary works containing asymmetry is provided in § 7. However, no such
solutions were found during our investigation.

Furthermore, the range of F between the tip of each finger and the bottom remains
of O(1) as B → 0 for the solutions calculated in figure 8. Consider, for instance, the
range between solutions (a1) and ( f ). This suggests the existence of an interval of
solutions holding under the B → 0 limit. The solution with the largest value of F is
expected to be the fundamental Stokes wave with B = 0 and E = 0.3804, shown by the
point y0 in figure 8. We predict that, as B → 0, the solutions with the smallest Froude
number in this interval will contain a self-intersecting free surface. This is because, for
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B < Bcrit, the pure n-solutions near the bifurcation point on the side branches are also
anticipated to self-intersect. The interval would then contain a range of solutions, which
transition from unphysical to physical as the Froude number increases. A further detail
of the structure of these solutions may be seen from figure 9, which shows the exchange
between the three components of kinetic, capillary and gravitational potential energies.
For the parasitic solutions at the top of each of the fingers, which resemble a perturbation
about a gravity-dominated wave, the capillary energy is small and appears to decrease to
zero as B → 0. Conversely, for the highly oscillatory solutions close to the bifurcation
point between adjacent fingers, the capillary and kinetic energies are seen to tend to an
O(1) constant while the gravitational potential energy tends to zero. Thus, these highly
oscillatory solutions of Gn→n+1, as well as those on the side branch Sn, appear to tend
towards a pure-capillary solution as B → 0. The asymptotic properties of the solutions on
Gn→n+1 and Sn will be discussed in § 7 for the limit of B → 0.

6. Relation to previous numerical attempts

A key challenge is to understand the relationship between our solutions of fixed energy, E ,
and those of previous authors with a different amplitude condition, say A . In this section
we demonstrate that a key limitation of previous choices of amplitude is the existence
of highly energetic (and subsequently nonlinear) solutions at small values of A . Thus,
somewhat surprisingly, alternative choices of the amplitude measure may admit nonlinear
solutions in the naive linear limit of A → 0 – this occurs due to the singular nature of
B → 0 and, in particular, the nature of the solutions between adjacent fingers.

6.1. Solutions at different values of the energy E

In the previous section we demonstrated the structure of the bifurcation diagram and
associated solutions at fixed energy E = 0.3804. In fact, this bifurcation structure is only
perturbed in a regular fashion as the energy changes near this value. Thus, the full structure
of solutions, which holds as B → 0, can be computed for different values of E in a
straightforward manner.

We show an example of this in figure 10, where we display the finger G11→12 and the
side branches S11 and S12 for three different values of E . In the figure the value of E
decreases from E = 0.67 in (a) to E = 0.3804 in (b) to E = 0.046 in (c). The following
three changes to either the solution or branch structure are noticeable as E decreases:

(i) the amplitude of the ripples decreases;
(ii) the range of F between the top and bottom of the finger decreases; and

(iii) the finger becomes more rectangular.

In (c) the amplitude of the ripples has decreased to the point at which they are no longer
observable visually.

6.2. Choice of amplitude parameters in previous works
We now revisit the alternative choices of the amplitude or energy parameter in (2.13). A
few of the solutions displayed in figure 8 are similar to those previously calculated by
Schwartz & Vanden-Broeck (1979), who plotted remnants of this figure at larger values of
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Figure 10. Shown in the left subplots are the fingers G11→12 and the side branches S11 and S12, plotted in
the (B,F)-plane, for (a) E = 0.67; (b) E = 0.3804; (c) E = 0.046. Example solutions, near the tops of the
fingers, are shown in the corresponding right subplots labelled (a1), (b1) and (c1).

B for a different amplitude parameter. Since their choice of amplitude,

A = A ≡ [y(0)− y(π)]/2π, (6.1)

relies on local values at the centre and edge of the periodic domain, they found these
branches to behave somewhat differently than how we have described them in our § 5.

Notice that according to their choice of norm (6.1), waves with an even number of crests
that are equally spaced throughout the domain will have y(0) = y(π) and, consequently,
A = 0. This corresponds to every other branch of solutions with a fundamental wavelength
smaller than the periodic domain, Sn with n even. Hence, for the branch of solutions
Gn→n+1 at fixed E , A grows smaller tending towards solutions near the bifurcation points
of Sn+1 and Sn – despite the high nonlinearity of these solutions. This is demonstrated
for n = 13 in figure 6 with solution (a), which approaches S14, and solution (g), which
approaches S13. Thus, the bifurcation from S14 connecting finger G14→15 to G13→14 will
occur from an amplitude value of A = 0. This is one reason why the full structure of
solutions was not revealed through smooth continuation at fixed A by the investigations of
Schwartz & Vanden-Broeck (1979).

Next, let us turn to the numerical investigation of the B → 0 limit performed by Chen
& Saffman (1980b), who fixed the first Fourier coefficient,

A = A1, (6.2)
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as an amplitude parameter. We now know that, since the bifurcation between distinct
fingers in the (B,F)-plane occurs via the side branches Sn, which have a first Fourier
coefficient of zero for n � 2, it is impossible to recover the structure shown in figure 8
with a fixed value of A1. Chen & Saffman (1980b) had indicated the impossibility of a
continuous deformation to the pure Stokes gravity wave as B → 0, but we now see that
this occurred as a direct consequence of their chosen amplitude parameter.

6.3. An insufficient number of Fourier coefficients
As we have noted, it is crucial to select the right continuation parameter in order to recover
the B → 0 limit. There are other possible reasons why others may have struggled to
reproduce an accurate structure of the parasitic ripple phenomena. In particular, a large
number of Fourier modes are required in order to capture the regions between adjacent
fingers, and this is primarily due to the bifurcation occurring from the side branches, Sn,
which contains solutions that approach pure n-waves. Thus, solutions within the finger
Gn→n+1, which are located near to side branches are then dominated by the nth Fourier
coefficient. If in our numerical scheme we consider a series truncation at the Nth Fourier
coefficient, then the main coefficients contributing to the capillary-dominated ripples will
be a multiple of n. Hence, an effective number of N/n Fourier coefficients will describe
the behaviour of the wave near to this bifurcation point.

For the computation of the gravity-capillary wave with the parasitic ripples, Schwartz
& Vanden-Broeck (1979) (their figure 10) used N = 40 in order to capture a wave with
n = 11 ripples. Thus, in order to investigate the side branch bifurcation associated with this
solution, their Fourier expansions would have contained an effective number of N/n ≈ 4
Fourier coefficients – which is insufficient. Within this work, we have been using 1024
Fourier coefficients, which corresponds to 35 effective coefficients for solutions near the
bifurcation point of the finger with the smallest Bond number in figure 8.

6.4. The symmetry shifting bifurcation
In addition to the importance of selecting an appropriate amplitude measure, let us discuss
the relationship between the bifurcation structure presented earlier (e.g. in our figure 8)
with the constraint on the symmetry in the travelling-wave frame. For the solutions
displayed in figure 8, each finger is computed beginning with an initial solution that lies
on the finger and then, with a fixed E , solutions are obtained by continuation to either side
of the starting point until the entire finger is computed. As a result of this continuation
scheme, the solutions at the bottom of adjacent fingers are out of phase with one another;
this can be seen in solutions (d1) and (d2) in figure 8. This method of continuation is
depicted more clearly in figure 11(a), where (a1) and (a2) are two starting solutions, while
(a3) and (a4) are out of phase. Note also that this phase shift is observable between the
profiles (g) and (e) in figures 6 and 8, respectively, as these are solutions either side of the
same bifurcation point.

Alternatively, we could formulate a continuation scheme where the solutions in each
finger are connected to those in adjacent fingers in a continuous fashion, depicted in
figure 11(b). Thus, for example, the scheme is started with a single initial point, (b1),
shown in figure 11. This finger is then found via the typical continuation method. Having
located a solution, (b3), at the bifurcation point, the adjacent finger is completed by using
(b3) as a starting solution for continuation. This alternative method shown in figure 11(b)
results in solutions (b3) and (b4) at the bottom of consecutive fingers with no phase shift.
The result of this approach is a continuous set of solutions as B → 0.
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(b4) B = 0.003385
F = 0.4250

: Starting solution : Direction of continuation

Figure 11. Two methods for numerical continuation are depicted. The starting location for continuation is
denoted by a cross, and the arrows indicate the direction travelled by continuation.

In using this alternative method, solutions at the top of consecutive fingers have a shifted
point of symmetry, as demonstrated by comparing solutions (b1) and (b2) in figure 11.
This point of symmetry has been moved from x = 0 to x = −1/n for all solutions on the
new finger. We denote this to be a symmetry shifting bifurcation, which is unable to be
captured if the point of symmetry of the wave is prespecified. This assumption of a fixed
point of symmetry is often used in the two following methods.

(i) Numerical procedures that solve for the half-domain x = [0, 1/2] and enforce a
turning point at x = 0, such as that by Schwartz & Vanden-Broeck (1979).

(ii) The analytical work of Chen & Saffman (1979), who posit a weakly nonlinear
solution with assumed symmetry at x = 0.

Both of these methods will be unable to capture this B → 0 limit with continuous solutions
at the bifurcation point.

The relaxation of the fixed point of symmetry, in contrast to the assumption in Chen
& Saffman (1979), is the modification required to correct their earlier statement on the
validity of the B → 0 limit for gravity-capillary waves.
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6.5. Conclusions
We have studied the bifurcation structures derived in the previous works by Schwartz
& Vanden-Broeck (1979) and Chen & Saffman (1979, 1980b), and have highlighted the
following three core issues that are important for unifying and extending their diagrams to
the small Bond number regime.

(i) The chosen amplitude parameters, relying either on local values of the wave height
or specific Fourier coefficients (cf. § 6.2).

(ii) A small number of Fourier coefficients retained in the numerical schemes, the issues
for which become more prominent near the bifurcation points (cf. § 6.3).

(iii) Assumptions made on the point of symmetry of the wave profile (usually fixed to be
at x = 0), due to the symmetry shifting bifurcation connecting adjacent fingers (cf.
§ 6.4).

In being aware of these, we have introduced alternative methods, either by solving or
mitigating the issues. For instance, we have used the wave energy, E , as an amplitude
parameter. This has allowed us to be able to find a number of different types of solutions
to the steep gravity-capillary wave problem existing under the limit of B → 0. One of
these, the steady symmetric parasitic ripple, is similar to the asymmetric parasitic waves
encountered physically and will be the focus of our forthcoming analytical work.

7. Discussion

In § 5.3 we described the two types of solutions that are found as B → 0. The first of
these are found along the sides of the fingers and the side branches; they can be described
by a multiple-scales type expansion that captures the rapid oscillations about a slowly
varying mean. As they become increasingly oscillatory (with diminishing F), they reach
an unphysical configuration through the trapping of bubbles for B < Bcrit (cf. end of § 5.2).
These highly oscillatory solutions near the bifurcation point between adjacent fingers are
very interesting. This is because a multiple-scales ansatz yields Crapper’s pure-capillary
equation, that is, Bernoulli’s equation (2.1c) in the absence of gravity, at leading order
for the small-scale ripples. Since an exact solution for this is well known by the work
of Crapper (1970), it may be possible that once the boundary conditions of periodicity
and energy have been applied to the solvability condition (obtained at the next order) our
snaking structure of the fingers can be found analytically. This multiple-scales approach
will be the focus of future analytical work by the current authors. We note that this snaking
structure is very similar to that found by Chapman & Kozyreff (2009) for a version of the
Swift–Hohenberg equation appearing in nonlinear optics.

Our focus has been more on the second of these types of solutions – those which
correspond to waves with parasitic ripples lying on a gravity wave; these solutions are
found near the tops of each finger. In a forthcoming work, Shelton & Trinh (2021), we
shall present an asymptotic theory for the description of these parasitic ripples.

The essential details are as follows. For those solutions that correspond to parasitic
ripples on gravity waves, we may expand their form as a naive expansion in powers of the
Bond number,

y(x) =
∞∑

n=0

Bnyn(x), (7.1)

such that in the limit of B → 0 we recover the pure gravity wave, y0. However, as it turns
out, the magnitude of the short wavelength parasitic ripples is exponentially small in the
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Figure 12. The exponential scaling in (7.2) is shown (circles) for our numerical solutions by plotting 1/B
vs log( yripples). One numerical solution is chosen from each finger, corresponding to that of minimal ripple
amplitude. From our forthcoming work, the analytical prediction (line), which depends on the value of E ,
predicts a gradient of approximately −8.2 × 10−3.

Bond number, B. Thus,

|yripples| ∼ exp
(

−const.
B

)
. (7.2)

The above can be validated based on our numerical computations in the following way. For
each finger, Gn→n+1, a solution profile is calculated at the tip of the finger (i.e. the vertex
in the (B,F)-plane). At this point, the magnitude of the parasitic ripple is approximated by
examining y − y0 and measuring the crest-to-trough amplitude for the oscillation nearest
to the edge of the domain, x = 1/2 (a typical profile is shown in (a2) of figure 8). The
result of this numerical experiment is shown in figure 12; indeed, the ripple amplitude lies
approximately on a straight line in the semilog plot, confirming the exponential smallness
of the ripples as B → 0.

Thus, in light of (7.2) these parasitic ripples will fail to be captured by (7.1) and
must be found beyond-all-orders of the naive asymptotic expansion. Consequently, the
use of specialised tools in asymptotic analysis, known as exponential asymptotics, are
required (see, e.g. Chapman, King & Adams 1998; Chapman & Vanden-Broeck 2006;
Trinh & Chapman 2013). Here, the necessary theory for prediction of the parasitic
ripples is analogous, in spirit, to theories for the prediction of generalised solitary waves
(Boyd 1998), but there are a number of additional challenges due to the more involved
boundary-integral framework and the lack of a closed-form leading-order Stokes solution,
y0. Similar bifurcation structures have also been noted in the context of wave-structure
interactions of gravity waves, as seen in the works of , for example, Dias & Vanden-Broeck
(2004), Binder, Dias & Vanden-Broeck (2008), Holmes et al. (2013), Hocking, Holmes &
Forbes (2013); we would expect that our work here with freely propagating waves can be
related to more complex problems where the bottom topography has an appreciable effect.

We remark, in addition, that the idea of exponentially small parasitic capillary ripples
in the classic Stokes wave problem is not a new one. Indeed, as we discussed in § 1.1,
Longuet-Higgins (1963) had proposed an analytical methodology for the derivation of
parasitic ripples (followed by a similar approach in Longuet-Higgins 1995). However,
both of these approaches are ad hoc in nature, and as noted by Perlin et al. (1993), fail
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to predict the correct magnitude of the ripples. Other theories, such as the averaged
Lagrangian methodology of Crapper (1970), exhibit similar difficulties in providing
rigorous comparison to numerical results – the latter author notes that ‘. . . [the theory]
is not very accurate, but at the timing of writing is probably the best available’ (p.
154). Consequently, the point we emphasise is that the systematic B → 0 results we
have presented in this paper are crucial for validation of the small surface tension limit.
The presentation of a complete exponential asymptotics treatment of B → 0 and the
importance of prior approaches in inspiring such a methodology will be the focus of our
forthcoming work.

Finally, we have only found symmetric solutions of the parasitic ripples problem in this
work. For general values of B and F, and not necessarily only for the regime of small B,
we note that there are extensive efforts to search for steady asymmetric solutions. See, for
instance, the works on gravity-capillary waves by Zufiria (1987b) for finite depth, Shimizu
& Shōji (2012) for infinite depth, and Zufiria (1987a) for pure gravity on infinite depth.
Indeed, many of the asymmetric profiles in the works of, for example, Shimizu & Shōji
(2012) exhibit similarities to the profiles shown in our work. Thus, it seems likely that
the bifurcation structures we have presented in this work form a subset of a much more
complicated structure that includes the potential for asymmetry. It remains to be seen if
this asymmetry of the steady system would account for that observed in the experimental
results, or whether it is necessary to consider unsteady flows, such as the time-dependent
Navier–Stokes formulation considered numerically by Mui & Dommermuth (1995) and
Hung & Tsai (2009). We further note that asymmetric wave profiles have also been found
with the unsteady potential flow formulation considered by Moreira & Peregrine (2010)
over a submerged cylinder.
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Appendix A. The wave energy

The non-dimensionalised bulk energy in the physical domain is given by

Ē = F2

2

∫ 1/2

−1/2

∫ η

−∞
(φ2

x + φ2
y ) dy dx + B

∫ 1/2

−1/2

(
[1 + η2

x ]1/2 − 1
)

dx +
∫ 1/2

−1/2

∫ η

−∞
y dy dx.

(A1)

On the right-hand side, the three groups correspond to the kinetic, capillary potential and
gravitational potential energies.

Note that due to our subflow (where φx → −1 as y → −∞), the first and third integrals
on the right-hand side of (A1) will be unbounded. We thus define the energy, E, to be the
difference between (A1) and ‘no-flow’, η = 0, energy, which yields a finite value. This is
then transformed to act on the free surface,ψ = 0, only by the method of Longuet-Higgins
(1989), with which we change variables from (x, y) to find the wave energy under the
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Ŷ
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Figure 13. The rescaling used to produce another solution with a smaller fundamental wavelength is shown.

(φ, ψ) mapping,

E = F2

2

∫ 1/2

−1/2
Y(Xφ − 1) dφ + B

∫ 1/2

−1/2
(
√

J − Xφ) dφ + 1
2

∫ 1/2

−1/2
Y2Xφ dφ. (A2)

With this choice of amplitude parameter, Ehw ≈ 0.00184 corresponds to the fundamental
Stokes wave of maximum height. We rescale the energy by this value to obtain the
amplitude parameter, E , used within this report, given by E = E/Ehw, in (4.1c).

Appendix B. Limiting solutions of smaller fundamental wavelength

If one solution is known to the gravity-capillary wave problem with fundamental
wavelength λ = 1, another can be constructed with λ = 1/α, where α is a positive integer.
This is visualised in figure 13. Suppose we have a solution to Bernoulli’s equation (4.1a)
and the harmonic relation (4.1b). In rescaling Y = αŶ , X = αX̂ and φ = αφ̂, we repeat the
first solution α times to map the original domain from φ ∈ [−α/2, α/2) to the new domain
φ̂ ∈ [−1/2, 1/2). This new solution, X̂ and Ŷ , also satisfies the two governing equations
with rescaled Froude and Bond numbers F̂ and B̂, given by

F̂ = F√
α

and B̂ = B
α2 . (B1a,b)

The energy of this new solution can be found by substituting the rescaled variables X̂, Ŷ ,
F̂ and B̂ into (4.1c), yielding

Ê = E

α2 . (B1c)

Since α > 1, the energy of the new pure α-wave, Ê , will always be smaller than that of
the original wave, E .

This ability to construct new solutions with a fundamental wavelength shorter than the
periodic domain allows us to numerically predict the point at which solutions in the side
branches Sα begin to trap a bubble through a self-intersecting free surface. These locations
are shown in the bifurcation diagram of figure 7. As all of these side branch solutions have
the same energy, Ê = 0.3804, but different values of α, the energy of the original wave is
given by E = α2Ê .

The procedure to find the location at which solutions in Sα become self-intersecting is
as follows.

(i) First, we numerically calculate the (B,F)-solution space of pure 1-waves with a
single trapped bubble amplitude condition. The energy of these solutions will vary.
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Figure 14. (a) The branch of pure-1 solutions displaying an enclosed bubble is shown in the
(B,F)-bifurcation diagram. Note that we have displayed the domain x ∈ [0, 1] to demonstrate this limiting
behaviour.

(ii) Second, we select the profile with E = α2Ê and obtain values for B and F.
(iii) Third, we rescale these by using (B1a) to find F̂ and B̂. This yields the location at

which solutions within the side branch, Sα , become self-intersecting.

Repeating this process for multiple values of α yields the predictions displayed with the
circles in figure 7. With this method we are able to calculate solutions with a large value
of α while keeping the number of Fourier coefficients used during Newton iteration fixed,
and, thus, do not encounter the issue discussed in § 6.3.

It would also be possible to use this method to compute all of the solutions along
the side branch Sα . However, this requires the entire sheet of pure 1-wave solutions
to be found in the three-dimensional (B,F,E )-solution space, which we consider to
be prohibitively expensive computationally. By restricting only to profiles displaying a
single trapped bubble, this solution space simplifies to a single branch throughout the
(B,F,E )-bifurcation diagram, which we projected to the (B,F)-plane for simplicity.

B.1. Limiting pure-1 solution space
This branch of limiting solutions is displayed in figure 14(a). These solutions were found
from the same numerical procedure as in § 4. An initial limiting solution, displaying one
trapped bubble, is found by increasing E . The energy constraint is then replaced by a
trapped bubble condition, which forces the second turning point of X(φ) to a value of
−0.5. We then explore the (B,F)-solution space by continuation.

We note that as B → ∞ along this branch, the wave profile approaches the limiting
pure-capillary solution found by Crapper (1957) (see their figure 1) with an amplitude of
0.730. Solution (b), with B = 4.050, is an example of this. As B → 0 along the same
branch, the solution approaches a depressive solitary wave, demonstrated by solution (d).
This is since the small B limit is related to the solitary wave limit of Lλ → ∞. The
solutions calculated by Schwartz & Vanden-Broeck (1979) (see their figure 2) form the
intermediate range between these two limits.
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EXPONENTIAL ASYMPTOTICS FOR NONLINEAR
TRAVELLING WAVES 4

4.1 Introduction

We saw in chapter 33 that the steady gravity capillary wave problem has solutions
containing exponentially-small parasitic ripples. As the surface tension parameter,
B, approached zero, this yielded a discrete set of solution branches, each of which
corresponded to a fixed number of peaks in the oscillatory ripple.

In this chapter, the asymptotic behaviour of these solutions, derived by
Shelton and TrinhShelton and Trinh (20222022), is presented. Recall from the introduction on exponential
asymptotics of chapter 22 that the exponentially small components of an asymptotic
series are derived through the understanding of the Stokes phenomenon that occurs
across Stokes lines which emanate from singularities of the early orders of the
asymptotic expansion. In the gravity capillary wave problem, these singularities are
also located in the analytic continuation of the leading order asymptotic solution (with
B = 0). However, this leading order solution (a nonlinear gravity/Stokes wave) is
known only numerically. The consequent asymptotic study that we present must be
performed without explicit knowledge of the asymptotic series.
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Exponential asymptotics for steady parasitic
capillary ripples on steep gravity waves

Josh Shelton1,† and Philippe H. Trinh1,†
1Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK

(Received 10 July 2021; revised 28 November 2021; accepted 31 January 2022)

In this paper, we develop an asymptotic theory for steadily travelling gravity–capillary
waves under the small-surface tension limit. In an accompanying work (Shelton et
al., J. Fluid Mech., vol. 922, 2021) it was demonstrated that solutions associated
with a perturbation about a leading-order gravity wave (a Stokes wave) contain
surface-tension-driven parasitic ripples with an exponentially small amplitude. Thus, a
naive Poincaré expansion is insufficient for their description. Here, we develop specialised
methodologies in exponential asymptotics for derivation of the parasitic ripples on
periodic domains. The ripples are shown to arise in conjunction with Stokes lines and the
Stokes phenomenon. The resultant analysis associates the production of parasitic ripples
to the complex-valued singularities associated with the crest of a steep Stokes wave.
A solvability condition is derived, showing that solutions of this type do not exist at certain
values of the Bond number. The asymptotic results are compared with full numerical
solutions and show excellent agreement. The work provides corrections and insight of
a seminal theory on parasitic capillary waves first proposed by Longuet-Higgins (J. Fluid
Mech., vol. 16, issue 1, 1963, pp. 138–159).

Key words: capillary flows, surface gravity waves

1. Introduction

Consider the situation of a steep gravity-driven Stokes wave: a two-dimensional periodic
surface wave of an inviscid and irrotational fluid travelling without change of shape or
form. If a small amount of surface tension is included, it is reasonable to expect that,
under certain conditions, the profile of the Stokes wave is modified or perturbed by a small
amount. Physically, such perturbations may manifest as small-amplitude capillary-driven
ripples concentrated near the crest of the wave. We refer to these perturbations as parasitic
ripples, an experimental observation of which appears in figure 1.

† Email addresses for correspondence: j.shelton@bath.ac.uk, p.trinh@bath.ac.uk
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Figure 1. Experimental picture showing parasitic ripples located near the crests of a steep gravity-dominated
wave. Note that the ripples appear in an asymmetric manner; mechanisms that produce asymmetry are
discussed in § 9.2. Image used with permission from Professor N. Ebuchi (Hokkaido University).

The purpose of this work is to develop a precise asymptotic theory for the parasitic
ripples that arise in the permanently progressive framework of a travelling water wave.
In particular, we demonstrate that for small surface tension, the parasitic ripples are
described by an exponentially small remainder to the base water wave, which is given by
a typical asymptotic expansion in algebraic powers of the surface tension parameter. Their
description requires the use of exponential asymptotics and, indeed, it is this requirement
that distinguishes this work from the previous analytical treatments.

1.1. Steady parasitic solutions for small surface tension
Here, we provide a brief overview of how our treatment differs from previous works. To
begin, the water-wave problem can be formulated in terms of an unknown streamline
speed, q, and streamline angle, θ , considered as functions of the velocity potential, φ,
over the periodic domain −1

2 < φ � 1
2 . The free surface is then governed by Bernoulli’s

equation,

F2q2 dq
dφ

+ sin (θ)− Bq
d

dφ

(
q

dθ
dφ

)
= 0, (1.1)

where F is the Froude number and B is the (inverse) Bond number. These non-dimensional
constants are given by

F = c√
gλ

and B = σ

ρgλ2 , (1.2a,b)

where c is the wave speed, g is the constant acceleration due to gravity, λ is the wavelength,
ρ is the fluid density and σ is the coefficient of surface tension. The limit of small-surface
tension is given by B → 0. A list of variables, parameters and notation used in the main
text is provided in table 1.

As it turns out, the structure of the solution space for the free-surface gravity–capillary
wave problem is remarkably sophisticated. Recently, a portion of this solution space was
investigated numerically by Shelton, Milewski & Trinh (2021) for fixed energy, with a
focus on determining the small-surface tension limit of B → 0. Multiple branches of
solutions were found, each of which can be indexed by the number of capillary-driven
ripples that appear in the periodic domain. This solution space is shown in figure 2 and
the structure of ‘fingers’ (as introduced in the previous work) can be observed.

Two different asymptotic limits are visible in these solutions. The first limit is observed
from the solutions in figures 2(d)–2( f ) at the lower parts of each of the fingers, which are
highly oscillatory with some modulation across the domain. In this region, the solution
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Exponential asymptotics and parasitic capillary ripples

Symbol Notes

Dimensional c Wave speed
quantities g Constant acceleration due to gravity

ρ Fluid density
λ Wavelength
σ Constant coefficient of surface tension

Parameters q Streamline speed
θ Streamline angle

φ + iψ Complex potential comprised of velocity potential
φ and streamfunction ψ

f Complex valued domain, relabeled from the
analytically continued velocity potential φc

a Direction of analytic continuation, where a = ±1
E Energy
B Bond number
F Froude number

Subscript xφ Partial derivative of x with respect to φ
notation qn nth order of the asymptotic series

∑∞
n=0 Bnqn

Ehw Text, used for hw (highest wave), homog
(homogeneous) and phys (physical)

Qa Direction of analytic continuation of the
free-surface solution, Q( f )

Further Ĥ Complex-valued Hilbert transform
notation f ∗ Location of the principal singularity of the

analytically continued Stokes wave
q̄ Overbar, denoting the remainder to a truncated

asymptotic series
𝔮 Frankerscript, denoting the combined solution

q|a=−1 + q|a=1
ξ Forcing terms which appear in the equation for the

remainder, q̄
q̂ Hats denote an inner asymptotic solution within a

boundary layer associated
with the singularity at f = af ∗

Table 1. List of variables, parameters and notation used in the main text.

can be approximated by a multiple-scales framework, with

q(φ) =
∞∑

n=0

Bnqn(φ, φ̂), (1.3)

where φ̂ = φ/B is the fast scale. Substitution of this ansatz into Bernoulli’s equation (1.1)
yields, at order 1/B, the pure-capillary equation of Crapper (1957) for the small-scale
ripples

F2
0q2

0
∂q0

∂φ̂
− q0

∂

∂φ̂

(
q0
∂θ0

∂φ̂

)
= 0. (1.4)

Thus, for these multiple-scale solutions, the highly oscillatory parasitic ripples appear
in the leading-order term, q0(φ, φ̂), of the expansion. We will focus on this asymptotic
regime in future work.

The second asymptotic limit can be observed in figures 2(a)–(c). As these solutions
approach the pure-gravity (Stokes) solution with the same fixed value of the energy as
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Figure 2. The numerical (B,F) solution space calculated by Shelton et al. (2021) is shown for a fixed energy
of E = 0.3804. Insets (a)–(c) show the physical free surface for those cases corresponding to exponentially
small parasitic ripples on Stokes waves; insets (d)–( f ) show a different multiple-scales regime.

B → 0, the leading order solution q0 contains no ripples. Moreover, a standard
perturbative series of the form

q(φ) =
∞∑

n=0

Bnqn(φ) (1.5)

will also not contain the parasitic ripples observed in the numerical solutions. This is
due to the exponential smallness of the amplitude of these ripples, which was confirmed
numerically by Shelton et al. (2021) and is shown to form a straight line in the semi-log
plot in figure 3.

Thus, in the B → 0 limit, the capillary-driven ripples exhibit different behaviours
according to two distinct asymptotic limits of:

(i) a multiple-scales solution, for which the ripples appear in the leading-order
approximation of the solution; and

(ii) a standard perturbative series about a Stokes wave, for which the parasitic ripples
appear beyond all orders.

It is this latter asymptotic regime that we focus on in this work.
In the context of the second scenario, an early analytical theory for the generation

of these parasitic ripples was proposed by Longuet-Higgins (1963), who considered a
small surface-tension perturbation about a base Stokes wave. Although Longuet-Higgins’
seminal work provides a crucial basis for our analysis in this paper, we also demonstrate
that there are a number of key asymptotic inconsistencies that appear in the historical
1963 work. These inconsistencies turn out to be connected with modern understanding
of exponential asymptotics (Berry 1989; Olde Daalhuis et al. 1995; Chapman, King &
Adams 1998), and may have led to the poor agreement noted by Perlin, Lin & Ting

939 A17-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

11
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

56 CHAPTER 4 · EXPONENTIAL ASYMPTOTICS FOR NONLINEAR TRAVELLING WAVES



Exponential asymptotics and parasitic capillary ripples

400 600 800 1000
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1/B

lo
g 

(q̄
)

Figure 3. Our analytical prediction of the exponential-scaling of the parasitic ripple magnitude, q̄, (line)
is compared with numerical results of the full nonlinear equations (circles). These results have both been
calculated with an energy of E = 0.3804 and the gradient of the analytical result is −0.0082.

(1993) in comparison with numerical solutions of the full nonlinear problem. One of
the primary objectives of our work is to provide a critical re-examination of the seminal
Longuet-Higgins (1963) paper, which we perform in § 3. Note that we provide a more
complete literature review of theories and research on the parasitic capillary problem in
our discussion of § 9.

As we demonstrate, the intricate difficulties involved in formulating a corrected theory
for the B → 0 limit are linked to the presence of singularities in the analytical continuation
of the leading-order gravity-wave solution. Due to the singularly perturbed nature of
Bernoulli’s equation (1.1), successive terms in the asymptotic expansion of the solution
require repeated differentiation of the singularity in the leading-order solution. This causes
the expansion to diverge. In studying this divergence, a form for the exponentially small
correction terms to the asymptotic series is found by truncating the series optimally and
these corrections correspond to the anticipated parasitic ripples.

1.2. Outline of the paper
We begin in § 2 with the mathematical formulation of the non-dimensional
gravity–capillary wave system, which is analytically continued into the complex potential
plane. In § 3 we provide a detailed overview of the Longuet-Higgins (1963) analytical
methodology. In § 4, we consider a perturbation expansion for small values of the surface
tension, B. Subsequent terms in this expansion rely on differentiation of the leading-order
gravity-wave solution. Thus, singularities in the analytic continuation of the free-surface
gravity-wave produce a divergence in the asymptotic series as further terms are considered.
The scaling of the principal upper-half and lower-half singularities are derived in § 5. The
divergence of the late terms of the asymptotic expansion is then considered in § 6. This
allows us to find the Stokes lines for our problem, which are shown in § 7 to produce
the switching of exponentially small terms of the solution via Stokes phenomenon.
Application of the periodicity conditions then yields an analytical solution for these
parasitic ripples and an accompanying solvability condition. These solutions and the
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x φ

y ψ

f = φ + iψ

z = x + iy

(b)(a)

Figure 4. The conformal map from (a) the physical z = x + iy-plane to (b) the complex f = φ + iψ-plane.
The boundary, y = η(x), is mapped to the line ψ = 0.

solvability condition are then compared with numerical solutions of the full nonlinear
equations in § 8. Our findings are summarised in § 10, and discussion of further work
occurs in § 9.

2. Mathematical formulation

We begin by considering the two-dimensional free-surface flow of an inviscid, irrotational
and incompressible fluid of infinite depth. The effects of gravity and surface tension are
included. We assume the free surface to be periodic with wavelength λ, and it is chosen to
move to the right with wave speed c. Imposing a sub-flow within the fluid in the opposite
direction cancels out the lateral movement; this results in a steady free surface when ∂t =
0, now assumed to be located at y = η(x). A typical configuration is shown in figure 4.
The system is non-dimensionalised using λ and c for the units of length and velocity,
respectively, and the set of governing equations is taken to be the same as those considered
by Shelton et al. (2021):

φxx + φyy = 0 for y � η, (2.1a)

φy = ηxφx at y = η, (2.1b)

F2

2
(φ2

x + φ2
y )+ y − B

ηxx

(1 + η2
x)

3/2 = F2

2
at y = η, (2.1c)

φy → 0 and φx → −1 as y → −∞. (2.1d)

Thus, the flow is governed by Laplace’s equation (2.1a), kinematic and dynamic boundary
conditions in (2.1b) and (2.1c), respectively, at the free surface, and the deep-water
condition (2.1d). The constants F and B are the Froude and Bond numbers, introduced
earlier in (1.2a,b). Periodicity of the flow and wave profile is specified by enforcing

∇φ
(

x − 1
2 , y

)
= ∇φ

(
x + 1

2 , y
)

and η
(

x − 1
2

)
= η

(
x + 1

2

)
. (2.1e)

In addition to the governing equations in (2.1), we also enforce an amplitude parameter
as a measure of nonlinearity of the solution. This is derived from the physical bulk energy
of the wave via Appendix A of Shelton et al. (2021). This yields

E = 1
Ehw

∫ 1/2

−1/2

[
F2

2
y(xφ − 1)+ B

(√
(x2
φ + y2

φ)− xφ
)

+ 1
2

y2xφ

]
dφ, (2.2)

where the three groupings of terms correspond to the kinetic, capillary and gravitational
potential energies. In (2.2), we have rescaled with the energy of the limiting classical
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Exponential asymptotics and parasitic capillary ripples

x

y

ψ = 0
ψ = 0.01
ψ = 0.02
ψ = 0.03
ψ = 0.04
ψ = 0.05
ψ = 0.06
ψ = 0.07

0.5–0.5 0

Figure 5. The analytic continuation into the upper-half plane is calculated numerically for two solutions
of (2.1) with ψ = 0. The first is a gravity wave with B = 0, F = 0.4104 and E = 0.3804 (thin grey lines) and
the second a gravity–capillary wave with B = 0.001, F = 0.4188 and E = 0.3804 (bold lines). The solutions
with ψ > 0 satisfy the analytically continued equations (2.9) and Re[x] versus Re[y] is shown. This image
can be compared with figure 11 of Longuet-Higgins & Fox (1978), which provides a streamline plot of the
pure-gravity solution in the analytically continued plane.

Stokes wave, Ehw ≈ 0.00184. A central idea in Shelton et al. (2021) concerned the
importance of choosing an amplitude condition on the water waves, and we refer readers
to § 2.2 of that work for further discussion.

Finally, based on the previous study in Shelton et al. (2021), we note that once the energy
condition (2.2) is imposed, there is only a single degree of freedom in specifying either
F or B. We typically consider the Bond number as a free parameter, which results in the
Froude number as an eigenvalue that must be determined via the system (2.1).

2.1. The (q, θ) formulation
In this section, we repose the two-dimensional governing system (2.1) as a
one-dimensional boundary-integral formulation in terms of the free-surface speed and
angle. Following the traditional treatment of potential free-surface flows, we introduce
the complex potential f = φ + iψ . Rather than consider f = f (z), we instead consider
z = z( f ) and, hence, the flow region is known in the potential plane. The complex potential
plane is shown in figure 4. From this definition, the complex velocity can be found to be
df /dz = u − iv, where (u, v) are the horizontal and vertical velocities.

Introducing q as the streamline speed and θ as the streamline angle by the relationship
qe−iθ = u − iv then yields

df
dz

= qe−iθ . (2.3)
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In this form, Bernoulli’s equation (2.1c) is written as

F2q2 dq
dφ

+ sin (θ)− Bq
d

dφ

(
q

dθ
dφ

)
= 0. (2.4a)

By the analyticity of log q − iθ , we introduce the boundary-integral equation which relates
q to the Hilbert transform of θ operating over the free surface. For our periodic domain
from −1/2 to 1/2, we integrate log q − iθ using Cauchy’s theorem and use the periodicity
conditions

q
(
φ − 1

2

)
= q

(
φ + 1

2

)
and θ

(
φ − 1

2

)
= θ

(
φ + 1

2

)
, (2.4b)

which follow from (2.1e), and the deep-water conditions (2.1d) to derive the periodic
Hilbert transform given by

log (q) = H [θ ](φ) = −
∫ 1/2

−1/2
θ(φ′) cot [π(φ′ − φ)]dφ′. (2.4c)

In the above, −
∫

is the Cauchy principal-value integral. The above provides the crucial
relationship between the components q and θ , and further details on the derivation of the
boundary-integral relations can be found in chapter 6 of Vanden-Broeck (2010).

Finally, the energy expression (2.2) is also considered in terms of (q, θ). Noting
that xφ = q−1 cos(θ) and yφ = q−1 sin θ , we substitute y = (F2/2)(1 − q2)+ Bqθφ from
Bernoulli’s equation to find

E = 1
Ehw

∫ 1/2

−1/2

[
G0(φ)+ BG1(φ)+ B2G2(φ)

]
dφ, (2.4d)

where we have defined components

G0(φ) = F4

8q
(1 − q2)(3 cos θ − 2q − q2 cos θ),

G1(φ) = (1 − cos θ)
q

+ F2θφ

2
(2 cos θ − q − q2 cos θ),

G2(φ) = qθ2
φ cos θ

2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.5)

In summary, the water-wave problem, as formulated for q and θ , involves the solution
of (2.4a)–(2.4d). Note that the above sets of equations all involve the evaluation of q and
θ on the streamline ψ = 0.

2.2. Analytic continuation
As we show, the exponential asymptotics procedure of § 7 requires the continuation of
the free-surface solutions, q(φ + 0i) and θ(φ + 0i), into the complex plane, where φ ∈ C.
This free-surface continuation procedure is depicted in figure 6. Hence, we analytically
continue Bernoulli’s equation (2.4a) and the boundary-integral equation (2.4c) into the
complex φ-plane. The independent variable φ is complexified by considering φ 
→ φc ∈
C and, hence, q and θ are analytically continued. For convenience, we relabel φc as f .
Thus, Bernoulli’s equation remains in an identical form to (2.4a), but with the variable φ
replaced by f .
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Figure 6. A schematic of our analytic continuation procedure demonstrates the difference between the physical
φ + iψ plane and our complexified φc space. The location of the principle upper- and lower-half singularities
at f ∗ and −f ∗ of the leading-order flow field are shown by circles, and the main Stokes line from § 7 is shown
dashed.

For the boundary-integral equation (2.4c), we must consider the complexification of the
Hilbert transform. Let us write

H [θ ] = Ĥ [θ ] − aiθ, (2.6)

where Ĥ [θ ] is the complex-valued Hilbert transform,

Ĥ [θ ]( f ) =
∫ 1/2

−1/2
θ(φ′) cot [π(φ′ − f )] dφ′. (2.7)

Note that the integral above is only evaluated along the physical free surface, parameterised
in terms of φ′, where θ takes real values.

In (2.6), we have also introduced the parameter, a, which is defined by

a =
{+1 for Im( f ) > 0,
−1 for Im( f ) < 0. (2.8)

When the Hilbert transform relationship is extended into the upper-half-f -plane, a = 1,
whereas a = −1 for continuation into the lower-half-f -plane. The validity of (2.6) as a
legitimate complexification of the Hilbert transform is verified by taking Im( f ) → 0 on
the right-hand side. Then Ĥ [θ ] yields a principal value integral and residue. The residue
contribution changes sign between Im( f ) → 0+ and Im( f ) → 0−, yielding the constant
a.

In summary, the governing equations for the analytically continued q and θ values are
given by

F2q2q′ + sin (θ)− Bq(qθ ′)′ = 0, (2.9a)

log(q)+ aiθ = Ĥ [θ ], (2.9b)

E = 1
Ehw

∫ 1/2

−1/2

[
G0(φ)+ BG1(φ)+ B2G2(φ)

]
dφ, (2.9c)

q
(
−1

2

)
= q

(
1
2

)
and q′

(
−1

2

)
= q′

(
1
2

)
. (2.9d)
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Note that although (2.9a) and (2.9b) are evaluated through complex f -space, the energy
condition is most easily evaluated on the physical free surface. Here and henceforth, we
use primes (′) to denote differentiation in f . This system will be solved in § 4 with an
expansion holding under the limit of B → 0.

3. A critical examination of the Longuet-Higgins (1963) theory

Longuet-Higgins (1963) proposed a theory for the generation of steady parasitic ripples by
considering an asymptotic expansion for small surface tension such that a gravity wave was
obtained at leading order. In § 3 he wrote the following perturbative form for the solutions,

q(φ, ψ) = q0 + q̄, θ(φ, ψ) = θ0 + θ̄ , y(φ, ψ) = y0 + ȳ, (3.1a–c)

with y denoting the wave height. All quantities are dimensional and functions of the
potential, φ, and stream function, ψ . Let us introduce the logarithm of the speed by
τ = log (q/c), where c is the wave speed. In writing τ = τ0 + τ̄ , this yields q0 = ceτ0

and q̄ = q0τ̄ for τ̄ assumed small.
The expression that Longuet-Higgins produced for the capillary ripples was [cf.

equation (5.18) in Longuet-Higgins 1963]

τ̄ − iθ̄ ∼ F(φ) exp(−icα(φ)/T ′) for φ > 0, (3.2a)

where the functional prefactor, F(φ), and exponent, α(φ), are given by

F(φ) = 4i exp
(

i
∫ φ

0

∂τ0

∂ψ
dφ

)∫ ∞

0

(
∂τ0

∂ψ
cos (αc/T ′)

)
dφ, (3.2b)

α(φ) =
∫ φ

0
eτ0 dφ. (3.2c)

Here, T ′ is the dimensional surface tension coefficient, assumed to be small. Note that
α(φ) involves integration of a real-valued eτ0 over real-valued φ and, hence, α is also real.

One of the main contributions of our work is to provide an improvement on the above
formulae, which contains a number of problems related to the capture of small ripples.
The three most important issues are as follows.

(i) The functional form of the prefactor, F(φ), in (3.2c) is incorrect; the form written
above emerges as a consequence of certain asymptotic inconsistencies in the
derivation.

(ii) Longuet-Higgins predicted correctly that the capillary ripples would exhibit
wavelengths scaling with T ′, but in closer examination of (3.2a), the expression
predicts a wave amplitude that is of O(1) and independent of T ′. We find that for
small values of the surface tension, the wave amplitude is exponentially small in T ′
(indeed this should be clear from figure 3).

(iii) The above formulation does not provide any restriction on the solution space (i.e.
the existence of a solvability condition observed in the full numerical simulations).
It particular, it does not capture any of the observed bifurcation structure seen in
figure 2.

Note that a portion of the work of Longuet-Higgins (1963) is devoted to studying
the addition of viscosity and also incorporating the almost-highest wave theory of
Longuet-Higgins & Fox (1977) into (3.2). However, in the present authors’ view, the
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treatment following § 6 of the 1963 work becomes increasingly ad hoc and difficult to
analyse in view of the fundamental issues with (3.2).

We now discuss these key issues (i)–(iii) in detail.

3.1. Asymptotic inconsistencies in Longuet-Higgins (1963)
Numerical evidence was provided by Shelton et al. (2021) (see figure 3) to demonstrate
that, for those solutions exhibiting small-scale ripples on an underlying gravity wave,
the amplitude of these parasitic ripples is exponentially small as T ′ → 0. Solutions
that display such exponentially small behaviour cannot be described purely by a typical
Poincaré expansion which contains only algebraic powers of the small parameter; their
description will instead appear beyond all orders of the standard Poincaré expansion.

We now review Longuet-Higgins’ approach in our non-dimensional formulation (using
the Bond number, B, and Froude number, F, in (1.2a,b) instead of T ′ and c). We start
with the integrated form of Bernoulli’s equation from (1.1) given in terms of y and the
streamline speed, q, as

F2

2
q2 + y − B

∂q
∂ψ

= const., (3.3)

where the derivative in the ψ direction can be converted into a derivative the φ direction
via the Cauchy–Riemann equations. In his §3, Longuet-Higgins considered a perturbation
(ȳ, q̄) about the gravity-wave ( y0, q0) with the truncations from (3.1a–c) to find

F2

2
(q2

0 + 2q0q̄ + q̄2)+ ( y0 + ȳ)− B
(
∂q0

∂ψ
+ ∂ q̄
∂ψ

)
= const. (3.4)

Here, the O(1) terms, F2q2
0/2 + y0 = const., are satisfied exactly as this is the

gravity-wave equation with solutions ( y0, q0). Thus, we obtain

F2q0q̄ + ȳ − B
∂q0

∂ψ︸ ︷︷ ︸
O(B)

− B
∂ q̄
∂ψ︸ ︷︷ ︸

O(B2)

= − F2q̄2

2︸ ︷︷ ︸
O(B2)

. (3.5)

The asymptotic behaviour indicated by the under-braced quantities follows by making the
standard assumption that the leading corrections, ȳ and q̄, are both of O(B). Consequently,
q̄ � q0, and so Longuet-Higgins neglected the nonlinear term q̄2 on the right-hand side
of this equation. However, the O(B2) term on the left-hand side was not neglected.
This assumption, which appears in his (5.1), is asymptotically inconsistent. In fact, this
inconsistency is how Longuet-Higgins was able to produce approximations to an a priori
exponentially small capillary ripple, because, otherwise, all corrections are ripple-free and
algebraic in B.

The above asymptotic inconsistency is somewhat typical in early models of many
exponential asymptotic problems. There are two (formally correct) methods to proceed
with (3.5).

(i) We may correctly treat ȳ and q̄ to both be of O(B). The leading-order terms in (3.5)
are, thus,

F2q0q̄ + ȳ − B
∂q0

∂ψ
= 0, (3.6)

and would yield the O(B) capillary correction term. The procedure could be
continued to quadratic orders of B and higher, but the resultant perturbative solution
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would never yield an exponentially small ripple. In essence, this is a derivation of
the regular perturbative expansion and leads to the analysis of § 4.

(ii) Alternatively, we may consider ȳ and q̄ to both scale as ∼ e−α/B, i.e. for solutions to
be of Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) type. As differentiation of this
ansatz yields a factor of 1/B, the dominant terms in (3.5) change to

F2q0q̄ − B
∂ q̄
∂ψ︸ ︷︷ ︸

O(e−α/B)

= Bq′
0︸︷︷︸

O(B)

. (3.7)

The form of the above equation would allow for the correct prediction of the WKBJ
phase, α, but not the correct prefactor (amplitude); this is on account of the fact
the right-hand side is the result of a one-term truncation of the Poincaré expansion
(3.1a–c). Instead, the correct procedure must involve additional terms of the regular
expansion. In general, the right-hand side is of O(BN) with N → ∞ as B → 0. In
order to derive the exponentially small ripples, we must optimally truncate with N
chosen carefully (Chapman et al. 1998).

Longuet-Higgins had worked with the asymptotically inconsistent (3.5), with the
right-hand side set to zero, and this was used to derive the solution (3.2).

As shown in § 7.3, the ripples have the analytical behaviour

qexp(φ) = ΛF(φ) exp
(

−χ(φ)
B

)
, (3.8)

where Λ is a constant coefficient, F(φ) is a functional prefactor and χ(φ) is the
exponentially small dependence of the solution, which is related to the quantity α(φ).
These components will be significantly different than those derived by Longuet-Higgins
in (3.2). In order to be correct, the above expression must be derived through optimal
truncation of the standard asymptotic expansion, rather than using the one-term truncation
in (3.1a–c).

We note that it is still nevertheless possible to capture exponentially small behaviour
with the truncation (3.1a–c) used by Longuet-Higgins. A comprehensive review of
truncations of this type, for the case of free-surface flows, was given by Trinh (2017)
who, aided by the use of exponential asymptotics, discussed how the functional form
of the exponentially small waves changes when different truncations are made. The type
utilised here by Longuet-Higgins in (3.1a–c) is an N = 1 truncation as only one term of the
asymptotic series is included. Although this truncation (if dealt with in an asymptotically
consistent manner) can predict the correct exponentially small scaling of the solution, the
functional form of the prefactor and its magnitude [cf. (3.2b)] will be incorrect.

3.2. The choice of integration in the exponential argument
We now discuss the second issue with Longuet-Higgins’ analytical solution, which is
that (3.2) predicts an O(1) solution magnitude. For real values of φ, α takes purely real
values. Thus, as his solution contains e−icα/T ′

, only a rapidly oscillating waveform of
wavelength O(ε) is predicted. The issue is not precisely related to the functional form
of the exponential argument, because modulo the scalings, it can be confirmed via our
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work that

− 1
B

dχ
dφ

∝ − ic
T ′

dα
dφ
. (3.9)

However, Longuet-Higgins restricts φ to take real values and forces the starting point
of integration in α(φ) to be at φ = 0. This is later matched to an ad hoc simplification
near the crest of the wave. This misses a fundamental step in the determination of the
parasitic ripples because, as we show, their existence is intimately connected with the
singularities of χ ′(φ) in the analytic continuation of the free surface. In order to correctly
resolve the Stokes phenomenon in § 7, integration in our expression for χ must begin
from such singularities, and results in a path of integration through the complex-valued
domain. The final result produces a complex-valued qexp, which is paired with a conjugate
contribution to in order to produce a real-valued solution with both exponentially small
phase and amplitude.

4. The expansion for small surface tension, B

In the limit of B → 0, we consider the traditional series expansions for q and θ , given by

q =
∞∑

n=0

Bnqn and θ =
∞∑

n=0

Bnθn. (4.1a,b)

These expansions will satisfy both Bernoulli’s equation (2.9a) and the boundary-integral
equation (2.9b) to each order in B. As noted in the discussion following (2.4d), specifying
B and enforcing the energy constraint requires that F be treated as an eigenvalue. Hence,
we also consider an expansion of the Froude number by

F =
∞∑

n=0

BnFn. (4.1c)

At leading order in (2.9a), (2.9b) and (2.4d) this results in the gravity-wave equations

F2
0q2

0
dq0

df
+ sin (θ0) = 0, (4.2a)

log (q0)+ aiθ0 = Ĥ [θ0], (4.2b)

E = 1
Ehw

∫ 1/2

−1/2

F4
0

8q0
(1 − q2

0)(3 cos θ0 − 2q0 − q2
0 cos θ0) dφ, (4.2c)

where we remind the reader that a = ±1 via the choice of analytic continuation into the
upper- or lower-half planes, respectively [cf. (2.8)]. Here, the Hilbert transform in (4.2b)
acts on the free surface for which f is real. The energy, E , is a specified O(1) constant,
which we take to be less than unity.

At O(B), we have for Bernoulli’s equation,

F2
0q2

0
dq1

df
+ 2F2

0q0q′
0q1 + 2F0F1q2

0q′
0 + θ1 cos θ0 − q0

(
q0θ

′
0
)′ = 0, (4.3a)

for the boundary-integral equation,
q1

q0
+ aiθ1 = Ĥ [θ1], (4.3b)
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and finally for the energy constraint,

0 =
∫ 1/2

−1/2

[
(1 − cos θ0)

q0
+ F2

0θ
′
0

2
(2 cos θ0 − q0 − q2

0 cos θ0)

+ (3 cos θ0 − 2q0 − q2
0 cos θ0)

(
F3

0F1(1 − q2
0)

2q0
− F4

0q1

8q0
(1 + q2

0)

)

+ F4
0(1 − q2

0)

8q0
(−3θ1 sin θ0 − 2q1 + q2

0θ1 sin θ0 − 2q0q1 cos θ0)

]
dφ. (4.3c)

We now consider the O(Bn) components of (2.9a) and (2.9b). The solutions of these, qn,
θn and Fn, are denoted the late terms of the asymptotic expansions (4.1a,b) and (4.1c). An
important feature of these solutions is that they diverge as n → ∞. This is a consequence
of the singularities in the leading-order solutions, q0 and θ0, which are derived in § 5.
Evidently, the O(Bn) equations will contain an unbounded number of terms as n → ∞.
However, due to the divergent nature of the late terms, only a few of these terms will
influence the leading-order solution as n → ∞.

Starting with Bernoulli’s equation (2.9a), we retain the two leading orders in n, yielding[
F2

0

(
q2

0q′
n + 2q0q1q′

n−1 + 2q0q′
0qn + . . .

)
+ 2F0F1q2

0q′
n−1 + 2F0Fnq2

0q′
0 + . . .

]
+ [θn cos θ0 + . . . ] −

[
q2

0θ
′′
n−1 + 2q0q1θ

′′
n−2 + q0θ

′
0q′

n−1 + q0q′
0θ

′
n−1 + . . .

]
= 0.

(4.4a)

At O(Bn), we expand the logarithm in the boundary-integral equation (2.9b) in order to
obtain

qn

q0
− q1qn−1

q2
0

+ · · · + aiθn = Ĥ [θn]. (4.4b)

5. On the singularities of the leading-order flow

A crucial element of the exponential asymptotics analysis relies upon the understanding
that the series (4.1a,b) will diverge on account of singularities (such as poles or branch
points) in the analytic continuation of q and θ . More specifically, we shall find that the
leading-order solution, q0, which corresponds to the pure Stokes gravity wave via (4.2),
contains branch points in the complex plane. As the determination of each subsequent
order generally relies upon differentiating the previous, the result is that the order of the
singularity increases as n → ∞. This is shown in § 6.

On the assumption that the leading-order Stokes wave possesses a singularity in the
complex plane, previously Grant (1973) derived the local asymptotic behaviour using
a dominant balance. That is, by considering the complex velocity df /dz from (2.3), he
showed that near to a point f ∗ ∈ C directly ‘above’ the wave crest

df
dz

∼ ( f − f ∗)1/2. (5.1)

In the exponential asymptotics to follow, we require the singular behaviour of the
individual components of q0 and θ0. This is derived in the following analysis, along with
a discussion of the difference between Grant’s singularity in df /dz and those of (q0, θ0).
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5.1. Singularities in the analytic continuation of q0 and θ0

The singular scaling of q0 and θ0 is now considered. We let f ∗ denote the ‘crest’ singularity
in the upper-half-f -plane. We leave the constant, a, unspecified and take the limit of f →
af ∗. First, it can be verified a posteriori that as f → af ∗, | Im θ0| → ∞ and

sin θ0 = 1
2i

[
eiθ0 − e−iθ0

]
∼ a

2i
eaiθ0 . (5.2)

We multiply Bernoulli’s equation (4.2a) by q0, and use the above scaling for sin θ0 to find

F2
0q3

0
dq0

df
= −q0 sin θ0 ∼ − a

2i
q0eaiθ0 . (5.3)

However, in taking the exponential of the boundary-integral equation (4.2b), we have

q0eaiθ0 = eĤ [θ0]. (5.4)

Note that the complex Hilbert transform is applied to θ0 and integrated over the free
surface, where θ0 = O(1). Thus q0eaiθ0 is also of order unity and we conclude from (5.3)
that q3

0q′
0 tends to a constant as f → af ∗. Integration then yields the following singular

behaviour for q0,
q0 ∼ ca( f − af ∗)1/4. (5.5)

In addition, the scaling for eaiθ0 is found from (5.3), giving

eaiθ0 ∼ −aiF2
0c3

a

2
( f − af ∗)−1/4. (5.6)

Combining these results for q0 in (5.5) and θ0 in (5.6) gives the scaling for the complex
velocity,

df
dz

∼ ca

(
−aiF2

0c3
a

2

)−a

( f − af ∗)(a+1)/4. (5.7)

Note that a = 1 recovers the same singular behaviour of Grant (1973) in the upper-half
plane, shown in (5.1).

5.2. The apparent paradox of a singularity in the lower-half plane
We see from (5.5) for q0 that a singularity exists ‘within the fluid’ in the lower-half plane
at f = −f ∗. This is in contrast to the regular behaviour near the same location provided
by Grant’s result. Our apparent prediction of singular behaviour in the flow field can
readily be resolved by noting that this singularity is for the analytically continued variable,
originally relabelled from qc → q in § 2.2. It is, thus, important to distinguish between
the complexified and ‘physical’ streamline speeds qc and qphys, and angles θc and θphys.
These physical variables are found by taking the magnitude and argument of the complex
velocity q0e−iθ0 as in (5.7), which is regular for a = −1, yielding

qphys =
∣∣∣qce−iθc

∣∣∣ and θphys = Arg
(

qce−iθc
)
. (5.8a,b)

Thus, as f → −f ∗ these physical values are regular for the leading-order Stokes wave
solution. Only by recombining q0e−iθ0 to find the physical values within the fluid have
these singular terms cancelled out.
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6. Exponential asymptotics

As we show in § 7, the exponentially small ripples are intimately connected with the later
term divergence of the asymptotic series (4.1a,b). In this section, we seek to characterise
this divergence.

As we have noted in the previous section, the leading-order solution, q0 and θ0, which
represents a pure gravity wave, contains singularities at the points f = af ∗, where a = ±1
(and further singularities on subsequent Riemann sheets; cf. Crew & Trinh 2016). As later
orders depend on successive differentiation of the previous orders, we intuit that as n →
∞, the late terms of qn and θn diverge. In this limit of n → ∞, the divergence can be
described by a factorial-over-power ansatz of

qn ∼ Q( f )Γ (n + γ )

χ( f )n+γ and θn ∼ Θ( f )Γ (n + γ )

χ( f )n+γ . (6.1a,b)

Here, Q, Θ and χ are all functions of f , and γ is assumed to be constant. Note that,
more generally, there is a summation of contributions of factorial-over-power type: one for
each singularity in f ∈ C. Typically, the nearest singularities determine the leading-order
divergence. As the late terms are determined through a linear perturbative procedure, it
is sufficient to consider the general ansatz (6.1a,b) and add the appropriate contributions
once the general forms of Q, Θ and χ are derived.

A consequence of enforcing the O(Bn) energy condition with these solutions is that the
Froude number, Fn, is determined as an eigenvalue of the system. Thus, Fn in (4.1c) will
also diverge in a similar factorial-over-power manner, given by

Fn ∼ δ(n)Γ (n + γ )

Δn+γ . (6.2)

This unusual divergent form arises from satisfying the boundary conditions on the
complete solution. The presence of a divergent eigenvalue is a feature typically neglected
in similar studies and it will not affect the solvability condition we derive in this work.
However, we discuss some subtle considerations of this property in § 9.

The O(Bn) component of Bernoulli’s equation (4.4a) is a linear differential equation for
qn and θn, where terms containing the divergent Froude number, Fn, appear as a forcing
term. We solve the homogeneous Bernoulli equation, for which the divergent eigenvalue
Fn does not appear. In the discussion of § 9 we provide a more detailed justification of why
it is sufficient to neglect the divergent eigenvalue, Fn, and the O(Bn) energy condition. This
yields

F2
0

(
q2

0q′
n + 2q0q1q′

n−1 + 2q0q′
0qn + · · ·

)
+ 2F0F1q2

0q′
n−1 + · · ·

+ θn cos θ0 − q2
0θ

′′
n−1 − 2q0q1θ

′′
n−2 − q0θ

′
0q′

n−1 − q0q′
0θ

′
n−1 + · · · = 0. (6.3a)

In the above equation, we have explicitly written those terms that are necessary to correctly
determine the leading- and first-order analysis of the late terms as n → ∞. In particular,
note that if the ansatz (6.1a,b) is differentiated once, then because (n + γ )Γ (n + γ ) =
Γ (n + γ + 1), the order in n increases by one. Thus, for example, q′

n−1 = O(qn) as n →
∞.

Next, we use the boundary-integral equation (4.4b) to substitute for θn in (6.3a).
A key idea here, used in previous works on exponential asymptotics and water waves,
is that the term that involves the complex Hilbert transform, Ĥ [θn], is evaluated on
the real axis, and hence away from the singularities f = af ∗. As a consequence, the
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contribution is exponentially subdominant to the left-hand side of (4.4b) as n → ∞. This
idea of neglecting Ĥ [θn] is a classic step in exponential asymptotics applications of many
boundary-integral problems in interfacial flows (cf. § 3 of Chapman (1999), § 5.3 of Trinh,
Chapman & Vanden-Broeck (2011) and Trinh (2017)) and can be rigorously justified in
such cases (Tanveer & Xie 2003).

With this in mind, we rearrange the boundary-integral equation (4.4b) to find

θn ∼ aiqn

q0
− aiq1qn−1

q2
0

+ · · · . (6.3b)

From this form, θ ′′
n−1, θ ′′

n−2 and θ ′
n−1 are found in terms of qn and its derivatives. Next, we

substitute these into Bernoulli’s equation (6.3a) and consider the divergent ansatz (6.1a,b).
The leading order in n, which comes from the terms q′

n and q′′
n−1, is seen to be of order

Γ (n + γ + 1)/χn+γ+1. Dividing out by this divergence yields terms that are of O(1),
O(1/n), and so on as n → ∞.

Combining (6.3a) and (6.3b), we obtain at leading order

χ ′(q0F2
0 + aiχ ′) = 0. (6.4)

We seek the non-trivial function χ that forces the divergence of the asymptotic expansion
and, hence, takes the value of χ = 0 at the singularities in f . Assuming that χ ′ /= 0, we
integrate to find

χ( f ) = χa( f ) = aiF2
0

∫ f

af ∗
q0( f ′) df ′. (6.5)

Here, we have chosen the starting point of integration to be the upper/lower-half singularity
at f = af ∗ where a = ±1. The function χ , denoted the singulant, plays a pivotal role in
the form of the exponentially small terms and the associated Stokes smoothing procedure
of § 7. It will be convenient to distinguish between the two singulants using the sub-index
a.

At the next order in Bernoulli’s equation, O(1/n), we use χ ′ = aiF2
0q0 and χ ′′ = aiF2

0q′
0

to find

Q′

Q
= 2

q′
0

q0
− aiF2

0q1 − 2aiF0F1q0 + aiθ ′
0 + ai cos θ0

F2
0q3

0
. (6.6)

Thus, by integration, we find

Q( f ) = Qa( f ) = Λaq2
0 exp

(
aiθ0 + ai

∫ f

0

[
cos θ0

F2
0q3

0
− F2

0q1 − 2F0F1q0

]
df ′

)
. (6.7)

The starting point of integration has been chosen to be on the free surface at f = 0 for
convenience. Other points may be chosen, which alters the value of the constant Λa. We
note that this constant may take different values for a = 1 and a = −1. Similarly, the form
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of Θ is found using (6.3b) and, thus,

Θ( f ) = Θa( f ) = aiQa( f )
q0( f )

. (6.8)

Substitution of this solution for Q( f ) into ansatz (6.1a,b) then yields

qn( f ) ∼ Λaq2
0 exp

(
aiθ0 + ai

∫ f

0

[
cos θ0

F2
0q3

0
− F2

0q1 − 2F0F1q0

]
df ′

)
Γ (n + γ )

χn+γ , (6.9)

with χ given by (6.5). A similar form for θn may also be found by using the expression for
Θ given in (6.8).

6.1. Determination of γ and Λ
At this point, we have determined the key components, Q, Θ and χ , that appear in the
factorial-over-power ansatz (6.1a,b). This leaves the value of the constants γ and Λa.
Note that our asymptotic series (4.1a,b) reorders as f → af ∗ (for which q0 = O(Bq1) for
instance) and the matched asymptotics procedure that results in investigating this limit
yields γ and Λa.

In order to determine the constant γ , we take the limit f → af ∗ and match the order of
the singularity of the divergent ansatz, valid for n large, to the low-order behaviour. Setting
n = 0 in (6.9) and taking the limit of f → af ∗ yields

qn|n=0 = O

(
q2

0
χγ

exp

(
aiθ0 + ai

∫ f

0

[
cos θ0

F2
0q3

0
− F2

0q1 − 2F0F1q0

]
df ′

))
. (6.10)

From the scalings of q0 and θ0 in § 5.1, and the scaling of q1 in Appendix A we find that

χγ = O(( f − af ∗)5γ /4),

q2
0 exp

(
ai

∫ f

0

[
cos θ0

F2
0q3

0
− F2

0q1 − 2F0F1q0

]
df

)
= O

(
( f − af ∗)5/4

)
.

⎫⎪⎪⎬
⎪⎪⎭ (6.11)

We substitute the above into (6.10) and match to q0 = O( f − af ∗)1/4 to find

γ = 4
5 . (6.12)

As is the case in many exponential asymptotic analyses, the determination of the
constant prefactor, Λa, is often the most troublesome aspect of the procedure. For our
purposes, it will be sufficient to know that Λa is a non-zero constant, and can be
determined via the solution of a numerical recursion relation. Specifically, it is found by
matching the ‘inner’ limit of qn from the divergent form (6.9) with the ‘outer’ limit of the
inner solution for q near f = af ∗. This analysis is performed in Appendix B, yielding

Λa = − 2if ∗

F2
0c4

a
e−P(af ∗)

(
4aiF2

0ca

5

)4/5

lim
n→∞

q̂n

Γ (n + γ )
. (6.13)

Here, q̂n is the nth term of the outer limit of an inner solution holding near f = af ∗, and
can be determined by recurrence relation (B14). The constant ca is the prefactor of the
singular scaling of q0 from (5.6) whereas P(af ∗) is given in (A7). We do not need to work
with the precise value ofΛa; however, later in §§ 6.2 and 7.3, the fact thatΛ1 andΛ−1 are
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complex conjugates will be crucial to obtain a real-valued solution on the free surface. As
the prefactor, Λa, only has a scaling effect on the solutions (and is independent of B), it
will be convenient to choose a specific value for visualisation purposes in § 8.

6.2. The divergence along the free surface
In order to capture the divergence of qn along the free surface, Im[ f ] = 0, we must include
the effects of the two symmetrically placed crest singularities indexed by a = ±1. We thus
write

𝔮n = qn|a=1 + qn|a=−1. (6.14)

By the results of § B.3, the constants Λ1 and Λ−1 are the complex conjugates of one
another. With regards to the two singulants, χ1 and χ−1, we may split the path of
integration via

χa(φ) = aiF2
0

[∫ 0

af ∗
+

∫ φ

0

]
q0( f ′) df ′, (6.15)

for f = φ along the real axis. As q0 takes real values on the free-surface, Im[ f ] = 0, the
second integral above is seen to take purely imaginary values. By the Schwarz reflection
principle, q0 evaluated on the imaginary axis between −af ∗ and af ∗ is purely real and
symmetric about the origin. Therefore the first integral on the right-hand side of (6.15) is
purely real and takes the same value regardless of the choice of a. Thus, χ−1 and χ1 are
also the complex conjugates of one another on the free surface.

Due to this behaviour of Λa and χa, we write

Λa = |Λ1| exp[ai argΛ1] and χa(φ) = |χ1(φ)| exp[ai argχ1(φ)], (6.16a,b)

which upon substitution into 𝔮n = qn|a=1 + qn|a=−1 yields

𝔮n(φ) = 2|Λ1|q2
0Γ (n + γ )

|χ1(φ)|n+γ cos
[
argΛ1 − (n + γ ) argχ1(φ)+ θ0 + I(φ)

]
, (6.17)

where we have defined

I(φ) =
∫ φ

0

(
cos θ0

F2
0q3

0
− F2

0q1 − 2F0F1q0

)
dφ′. (6.18)

Thus, the above form (6.17) captures the real-valued divergence on the free-surface.
We have successfully derived an expression for the late term divergence on the axis in

(6.17) and off the axis in (6.9).

7. Stokes line smoothing

One of the key ideas of exponential asymptotics is that there exists a link between
the factorial-over-power form of the divergences, given (6.1a,b) and (6.17), and the
exponentially small terms we wish to derive. Following the work of Dingle (1973), Stokes
lines are contours in the f -plane for which both

Im[χa( f )] = 0 and Re[χa( f )] � 0. (7.1a,b)

Across and in the vicinity of these contours, exponentially small terms in the
solution smoothly change in magnitude across a boundary layer. This is known as the
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(b)(a)

Figure 7. Values of the singulant, χa, are shown from the upper-half singularity in (a), with a = 1, and from
the lower-half singularity in (b), with a = −1. The Stokes lines, which satisfy conditions (7.1a,b), are shown by
the thick lines in the grey-shaded regions. This configuration corresponds to the energy E = 0.3804 for which
the upper-half plane singularity is at f ∗ ≈ 0.07776i. The chosen branch cuts for each of these singularities are
shown by dashed lines.

Stokes phenomenon. In this section, we discuss the configuration of Stokes lines, and then
perform the optimal truncation and Stokes-line-smoothing procedures needed to derive
the exponentially small capillary ripples.

7.1. Analysis of the Stokes lines
To find the Stokes lines for our problem, we apply conditions (7.1a,b) to our expression for
the singulant, χa, given in (6.5) as

χa( f ) = aiF2
0

∫ f

af ∗
q0( f ′) df ′. (7.2)

Here, integration begins at the principal singularity, f ′ = af ∗, that lies in the analytic
continuation of the free surface. Note that unlike many traditional studies in exponential
asymptotics, the determination of the singulant function requires the leading-order
solution, q0, for which there does not exist a closed-form analytical solution. We use
numerical values of q0 to evaluate the singulant, χa.

The procedure is as follows. Given a fixed value of the energy, we obtain numerical
values of q0 and θ0 along the free-surface Im[ f ] = 0 using the numerical computations
of Shelton et al. (2021) or any standard procedure for calculating gravity Stokes waves
(cf. Vanden-Broeck 1986). Next, the analytic continuation method of Crew & Trinh (2016)
is used to find q0 and θ0 in the complex f -plane. Values for χa are then found across
the domain by integrating q0 along paths originating at either singularity. Graphs of the
critical contours of Im[χa] and Re[χa] are given in figure 7 for the two choices of a = 1
and a = −1. We see that there are two Stokes lines along the imaginary axis from f = −f ∗
to f = f ∗, one for a = 1 and another for a = −1, which intersect with the free surface at
the wave crest φ = 0.

Note that only the Stokes lines that intersect with the free-surface, Im[ f ] = 0, are
considered; other Stokes lines would indicate a switching on or switching off of
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exponentials in the general complex plane, but are not associated with the physical
production of surface ripples.

7.2. Optimal truncation
In order to capture the exponentially small components of the solution, which do not
appear in the Poincaré series (4.1a,b), we truncate the series at n = N − 1 by considering

q =
N−1∑
n=0

Bnqn︸ ︷︷ ︸
qr

+q̄, θ =
N−1∑
n=0

Bnθn︸ ︷︷ ︸
θr

+θ̄ and F =
N−1∑
n=0

BnFn︸ ︷︷ ︸
Fr

+F̄, (7.3a–c)

and, thus, we have introduced the notation of qr, θr and Fr for the truncated regular
expansions of the solutions and eigenvalue.

We demonstrate that when truncated optimally at the point where two consecutive terms
are of the same order, that is, choose N such that |BNqN | ∼ |BN+1qN+1|, the remainders
q̄, θ̄ and F̄ will be exponentially small. This point of optimal truncation is given by

N = |χa|
B

+ ρ, (7.4)

where ρ ∈ [0, 1) is a bounded number to ensure N is an integer.
Substituting these into the boundary-integral equation (2.9b) yields a relationship

between θ̄ and q̄, given by

θ̄ = aiq̄
qr

− aiξint − aiĤ [θ̄ ] + O(q̄2). (7.5)

Similarly we can insert the truncations (7.3a–c) into Bernoulli’s equation (2.9a). This gives
a second-order differential equation for q̄ and θ̄ . Upon substituting for θ̄ from (7.5), this is
reduced down to an equation for q̄ only. Furthermore, we neglect the Hilbert transform of
the remainder, Ĥ [θ̄ ], as this is anticipated to be exponentially subdominant. This yields[

aiBqr
]

q̄′′ +
[
−F2

r q2
r − aiBq′

r + Bqrθ
′
r − aiBqrξ

′
int

]
q̄′

+
[
−ai cos θr

qr
− 2F2

r qrq′
r + aiB(q′

r)
2

qr
+ Bq′

rθ
′
r

−aiBq′′
r + 2Bqrθ

′′
r − aiBq′

rξ
′
int − 2aiBqrξ

′′
int

]
q̄ − 2Frq2

r q′
rF̄ = R + O(q̄2). (7.6)

This is a second-order differential equation for q̄, in which the forcing terms on the
right-hand side are of O(BN). A similar equation was derived by Trinh (2017) for the
low-Froude limit of gravity waves. Here, we have introduced the forcing terms ξint
and ξbern arising from the Poincaré expansion in the boundary-integral and Bernoulli’s
equations as

ξint = Ĥ [θr] − aiθr − log qr, (7.7a)

ξbern = F2
r q2

r q′
r + sin (θr)− B(q2

r θ
′′
r + θ ′

rq′
rqr), (7.7b)

R = ξbern − ai cos θrξint + aiBqrq′
rξ

′
int + aiBq2

r ξ
′′
int. (7.7c)

Due to the truncation at n = N − 1, equation (7.6) is satisfied exactly for every order up to
and including BN−1 because ξint = O(BN) and ξbern = O(BN).
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7.3. Stokes line smoothing
We now seek a closed-form asymptotic expression for q̄ and the terms switched-on
across Stokes lines. We start with the homogeneous form of (7.6), in which the terms
on the right-hand side and F̄ are neglected. Following the exponential asymptotics
methodology established in, e.g., § 4 of Chapman & Vanden-Broeck (2006), we note that
the homogeneous problem has solutions of the form,

q̄homog ∼ Qa( f ) exp
(

−χa( f )
B

)
, (7.8)

where χa( f ) and Qa( f ) satisfy those same equations as found for the late-term ansatz via
(6.4) and (6.6). To observe the Stokes phenomenon and the switching of exponentials, we
now include the forcing terms on the right-hand side of (7.6) for q̄. We consider a solution
of the form

q̄( f ) = Aa( f )Qa( f ) exp
(

−χa( f )
B

)
, (7.9)

where the Stokes multiplier Aa( f ) is introduced to capture the switching behaviour that
occurs across the Stokes lines. When the truncation point, N, is chosen optimally as in
(7.4), q̄ will be seen to be exponentially small and will change in magnitude across the
lines where Im[χa] = 0 and Re[χa] � 0.

The algebra for this procedure follows very similarly to, e.g., Chapman et al. (1998),
Chapman & Vanden-Broeck (2006) and Trinh (2017). Thus, when the exponential form
of (7.9) for q̄ is substituted into (7.6), the dominant balance at leading order is identically
satisfied by our choice of χ determined in (6.4). The first non-trivial balance occurs at
O(e−χ/B), which also involves the forcing terms on the right-hand side. We extract the
O(BN) terms from R in (7.7c), and this yields R ∼ −q2

0θ
′′
N−1BN . The governing equation

for Aa is then given by [
F2

0q2
0Qae−χa/B

] dAa

df
∼ −aiq0q′′

N−1BN, (7.10)

where we have used θ ′′
N−1 ∼ aiq−1

0 q′′
N−1 from the boundary-integral equation (6.3b).

By substituting in the factorial-over-power form for q′′
N−1 from (6.1a,b), and using the

chain rule to change differentiation to be in terms of χa, we find

dAa

dχa
= BNeχa/BΓ (N + 1 + γ )

χ
N+1+γ
a

. (7.11)

This is now of an equivalent form to that found by Chapman & Vanden-Broeck (2006)
for the low-Froude limit of gravity waves (cf. their (4.4)). In brief, the procedure is as
follows. First, we write χa = raeiϑa and truncate optimally via (7.4) with N = ra/B + ρ.
Examination of the differential equation (7.11) shows that there exists a boundary layer at
ϑa = 0 and indeed this is the anticipated Stokes line where Im[χa] = 0. The appropriate
inner variable near the Stokes line is ϑa = B1/2ϑa and (7.11) can then be integrated to
show

Aa( f ) = Ca +
√

2πi
Bγ

∫ ϑa
√

ra

−∞
exp (−t2/2) dt, (7.12)

where Ca is constant. Taking the outer limit of ϑ̄ → ∞, we then see that across the Stokes
line, there is a jump of

Aa(ϑa → 0−)− Aa(ϑa → 0+) = 2πi
Bγ

. (7.13)
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f ∗

−f ∗

ϑ1 < 0 ϑ1 > 0 ϑ−1 > 0 ϑ−1 < 0

C1
C1 + 2πi/Bγ C–1 + 2πi/Bγ C−1

(a) (b)

Figure 8. The Stokes smoothing procedure is visualised in the f -plane for (a) a = 1 and (b) a = −1.

As concerns the relationship between Stokes-line contributions from f = f ∗ and f =
−f ∗, note that as χ1 is the complex conjugate of χ−1, we have ϑ1 = −ϑ−1. Thus, we
anticipate that C1 switches to C1 + 2πi/Bγ as one proceeds from left-to-right across the
Stokes line from f = f ∗. This is shown in figure 8(a). On the other hand, C−1 switches
to C−1 + 2πi/Bγ proceeding from right-to-left across the Stokes line from f = −f ∗. This
is shown in figure 8(b). We emphasise that the above Stokes smoothing procedure only
provides the local change of the prefactor, Aa, across the Stokes line. Determination of the
constant, Ca, will follow from imposition of the boundary conditions.

Returning now to (7.9), we write the leading-order exponentials on the axis, Im[ f ] = 0,
via �̄� = q̄|a=1 + q̄|a=−1, either as an inner solution

�̄�(φ) = A1(φ)Q1(φ) exp
(

−χ1(φ)

B

)
+ A−1(φ)Q−1(φ) exp

(
−χ−1(φ)

B

)
, (7.14a)

for which A(φ) is given by (7.12), or as an outer solution by

�̄�(φ) ∼

⎧⎪⎪⎨
⎪⎪⎩

C1
(
Qae−χa/B

)∣∣
a=1 +

{
C−1 + 2πi

Bγ

} (
Qae−χa/B

)∣∣
a=−1 for φ < 0,{

C1 + 2πi
Bγ

} (
Qae−χa/B

)∣∣
a=1 + C−1

(
Qae−χa/B

)∣∣
a=−1 for φ > 0.

(7.14b)

In (7.14b), the constants, C1 and C−1, will be determined by enforcing periodicity on �̄�
and �̄�′, as given by

�̄�
(
−1

2

)
= �̄�

(
1
2

)
and �̄�′

(
−1

2

)
= �̄�′

(
1
2

)
. (7.15a,b)

The second relation above arose by evaluating the derivative of periodicity condition (2.4b)
at φ = 0. In writing C1 = CR

1 + iCI
1 and C−1 = CR

−1 + iCI
−1, we have four unknowns

balancing the four equations from the real and imaginary parts of (7.15a,b). Using Λa =
|Λ1|eai argΛ1 from (6.16a,b) and χa = Re[χ1] + ai Im[χ1] then yields the solutions

CI
1 = − π

Bγ
, CR

1 = − π

Bγ
cos [G(1/2)]
sin [G(1/2)]

,

CI
−1 = − π

Bγ
, CR

−1 = − π

Bγ
cos [G(1/2])
sin [G(1/2)]

,

⎫⎪⎪⎬
⎪⎪⎭ (7.16)

where

G(φ) = θ0(φ)+
∫ φ

0

[
cos θ0

F2
0q3

0
− F2

0q1 − 2F0F1q0 − F2
0q0

B

]
dφ. (7.17)
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Solutions are not possible when sin[G(1/2)] = 0, from which we obtain the following
discrete set of values of B,

Bn =
F2

0

∫ 1/2

0
q0 dφ

θ0(1/2)+
∫ 1/2

0

[
cos θ0

F2
0q3

0
− F2

0q1 − 2F0F1q0

]
dφ + nπ

for n ∈ Z
+. (7.18)

Formula (7.18) provides the crucial eigenvalue condition for the non-existence of solutions.
Recall that the ‘parameters’ in this formula, e.g. {F0,F1, q0, q1, θ0}, are dependent on the
chosen energy, E , in (2.9c). Note that θ0(1/2) = 0 and, in addition, only solutions with
positive integer values of n correspond to positive values of the Bond number. Thus, for
instance, it is predicted that solutions do not exist at a countably infinite set of discrete
values,

B1(E ) > B2(E ) > B3(E ) > · · · > Bn(E ) > · · · > 0. (7.19)

In the next section, we show that these values of B are associated with points between
adjacent ‘fingers’ of solutions in the bifurcation diagram.

Substitution of (7.16) for C1 and C−1 into (7.14b) then gives a real-valued solution on
the free surface. First, for φ < 0, we have

�̄�(φ)=−2π

Bγ
|Λ1|q2

0e−Re[χ1]/B
[

cos (G(1/2))
sin(G(1/2))

cos[argΛ1+G(φ)]−sin[argΛ1+G(φ)]
]
,

(7.20a)
whereas for values on the positive real axis φ > 0,

�̄�(φ)=−2π

Bγ
|Λ1|q2

0e−Re[χ1]/B
[

cos (G(1/2))
sin(G(1/2))

cos[argΛ1+G(φ)]+sin[argΛ1+G(φ)]
]
.

(7.20b)
Note that the above forms for �̄� are valid away from the boundary layer surrounding the
Stokes line at φ = 0.

8. Numerical comparisons with the full water-wave model

We now compare the asymptotic results of § 7.3 with the numerical solutions of the
fully nonlinear equations (2.1a)–(2.1d) found by Shelton et al. (2021). These numerical
solutions were calculated using a spectral method on a domain, φ, uniformly discretised
with N = 1024 points (cf. § 4 of Shelton et al. (2021) for details).

8.1. Finding values for our analytical solution
To obtain precise values for our analytical solution, �̄�, across the domain, we use the form
given in (7.14a). This form includes the local change across the boundary layer at φ = 0
and requires known values of q0, θ0, F0, q1 and F1 for a specified value of the energy, E .

In order to calculate values for these nonlinear solutions, we employ Newton iteration
on the O(1) and O(B) (4.2) and (4.3) with an even discretisation of the domain, φ. With
these values known, the three components of �̄�, the Stokes prefactor, Aa(φ), the functional
prefactor, Qa(φ), and the singulant, χa(φ), may then be calculated individually with a
specified value of B.
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(i) For Qa(φ) given in (6.7), we take the previously computed values for θ0, q0, F0,
q1 and F1 and employ numerical integration across the domain. As noted in § 6.1,
it is convenient to choose a value of |Λa| in order to facilitate visualisation of the
ripples. In figures 9 and 11, we plot �̄� with |Λa| = 1. In figure 10, in order to compare
between asymptotic and numerical solutions, we have chosen |Λa| = 0.006, which is
estimated by numerical fitting. It can be verified that fitting to other fingers changes
the constant by only a small amount.

(ii) To determine χa(φ), we split the range of integration as in (6.15). This allows for
Re[χa] to be calculated by integrating q0 through the complex-valued domain from
the singularity at f = af ∗ to the wave crest at f = 0. Next, Im[χa] is found by
integrating q0 over the free surface from f = 0 to f = φ. Values for the integrand, q0,
are found with the analytic continuation method from Crew & Trinh (2016) described
in § 7.1.

(iii) To find the Stokes prefactor, Aa(φ), from (7.12), the upper limit of the integral is
determined by using ra = |χa| and ϑ̄ = argχa/B from the known values of χa. The
integral is then calculated with known values of the error function. The constants Ca
are then found by calculating G(1/2) from (7.17).

This process yields values for our exponentially small component of the solution, �̄�,
for specified values of B and E . The values of Bn where the solvability condition fails
from (7.18) are also found with the same method used for Qa above.

8.2. Comparisons
We begin by comparing the values of Bn (where the solvability condition fails) with the
(B,F) bifurcation space computed numerically by Shelton et al. (2021). In taking the
same value of the energy, E = 0.3804, we visualise these points in the (B,F)-plane by
approximating Fn by Fn ≈ F0 + BnF1 (an error of O(B2)). This comparison is shown in
figure 9. These locations where perturbation solutions are non-existent show excellent
agreement with the points between adjacent branches of solutions where numerical
solutions could not be calculated.

In addition, four of our analytical solution profiles, �̄�, are shown in insets (a)–(d) of this
figure. These solutions have been selected to lie in the midpoint of the solution branch,
with a Bond number of (B = (Bn + Bn+1)/2). They demonstrate that the ripples obtain
their greatest magnitude at the edge of the periodic domain. Note that these ripples are
plotted on a zero background state. These same solutions are also shown in figure 10,
which includes the first two terms of the asymptotic expansion, q0 + Bq1. These have
been provided to compare the magnitude of the ripples in relation to the leading-order
Stokes wave.

In our previous numerical work, we demonstrated that as one of the solution branches
was transversed, the solution develops an extra wavelength, and this was seen to occur
near the top of the solution branch. We observe that the same effect occurs with
our analytical solutions. This is demonstrated in figure 11, in which we provide eight
solution profiles equally spaced in the Bond number between two adjacent values
of Bn. From these, we see that as we travel from right to left across the solution
branch by decreasing the value of B, an additional ripple forms in the centre of the
domain.
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Figure 9. A comparison between the numerical solution branches of Shelton et al. (2021) (shown solid) and
the analytical approximations of Bn from (7.18) (shown as black circles). Insets (a)–(d) show the exponentially
small ripples, �̄�, from (7.20) for the four locations of B = 0.001876, B = 0.001264, B = 0.0009527 and B =
0.0004978 (shown as crosses in the main inset). The solutions are all computed at E = 0.3804. A value of
|Λa| = 1 has been used for the constant prefactor.

8.3. The effects of changing the energy, E

All of the above solutions have been computed for the same fixed value of the energy,
E = 0.3804. We now relax this restriction by considering values of E between 0 and 0.9.
Note that the limiting Stokes wave is not the most energetic (cf. § 6 of Longuet-Higgins
& Fox 1978) and for values of E very close to unity, there are multiple possible solutions
beyond the classical Stokes wave. We do not consider solutions too close to the highest
wave (E > 0.9) in this work.

In figure 12 we show how the locations where the solvability condition fails, Bn(E ),
change with the energy for values of n � 40. We note that as the energy deceases to
zero and we enter the linear regime, these lines tend towards the predictions by Wilton
(1915). These are the discrete values of the Bond number for which two linear solutions
of wavenumbers 1 and n also have the same Froude number. Thus, a single leading-order
gravity wave of the type assumed in this work is insufficient for describing Wilton’s linear
solutions, and is why we recover his values under this limit.
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Figure 10. The analytical solution, q = q0 + Bq1 + q̄, is shown (line) for the four profiles calculated in figure
9. For comparison, numerical solutions with the same value of B and E are shown dashed in insets (a) and (b).
A value of |Λa| = 0.006 has been used for these comparisons, estimated from numerical comparisons.

0.95 1.00 1.05
(×10−3)
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0.410

0.415

0.420
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–0.5 0.50

–0.4
0
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φ
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¯

Figure 11. Here, for E = 0.3804, we plot the exponentially small solution, �̄�, from (7.20) between the two
values of B29 = 0.0009360 and B28 = 0.0009694. Note that the base gravity wave is thus not shown. The eight
chosen values of B (crosses) are equally spaced between the values of B29 and B28. This corresponds to the
finger G28→29 found numerically by Shelton et al. (2021). A value of |Λa| = 1 has been used for the constant
prefactor.

We have also chosen to provide values of Re[χ ] for different values of E , as this controls
the exponential behaviour of the magnitude of our parasitic ripples. This is shown in
figure 13, and shows that the constant controlling the exponential behaviour of our solution
increases with the energy, E .
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Figure 12. Values for Bn, where the solvability condition fails, are shown for different values of the energy,
E . The small-E predictions by Wilton (1915) are shown by the black dots at E = 0 for n = 20, 30 and 40.
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Figure 13. The value of −Re[χ] from (6.15) is shown for different values of the energy, E .

9. Discussion

9.1. Open and resolved challenges in exponential asymptotics
Over the past 20 years, the application of exponential asymptotics to fluid mechanical
problems has been very successful in the discovery and development of new analytical
methodologies (Boyd 1998). However, there are a number of distinguishing features in our
treatment of the parasitic ripples problem that are particularly interesting.

First, the majority of preceding works in exponential asymptotics typically rely upon
the derivation of a crucial singulant function, χ , for which an exact analytical form is
known. In our analysis, however, the singulant in (6.5) requires the complex integration of
a nonlinear gravity wave, which must be precomputed. Moreover, the values of χ and the
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associated Stokes lines must be determined in the complex plane, and this has necessitated
a separate study of the distribution and properties of the singularities of the Stokes wave
problem (Crew & Trinh 2016) as a precursor to the present work.

Second, there are a number of challenging steps in the exponential asymptotics analysis
that we highlight here. The reader should note two interesting features.

(i) The eigenvalues, Fn, are divergent, but we have not had to rely upon their form in
the derivation of 𝔮n in § 6.

(ii) Our factorial-over-power expression for 𝔮n, valid only in the limit n → ∞, satisfies
neither the energy condition nor the periodicity conditions on qn and q′

n. This is
because our approximation of this divergence is only valid in the vicinity of the
Stokes line about which the Stokes phenomenon occurs, rather than globally.

Through a more detailed analysis, it is possible to derive both a factorial-over-power ansatz
for Fn, as well as the additional terms necessary so that the late-term approximation
satisfies the energetic and periodicity conditions. We provide a brief comment on the
procedure, but some of these issues are more easily observed in a simpler eigenvalue
problem exhibiting divergence; this will be the focus of future work by the current authors
(authors’ unpublished observations).

In essence, the eigenvalue divergence produces inhomogeneous contributions to
Bernoulli’s equation depending on Fn, Fn−1, . . . (compare (6.3a) with (4.4a)). These
contributions, of the form (6.2), will force additional components in the late-term
representation of the solution. Both the periodicity and energy constraints can then be
satisfied with the inclusion of further components associated with χ ′ = 0, currently
neglected following (6.4). Once these additional divergences are included, a prediction
for the eigenvalue, Fn, is obtained.

As it turns out, however, these additional components are subdominant to the divergent
ansatz (6.1a,b) with χ = χa( f ) given by (6.5) near the relevant Stokes lines. Consequently,
these components will not influence the Stokes smoothing procedure derived in § 7. We
note that this is analogous to how the complex Hilbert transform, Ĥ [θn], is neglected in
the discussion following (6.3a).

9.2. Asymmetry in steady and temporal water-waves
It is important to note that in this work, following Longuet-Higgins (1963), we have
focused on a fairly restricted view of parasitic ripples that correspond to the classical
potential flow formulation of a steadily travelling wave composed of a perturbation about a
symmetric nonlinear gravity wave. This assumption also follows from the class of solutions
first detected by Shelton et al. (2021).

We would expect that within this steady potential framework, it is possible to obtain
general asymmetric gravity–capillary solutions exhibiting small-scale ripples in the B →
0 limit. Indeed, solutions resembling this anticipated structure have been calculated
by previous authors; for instance Zufiria (1987b) considered symmetry breaking in
gravity–capillary waves for moderately small values of the surface-tension coefficient. The
properties of the waves in that study match those presented in this paper, as some appear to
be perturbations about the asymmetric gravity waves found in Zufiria (1987a). The general
detection of asymmetric gravity–capillary waves remains a challenging problem (cf. Gao,
Wang & Vanden-Broeck 2017).

However, it is likely that the above relaxation of symmetry in the solutions does not
lead to the typical distribution of asymmetric capillary ripples that appear on the forward
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face of a steep travelling wave. In order to produce the asymmetry viewed in experimental
results, it is likely necessary to consider further modifications to this theory (cf. Perlin &
Schultz 2000). Possible extensions include accounting for the additional effects of time
dependence, viscosity or vorticity.

The problem of time-dependent parasitic waves has been studied numerically by
multiple authors, such as Hung & Tsai (2009), Murashige & Choi (2017) and Wilkening
& Zhao (2021). For instance, Hung & Tsai (2009) studied a time-dependent formulation
that includes vortical effects; a pure gravity wave is chosen as the initial condition and
time-evolution results in the formation of parasitic ripples ahead of the wave crest. Similar
methodologies have been implemented by, e.g., Deike, Popinet & Melville (2015) in
order to study the formation of time-dependent parasitic ripples in the full Navier–Stokes
system using a volume-of-fluid method. We note that small-scale ripples can also occur
near the crest of gravity waves as they approach a limiting formulation, as shown by
Chandler & Graham (1993) for solutions close to the steady Stokes wave of extreme
form and Mailybaev & Nachbin (2019) for finite-depth breaking waves. In our present
work, the authors are examining the application of exponential asymptotic techniques to
the description of time-dependent parasitic ripples. The inclusion of time dependence
in asymptotics beyond-all-orders remains a poorly understood problem, and very few
authors including Chapman & Mortimer (2005), Lustri (2013) and Lustri, Pethiyagoda
& Chapman (2019), have considered such a complication.

Analogously, the extension of models of gravity–capillary waves to include non-zero
viscosity, vorticity or finite depth have been considered by various authors. For instance
Longuet-Higgins (1963, 1995) and Fedorov & Melville (1998) considered viscous
gravity–capillary waves which exhibit asymmetry. Furthermore, we would expect that a
similar application of exponential asymptotics to the case of periodic finite-depth flows
could be achieved; in the shallow-water limit, the results would match those presented
in seminal works on generalised solitary waves in Kortewe–de Vries equations (see e.g.
Yang & Akylas (1996, 1997) and chapter 10 of Boyd 1998). It is an interesting question to
consider the equivalent exponential asymptotic analysis for these more complex problems
where we expect similar phenomena to arise.

10. Conclusions

We have considered the small surface-tension limit of gravity–capillary waves of infinite
depth. This results in gravity-wave solutions at leading order. The parasitic ripples, which
have a wavelength much smaller than that of the base gravity wave, appear beyond all
orders of the asymptotic expansion as their amplitude is exponentially small in the Bond
number. The analytical solution for these from (7.20) has been found by

(i) observing the divergence of the Poincaré series q = q0 + Bq1 + . . ., a consequence
of singularities in the analytic continuation of the leading-order solution, q0;

(ii) optimally truncating the divergent expansion at N ∼ 1/B and considering the
exponentially small remainder q̄ by a solution of the form q = q0 + Bq1 + · · ·
+BNqN + q̄;

(iii) identifying the Stokes lines (which depend on q0) and calculating the effect of Stokes
phenomenon on the exponentially small terms.

We have also found a solvability condition for our problem, which fails at discrete values
of the Bond number given by (7.18). These points were shown in figure 9 to coincide with
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the discrete nature of the numerical solution branches. Moreover, we have demonstrated
that if the leading-order gravity wave is taken to be symmetric, these parasitic ripples must
also exhibit symmetry about the wave crest; presenting a fundamental improvement in our
understanding of the structure of these parasitic waves.

Our results provide an analytical theory and framework for the numerical solutions
detected in Shelton et al. (2021). Moreover, we have shown that, although certain details
of Longuet-Higgins (1963) theory of parasitic capillary ripples are correct, an exponential
asymptotics approach provides verifiable asymptotic predictions, corrected functional
relationships, and connection of the ripples to Stokes lines and the Stokes phenomenon.
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Appendix A. Singular scaling of the order B quantities

In § 6.1, the inner limit of qn as f → af ∗ relied on the singular behaviour of the O(B) term
q1. Taking the O(B) equations, we substitute θ1 from the boundary-integral equation (4.3b)
into Bernoulli’s equation (4.3a) to find

F2
0q2

0
dq1

df
+

[
2F2

0q0q′
0 + ai cos θ0

q0

]
q1 + 2F0F1q2

0q′
0 − aiĤ [θ1] cos θ0 − q0(q0θ

′
0)

′ = 0.

(A1)
The singular scaling of cos θ0 can be found from (5.6) to be

cos θ0 ∼ 1
2

eaiθ0 ∼ −aiF2
0c3

a

4
( f − af ∗)−1/4. (A2)

Thus, the term involving the complex-valued Hilbert transform Ĥ [θ1], which acts on the
free surface upon which θ1 ∼ O(1), is subdominant in (A1). The same is true for the term
containing 2F0F1q2

0q′
0. The singular scaling of the four remaining dominant terms in (A1)

can then be found by the results of § 5.1, yielding

F2
0q2

0
dq1

df
∼ F2

0c2
a( f − af ∗)1/2

dq1

df
, 2F2

0q0q′
0q1 ∼ F2

0c2
a

2
( f − af ∗)−1/2q1,

ai cos θ0

q0
q1 ∼ F2

0c2
a

4
( f − af ∗)−1/2q1, −q0(q0θ

′
0)

′ ∼ 3aic2
a

16
( f − af ∗)−3/2.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (A3)

In substituting the ansatz q1 ∼ A( f − af ∗)n into (A1), we then find

q1 ∼ 3ai
4F2

0
( f − af ∗)−1. (A4)
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A.1. Inner limit of Qa( f )
To determine the value of the constantΛa, the analysis of which is performed in Appendix
B, we require the inner limit of the prefactor, Qa( f ), of the naive solution. Taking Qa( f )
from (6.7), we consider the singular behaviour of q0 and eaiθ0 from (5.5) and (5.6) to find

Qa( f ) ∼ −ΛaaiF2
0c5

a

2
( f − af ∗)1/4

× exp

(∫ f

0
ai

[
cos θ0

F2
0q3

0
− F2

0q1 − 2F0F1q0

]
df

)
as f → af ∗. (A5)

It remains to evaluate the integral in the above equation as f → af ∗. In considering the
singular behaviour of the integrand, we find

ai

[
cos θ0

F2
0q3

0
− F2

0q1 − 2F0F1q0

]
∼ ( f − af ∗)−1 + O(1). (A6)

In writing

P( f ) =
∫ f

0
ai

[
cos θ0

F2
0q3

0
− F2

0q1 − 2F0F1q0

]
− ( f − af ∗)−1 df , (A7)

and noting that q1 ∼ 3ai/4F2
0( f − af ∗)−1 + O(1), we see that P( f ) ∼ O(1) as f → af ∗.

This formulation yields

∫ f

0
ai

[
cos θ0

F2
0q3

0
− F2

0q1 − 2F0F1q0

]
df = P( f )+ log( f − af ∗)− log(−af ∗), (A8)

from which we find the singular behaviour of Qa( f ) to be

Qa( f ) ∼ ΛaiF2
0c5

a

2f ∗ eP(af ∗)( f − af ∗)5/4 as f → af ∗. (A9)

Appendix B. An inner solution at the principal singularities

The constant Λa appearing in the prefactor of qn in (6.9) is determined by matching the
inner limit of qn with the outer limit of a solution holding near the singularity at f = af ∗.
In the inner region near this point, Bernoulli’s equation (2.9a) holds,

F2q2 dq
df

+ 1
2i
(eiθ − e−iθ )− Bq

d
df

(
q

dθ
df

)
= 0. (B1)

We also have the boundary-integral equation (2.9b) applying in this inner region. As the
complex-valued Hilbert transform Ĥ [θ ] appearing in the right-hand side of this operates
on values of θ from the free surface in the outer region, away from the singularity, we
can use the outer expansion in powers of B. At each order in B, Ĥ [θn] is then related to
the outer solutions of qn and θn by evaluating the boundary-integral equation at this order.
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This gives

log (q)+ aiθ = Ĥ [θ ]

= Ĥ [θ0] + BĤ [θ1] + O(B2)

= (log q0 + aiθ0)+ B(q1/q0 + aiθ1)+ O(B2). (B2)

To evaluate this in the inner region, we take the inner limit of f → af ∗ on the right-hand
side. Exponentiating (B2) and using the scaling of q0 and eaiθ0 from (5.5) and (5.6) gives

qeaiθ ∼ −aiF2
0c4

2
+ O(B). (B3)

From this, we find at leading order both eiθ − e−iθ = 2q/(iF2
0c4)− (iF2

0c4)/2q and qθ ′ =
aiq′. Substituting these into Bernoulli’s equation (B1) then gives the inner equation

F2q2 dq
df

− q

F2
0c4

− F2
0c4

4q
− aiBq

d2q
df 2 = 0. (B4)

B.1. Boundary layer scalings
The width of the boundary layer at the principal upper- and lower-half plane singularities
is determined by the reordering of the outer expansion qouter = q0 + Bq1 + O(B2) when
consecutive terms become comparable. Balancing q0 ∼ Bq1 for simplicity, where q0 ∼
ca( f − af ∗)1/4 from (5.5) and q1 ∼ 3ai/4F2

0( f − af ∗)−1 from (A4), we find the width of
the boundary layer to be B4/5. Thus, we introduce the inner variable η by

( f − af ∗) = B4/5η. (B5)

In addition, in the inner region q̄inner ∼ q0. By incorporating the inner variable η with our
scaling for q0, we have q0 ∼ ca( f − af ∗)1/4 ∼ caB1/5η1/4. This tells us how to rescale
qouter to produce an O(1) quantity, q̄inner, in the inner region, given by

qouter = caB1/5η1/4q̄inner. (B6)

To find the outer limit of q̄inner, we consider a series expansion as η → ∞. The form of
this series is determined by substituting the inner limit of the expansion for qouter into
(B6), giving

qouter =
∞∑

n=0

Bnqn ∼
∞∑

n=0

BnQaΓ (n + γ )

χ
n+γ
a

∼
∞∑

n=0

iΛaBnF2
0c5

a eP(af ∗)( f − af ∗)5/4Γ (n + γ )

2f ∗
[

4aiF2
0ca

5
( f − af ∗)5/4

]n+γ

∼
∞∑

n=0

iΛaB1/5F2
0c5

a eP(af ∗)Γ (n + γ )η1/4

2f ∗
(

4aiF2
0ca

5
η5/4

)n (
4aiF2

0ca

5

)4/5 . (B7)

Here, we have used χa ∼ 4aiF2
0ca/5( f − af ∗)5/4, γ = 4/5, the singular behaviour of Qa

from (A9) and the inner variable η introduced in (B5). In denoting the constant prefactor
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of χa to be X = 4aiF2
0ca/5, we find by (B6) the expected series form for q̄inner,

q̄inner ∼
∞∑

n=0

iΛaF2
0c4

a eP(af ∗)Γ (n + γ )

2f ∗(Xη5/4)nX4/5 . (B8)

This suggests that in taking

z = Xη5/4, (B9)

the anticipated series for q̄inner will be of the form

q̄inner =
∞∑

n=0

q̂n

zn . (B10)

B.2. Inner expansion
Substituting both the inner variable η from (B5), and q̄inner from (B6) into the governing
equation for the inner region (B4) gives

caF2
0 q̄3

(
η

dq̄
dη

+ q̄
4

)
− aiq̄2

η5/4

(
η2 d2q̄

dη2 + η

2
dq̄
dη

− 3q̄
16

)
= caF2

0
4
. (B11)

Using the substitution z = 4aiF2
0caη

5/4/5 presented in (B9) results in a more convenient
expansion in integer powers of 1/z. With this, (B11) becomes

q̄3
(

5z
dq̄
dz

+ q̄
)

+ q̄2

z

(
5z2 d2q̄

dz2 + 3z
dq̄
dz

− 3q̄
5

)
= 1. (B12)

The outer limit of the inner solution to this equation as z → ∞ is considered by the series
(B10). Substituting this into the inner equation (B12) yields at leading order

q̂4
0 = 1. (B13)

By considering the O(z−n) term in (B12), the following recurrence relation is found for
q̂n,

(5n − 4)q̂3
0q̂n

=
n−1∑
k=1

q̂n−k

⎡
⎣q̂2

0q̂k +
k∑

p=1

q̂k−p

⎛
⎝(5p − 6)(5p − 2)

5
q̂p−1 +

p∑
j=0

(1 − 5j)q̂jq̂p−j

⎞
⎠

⎤
⎦

+ q̂0

n−1∑
p=1

q̂n−p

⎛
⎝(5p − 6)(5p − 2)

5
q̂p−1 +

p∑
j=0

(1 − 5j)q̂jq̂p−j

⎞
⎠

+ (5n − 6)(5n − 2)
5

q̂2
0q̂n−1 + q̂2

0

n−1∑
j=1

(1 − 5j)q̂jq̂n−j. (B14)
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B.3. Determining the constant Λa

In comparing the nth term of q̄inner between representations (B8) and (B10), we find the
following expression for the constant Λa:

Λa = −2if ∗

F2
0c4

a
e−P(af ∗)

(
4aiF2

0ca

5

)4/5

lim
n→∞

q̂n

Γ (n + γ )
. (B15)

By applying Schwartz reflection principle to q0, which is real valued on the free surface,
Im[ f ] = 0, we see that ca=1 and ca=−1 are the complex conjugates of one another.

The recurrence relation (B14) may then be solved numerically and yields
limn→∞ q̂n/Γ (n + γ ) ≈ 1.4 × 10−3. Once the secondary components of (B15) are
computed, this gives a numerical value for Λa.
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THE NUMERICAL BIFURCATION STRUCTURE OF
STANDING WAVES 5

5.1 Introduction

In this chapter, gravity-capillary standing waves are considered numerically. These are
time-dependent water waves that oscillate in time. Most previous numerical studies
have focused upon gravity standing waves, for which the surface tension is neglected
by setting B = 0. Exceptions to this for instance are the numerical studies by
Vanden-BroeckVanden-Broeck (19841984) and Schultz et al.Schultz et al. (19981998), the latter of which computed a few
highly nonlinear solutions for small values of the surface tension.

Since Bernoulli’s equation (5.1c5.1c) with B = 0 is a first-order PDE, and that with
smallB is of second order, the limit ofB → 0 results in a singular perturbative problem.
We anticipate based on the introduction of chapter 22 and the asymptotics of chapter 44
that as B → 0, the solutions will contain exponentially small effects.

In the following section, we formulate this problem mathematically as a temporally
periodic water wave that returns to the initial t̂ = 0 profile at t̂ = T . Numerical
solutions are then calculated in section 5.45.4 by Newton iteration, for which the

89



periodicity of the solution allows for the computation of derivatives and Hilbert
transforms spectrally. We show that branches of solutions emerge for fixed energy;
these are then classified in a similar way to that seen in the steadily travelling numerical
results of chapter 33.

5.2 Mathematical formulation

We consider the time-dependent free-surface flow of a two-dimensional, inviscid,
irrotational, and incompressible fluid of infinite depth. Temporally periodic solutions
are sought, such that the free-surface, ζ̂(x̂, t̂), and velocity potential, ϕ̂(x̂, ŷ, t̂) return
a to phase shift of their original profiles from t̂ = 0 at t̂ = T . We non-dimensionalise
length scales by the assumed wavelength λ, time by the physical time interval T , and
the velocity potential ϕ̂ by λ2/T . The nondimensional governing equations are taken
to be

ϕxx + ϕyy = 0 for y ≤ ζ, (5.1a)
ζt = ϕy − ζxϕx at y = ζ, (5.1b)

F 2ϕt +
F 2

2
(ϕ2x + ϕ2y) + y −B

ζxx

(1 + ζ2x)
3

2

= 0 at y = ζ, (5.1c)

ϕx → 0 and ϕy → 0 as y → −∞, (5.1d)

where the non-dimensional constants,

F =

√
λ

T
√
g

and B =
σ

ρgλ2
, (5.2)

are the Froude and (inverse)-Bond numbers, respectively. The Froude number char-
acterises the balance between inertia and gravity, and the Bond number characterises
the balance between gravity and surface tension. Here, g is the gravitational constant,
ρ is the fluid density, σ is the constant coefficient of surface tension, and T and λ are
constants introduced from our choice of non-dimensionalisation. Note that if we have
a wave-speed c = λ/T associated with purely travelling waves as in chapter 33, then
our expression for the Froude number, F , in (5.25.2) becomes F = c/

√
gλ.

To consider solutions ζ(x, y, t) and ϕ(x, y, t) which are spatially periodic for x ∈
[−1/2, 1/2) and temporally periodic with a horizontal phase shift of θ for t ∈ [0, 1),
we enforce the following two conditions:

∇ϕ
(
x− 1

2
, y, t

)
= ∇ϕ

(
x+

1

2
, y, t

)
and ζ

(
x− 1

2
, t

)
= ζ

(
x+

1

2
, t

)
, (5.3a)

for periodicity in the horizontal coordinate x, and

∇ϕ(x, y, 0) = ∇ϕ(x+ θ, y, T ) and ζ(x, 0) = ζ(x+ θ, T ) , (5.3b)

to ensure periodicity in time.
This results in a system with the three unknown constants F,B, and θ, two of

which will be determined as eigenvalues of the problem through the imposition of two
additional constraints specified later in equations (5.16d5.16d) and (5.16e5.16e). These will be
the total energy, E, to measure the nonlinearity of the solution, and a parameter β
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that distinguishes between travelling and standing components of the solution. Note
that this current formulation permits temporally periodic solutions with both travelling
and standing components. In the numerical results of section 5.45.4, focus will be placed
upon standing waves by specifying the value of the travelling/standing parameter β,
for which θ = 0.

5.2.1 The time dependent conformal mapping

The difficulty in computing solutions numerically to equations (5.15.1) is that Bernoulli’s
equation (5.1c5.1c) holds along the unknown free-surface, y = ζ(x, t), which is also
a function of time. We employ the time-dependent conformal mapping from
Dyachenko et al.Dyachenko et al. (19961996) and Choi and CamassaChoi and Camassa (1999a1999a), which maps the physical
fluid domain −∞ < y ≤ ζ(x, t) to the lower-half (ξ, η)-plane. Under this mapping,
the free-surface streamline y = ζ(x, t) maps to the line η = 0. The following
formulation follows closely to that presented by Milewski et al.Milewski et al. (20102010), and a full
derivation occurs in Appendix AA.

We now formulate the governing equations for the free surface under this confor-
malmapping.The free-surface variables,Y andΦ, are defined by evaluating y = ζ(x, t)

and ϕ(x, y, t) on η = 0, yielding

Y (ξ, t) = ζ(x(ξ, 0, t), t) and Φ(ξ, t) = ϕ(x(ξ, 0, t), y(ξ, 0, t), t). (5.4)

Differentiation of (5.45.4) with respect to ξ and t yields equations that may be solved to
obtain expressions for ζt, ϕx, ϕy, ζx, and ζxx in terms of these free-surface variables
evaluated on η = 0. Substitution of these resultant equations into the kinematic and
dynamic boundary conditions (5.1b5.1b) and (5.1c5.1c) yields the time evolution equations

Yt = YξH
[
Ψξ

J

]
−Xξ

(
Ψξ

J

)
, (5.5a)

Φt =
1

2

(
Ψ2

ξ − Φ2
ξ

J

)
+ΦξH

[
Ψξ

J

]
− Y

F 2
+

B

F 2

(XξYξξ − YξXξξ)

J3/2
, (5.5b)

where J = X2
ξ +Y

2
ξ . In addition to the unknown functions Y and Φ, equations (5.5a5.5a)

and (5.5b5.5b) also involve X(ξ, t) and Ψ(ξ, t), which are the harmonic conjugates of y
and ϕ, x and ψ, evaluated on the free-surface η = 0. These can be calculated by the
harmonic relations of

Xξ = 1−H[Yξ] and Ψξ = H[Φξ], (5.5c)

where H denotes the Hilbert transform, defined by the integral

H[Y ](ξ) =

∫ ∞

−∞

Y (ϕ)

ϕ− ξ
dϕ =

∫ 1/2

−1/2
Y (ϕ) cot[π(ϕ− ξ)] dϕ, (5.6)

where the second equality follows from periodicity of Y (ϕ). System (5.55.5) consists of
the two coupled time-evolution integro-differential equations for Y (ξ, t) and Φ(ξ, t).
Furthermore, we also enforce the spatial periodicity conditions,

Φ
(
ξ − 1/2, t

)
= Φ(ξ + 1/2, t) and Y (ξ − 1/2, t) = Y (ξ + 1/2, t) , (5.7)
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and temporal periodicity conditions,

Φ(ξ, 0) = Φ(ξ + θ, 1) and Y (x, 0) = Y (x+ θ, 1) , (5.8)

which follow from evaluating the physical conditions (5.3a5.3a) and (5.3b5.3b) for ζ(x, t) and
ϕ(x, y, t) on η = 0 and substituting for Y and Φ defined in (5.45.4).

5.2.2 Linear theory

We consider the first two terms of a Stokes expansion by writing Y = Y0 + ϵY1,
X = X0 + ϵX1, Φ = Φ0 + ϵΦ1, and Ψ = Ψ0 + ϵΨ1. At O(ϵ0) in equations (5.5a5.5a) to
(5.5c5.5c), we find the solutions Y1 = 0, X0 = ξ, Φ0 = 0, and Ψ0 = 0. Next at O(ϵ) we
have the equations

Y1t = −H[Φ1ξ] and F 2Φ1t = −Y1 +BY1ξξ. (5.9)

In writing the solutions as a Fourier series of the form

Y1(ξ, t) = a0(t) +

∞∑
k=1

[
ak(t) cos (2kπξ) + bk(t) sin(2kπξ)

]
, (5.10)

with a similar expansion for Φ1(ξ, t) in terms of the Fourier coefficients ck(t) and
dk(t), we find for k ≥ 1 the two second order differential equations(

a′′k(t)

b′′k(t)

)
= −2kπ

F 2

(
1 + (2kπ)2B

)(ak(t)
bk(t)

)
. (5.11)

Note that we necessarily have a0(t) = 0 in order for the k = 0 mode in Φ1(ξ, t) to be
temporally-periodic.

We now express the solutions to (5.115.11), ak(t) and bk(t), as a Fourier series in time
of the form

ak(t) = â
(k)
0 +

∞∑
m=1

[
â(k)m cos (2mπt) + ā(k)m sin(2mπt)

]
, (5.12)

with a similar expansion for bk(t) in terms of the Fourier coefficients b̂(k)m and b̄(k)m .
Substitution of (5.125.12) into the differential equation (5.115.11) yields the dispersion relation

F 2 − k

2πm2

(
1 + (2kπ)2B

)
= 0. (5.13)

Here, k ≥ 1 is the spatial mode, and m ≥ 1 is the temporal mode. Note that if m =

k, (5.135.13) reduces to the steady dispersion relation for gravity-capillary waves derived
in chapter 33. When (5.135.13) is satisfied, a non-zero mth mode in the Fourier series
expansions for ak(t) and bk(t) is permitted. Furthermore, the symmetry condition
(5.75.7) for Y (ξ, 0) requires that b̂(k)m = 0. Asymmetry on Φ(ξ, 0), through the equation
a′k(t) = 2kπck(t), yields ā(k)m = 0. This gives a linear solution of the form

Y1(ξ, t) = â(k)m cos (2mπt) cos (2kπξ) + b̄(k)m sin (2mπt) sin (2kπξ),

Φ1(ξ, t) = −mâ
(k)
m

k
sin (2mπt) cos (2kπξ) + mb̄

(k)
m

k
cos (2mπt) sin (2kπξ).


(5.14)
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Multiple Fourier modes may be non-zero in the solution if the linear dispersion
relation (5.135.13) is satisfied for two values of k = {k1, k2} and m = {m1,m2}. This
yields

B =
1

4π2

(
m2

1k2 −m2
2k1

m3
2k

3
1 −m2

1k
3
2

)
and F 2 =

1

2π

(
k1k2(k1 + k2)(k1 − k2)

m3
2k

3
1 −m2

1k
3
2

)
, (5.15)

which reduces down to the prediction of WiltonWilton (19151915) when m1 = k1 and m2 =

1 = k2.

5.3 The numerical method

Our governing equations are the time evolution dynamic and kinematic conditions,

Yt = YξH
[
Ψξ

J

]
−Xξ

(
Ψξ

J

)
, (5.16a)

Φt =
1

2

(
Ψ2

ξ − Φ2
ξ

J

)
+ΦξH

[
Ψξ

J

]
− Y

F 2
+

B

F 2

(XξYξξ − YξXξξ)

J3/2
, (5.16b)

with the harmonic relationsXξ = 1−H[Yξ] andΨξ = H[Φξ] from (5.5c5.5c). The spatial
and temporal periodicity conditions are

Φ(ξ − 1/2, t) = Φ(ξ + 1/2, t) , Y (ξ − 1/2, t) = Y (ξ + 1/2, t) ,

Φ(ξ, 0) = Φ(ξ + θ, 1) , Y (ξ, 0) = Y (ξ + θ, 1) .

}
(5.16c)

Furthermore, as an amplitude condition, we fix the energy, E, and as a travelling/s-
tanding constraint we fix the constant β, both of which are given by

E =
1

Ehw

∫ 1/2

−1/2

[
F 2

2
ΨΦξ +B(J1/2 −Xξ) +

1

2
Y 2Xξ

]
dξ, (5.16d)

β = Arg
[
F [Y (ξ, 0)] + iF [Y (ξ, 1/4)]

]
. (5.16e)

Here, the normalisation constant Ehw = 0.00184 is chosen to be approximately that
of the highest steadily travelling Stokes wave. Initial conditions on symmetry of Y and
asymmetry of Φ

Y (ξ, 0) = Y (−ξ, 0) and Φ(ξ, 0) = −Φ(−ξ, 0). (5.16f )

A solution, Y (ξ, t) and Φ(ξ, t), to the above set of equations has the associated
nondimeninsional constantsB,F , and θ, two of which will be determined as eigenval-
ues through the imposition of the energetic and standing/travelling constraints (5.16d5.16d)
and (5.16e5.16e).

We employ a shooting method to solve system (5.165.16), in which we begin with
initial data at t = 0. This is evolved to t = 1, at which point we seek to minimise the
difference between the solutions at t = 0 and t = 1 with Newton iteration. A detailed
overview of this method is now provided.
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(i) Initial guess.
An initial guess for Y (ξ, 0), Φ(ξ, 0), and the constant eigenvalues θ and

one of B or F , is taken either from the linear theory of §5.2.25.2.2, a previously
computed numerical solution, or for β = 0.25, a steadily travelling wave
calculated from Shelton et al.Shelton et al. (20212021) for which we take Φ = −H[Y ]. In
discretising the spatial domain ξ with N grid points, such that ξi = −1/2 +

i/N for i = 0, . . . , N − 1, we define the solutions evaluated at each of these
collocation points by Yi(t) = Y (ξi, t) and Φi(t) = Φ(ξi, t). At t = 0,
Yi(0) and Φi(0) then contribute to 2N unknown quantities. Including the
two unknown eigenvalues then yields a total of 2N + 2 unknowns.

(ii) Time evolution.
We discretise the time interval t ∈ (0, 1) into M + 1 points, which

yields tl = l/M for l = 0, . . . ,M . The fourth-order Runge-Kutta method
is used to advance the solution from timestep tl to tl+1. With knowledge of
Yi(tl) and Φi(tl), the conjugate functions Xi(tl) and Ψi(tl) are calculated
from the harmonic relations (5.5c5.5c). We use the Fourier transform to evaluate
the derivatives and Hilbert transforms that appear in equations (5.16a5.16a) and
(5.16b5.16b). For instance, since the Fourier symbols for differentiation and the
Hilbert transform are 2πik and i · sgn(k), we have Yξ = F−1[2πikF [Y ]] and
H[Y ] = F−1[i · sgn(k)F [Y ]], where F denotes the Fourier transform. The
fast Fourier transform algorithm is utilised to evaluate these identities. This
allows for the calculation of Xi(tl+1) and Φi(tl+1).

We resolve aliasing errors on the solutions at each time step by setting the
highest N/2 Fourier modes to zero.

(iii) Function to minimise.
The previous step may be repeated until Yi(1) and Φi(1) are known. We

then employ Newton iteration on this system to minimise the following 2N+

4 conditions:

Yi(0)− Ȳi(1),

E∗ − E,

Im[F [Y (ξ, 0)]],

Φi(0)− Φ̄i(1),

β∗ − β,

Re[F [Φ(ξ, 0)],

Temporal periodicity,
Constants (5.16d5.16d, 5.16e5.16e),
Symmetry at t = 0.

 (5.17)

In the above, E∗ and β∗ are the desired values of the energy and the
travelling/standing parameter, while E and β are the corresponding values of
the current numerical solution, calculated from equations (5.16d5.16d) and (5.16e5.16e).
Furthermore, since we are computing solutions that return to a phase shift, θ,
of their initial profiles at t = 1, this phase shift is calculated in Fourier space
by Ȳ = F−1[eikθF [Y (ξ, 1)]], where k is the wavenumber. In (5.175.17) above,
we have then defined Ȳi = Ȳ (ξi) and Φ̄i(1) = Φ̄(ξi).

As we had only 2N+2 unknowns, the resultant system is overdetermined.
We note that there is a degree of freedom in the initial condition, (we could
evolve from t = 1/2 to t = 3/2) for instance, and the additional symmetry
conditions at t = 0, from (5.16f5.16f), specify this.
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5.4 Numerical results for fixed energy

In the following sections, numerical solutions are found for fixed energy, E, and trav-
elling/standing parameter, β. We begin in section 5.4.15.4.1 by overviewing the solutions
found by WilkeningWilkening (20212021). These solutions neglect the effects of surface tension with
B = 0, and serve to demonstrate the gravity wave profiles that emerge for different
values of β. In section 5.4.25.4.2, we proceed to consider gravity-capillary waves, where
B 6= 0, for the value of β = π/2. This corresponds to standing waves.

5.4.1 Temporally periodic gravity waves

In this section, numerical solutions are computed for zero surface tension (B = 0), for
different values of the travelling/standing parameter, β. In using the numerical scheme
detailed in section 5.35.3, we initialise the shooting method with a linear solution derived
in section 5.2.25.2.2. This linear solution has

F 2 =
1

2π
, (5.18)

and an initial profile with one period in both time and space (m = 1, k = 1) given by

Y (ξ, 0) = ϵâ
(1)
1 cos (2πξ) and Φ(ξ, 0) = ϵb̄

(1)
1 sin (2πξ), (5.19)

from equation (5.145.14). Since Y (ξ, 1/4) = ϵb̄11 sin(2πξ), specification of the parameter
β yields

β = Arg
[
â
(1)
1 + ib̄(1)1

]
, (5.20)

and provides a relationship between â
(1)
1 and b̄

(1)
1 . All that remains is to choose

an appropriate value for ϵâ(1)1 in (5.195.19), which we typically take to be 10−5. The
discretisation of this linear initial condition the yields the starting value for our
shooting scheme.

Once a small amplitude solution is computed via Newton iteration, we search for
a new solution with a larger value of the energy from (5.16d5.16d) (typically the energy
is increased by a multiple of 1.05 for each run, but this factor may be as large as 1.2
when the energy is small). This process continues until we compute a solution with
the desired energy, E = 0.4. In this section, we use N = 200 spatial gridpoints and
M = 500 time steps. Each solution takes approximately 5-10 minutes to compute.

In figure 5.15.1 we show six different solutions for the free surface, y = ζ, for the
values of β = {0.25π, 0.3π, 0.35π, 0.4π, 0.45π, 0.5π}, and energy E = 0.4. The free
surfaces are shown at different values of time, and for clarity only the dynamics between
t = 0 and t = 0.5 are pictured. In (a) we have for β = 0.25π a purely travelling gravity
wave, which is steady in the co-moving frame. Solution (f ) is a standing gravity wave,
with β = 0.5π. This standing wave begins at t = 0 as a flat wave, and reaches its
maximum value at t = 0.25. the values of the free surface between t = 0.25 and
t = 0.5 are then the same as that found between t = 0 and t = 0.25. Profiles (b)-
(e) have 0.25π < β < 0.5π, and are seen to contain both travelling and standing
components.

§5.4 · NUMERICAL RESULTS FOR FIXED ENERGY 95



x

x

x

x

x

-0.5 0 0.5
-0.05

0

0.05

x

y

(a)

(b)

(c)

(d)

(e)

(f)

β = 0.25π F = 0.4110

β = 0.3π F = 0.3933

β = 0.35π F = 0.3932

β = 0.4π F = 0.3931

β = 0.45π F = 0.3931
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Figure 5.1: Temporally periodic solutions, computed by the numerical scheme of section 5.35.3 are shown for six different values

of the travelling / standing parameter, β. Solution (a) is a travelling gravity wave with β = 0.25π, and solution (f) is a gravity

standing wave with β = 0.5π. All six solutions have B = 0, E = 0.04, and are computed with N = 200 spatial grid points

andM = 500 time steps. The solution profile is shown by black lines at time intervals t = {0, 0.05, 0.1, 0.15, 0.2, 0.25} and

gray lines at t = {0.3, 0.35, 0.4, 0.45, 0.5}. Note that only the first half of the temporally periodic dynamics for 0 ≤ t ≤ 0.5

has been shown.
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5.4.2 Structure of gravity-capillary standing waves

We now consider standing gravity capillary waves, for which we fix β = 0.5π. We saw
in section 5.45.4 that whenB = 0, the standing gravity wave for fixed energy begins with
a flat wave profile at t = 0, reaches a maximum at t = 0.25, and returns to a flat profile
at t = 0.5. The dynamics for 0.5 < t < 1 are then similar to this initial period, with
the difference that at t = 0.75, the location in x that contained a trough at t = 0.25

is now a crest. Analogous to the bifurcation structure that emerged in chapter 33 for
steady waves, we expect to find solutions, for small values ofB, that are a perturbation
of the B = 0 solution.

Gn→n+1

Gn+1→n+2

B

F

Figure 5.2: Two anticipated (B,F ) solution branches are sketched. The solutions along these contain high-frequency parasitic

ripples, which we use to characterise the solution branches. Since these transition from solutions with n ripples to n+1 ripples

and the Bond number decreases, these branches are denoted by Gn→n+1. Solid lines denote the portion of the branches we

have been able to compute. Dashed lines represent the anticipated connection between these branches, which we have been

unable to compute. The black dot represents the anticipated bifurcation point, which based on the steady results of chapter 33

is likely to be a standing wave with n + 1 spatial periods and n + 1 temporal oscillations.

Most of the numerical solutions displayed in this section use N = 200 spatial
gridpoints and M = 1000 time steps, taking approximately 10 minutes to compute.
This however was insufficient in order to calculate the entire solution branch. To
explore further along these branches, we used N = 300 spatial gridpoints and
M = 2000 time steps, which required approximately 60 to 120 minutes for Newton
iteration to converge to a solution. Two anticipated solution branches, denoted by
Gn→n+1 are shown in figure 5.25.2. Black lines indicate the portion of the branches
we have been able to compute, and the dashed lines show the anticipated location of
solutions we have been unable to compute. A preliminary (B,F ) bifurcation diagram
is shown in figure 5.35.3 for E = 0.4. We see that solution branches emerge, and these
appear to become self-similar as the surface tension decreases. Each of these branches is
associated with a certain number of crests in the high-frequency parasitic ripple, and
the number of these crests increases as B → 0. We note that these high-frequency
ripples also oscillate in time faster than the underlying wave, which is predominantly
attributed to the effects of gravity. While this underlying wave contains one vertical
oscillation between t = 0 and t = 1, the high-frequency ripples, with k spatial periods,
contain k vertical oscillations between t = 0 and t = π, and thus have a fundamental
time period of 1/k. This behaviour is shown in figure 5.45.4, in which three solutions
from branch G12→13 are shown. Interestingly, the fingers of solutions, across which
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E = 0.4

G6→7

G7→8

G8→9

G9→10

G10→11

G11→12

G12→13

3 4 5 6 7 8
·10−3

0.42

0.44

0.46

B

F

Figure 5.3: A portion of the Bond-Froude bifurcation space is shown for E = 0.4. Multiple solution branches are shown.

The solutions on these are gravity-capillary standing waves, and the branches may be characterised by the number of high-

frequency parasitic ripples present in the solution. The branches are denoted Gn→n+1 since as the Bond number decreases

along each of these, the solution profile transitions from containing n ripples to n + 1 ripples. Three solutions from branch

G12→13 are shown in figure 5.45.4.

the number of ripples transitions from n to n+1, appear to split when n is small. Due
to the difficulty encountered in exploring these branches further, we have not been able
to explain why this occurs. Note also that the Froude number of the gravity standing
wave, with B = 0 and E = 0.4, is F = 0.3931. The top regions of the solution
branches appear to be tending to this value as B → 0.

Unlike the gravity standing waves, which are flat at t = 0, the free surface of
these gravity-capillary standing waves contains oscillations at t = 0. This is shown
in figure 5.55.5, in which we display wave profiles at t = 0, from the middle of
each of the solution branches Gn→n+1 shown in figure 5.35.3. These contain both an
O(B) component, and a high-frequency component. The asymptotic scaling of these
parasitic ripples is unclear, and requires the computation of more numerical solutions
for smaller values of B.

5.5 Conclusion

We have numerically computed gravity-capillary standing waves for small values of the
surface tension. Much like that seen in chapter 33 by Shelton et al.Shelton et al. (20212021) for steadily
travelling waves, solutions are found that display high-frequency (in both space and
time) parasitic ripples. Solution branches are seen to be characterised by the number
of ripples within the periodic domain; the number of which increases as the surface
tension decreases.

5.6 Discussion

The computation of the time-dependent solutions presented in this chapter requires
significant computation power, and we have only begun to explore the vast bifurcation
space of gravity-capillary standing waves. We may anticipate based on the steady
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Figure 5.4: Three solutions from branchG12→13 are shown, with E = 0.4. Each solution profile is shown at the eleven values

of t = {0, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25}. Note that we have shifted the profile horizontally

such that the crest develops at x = 0. Profile (b) is from the middle of the solution branch, and profiles (a) and (c) are from

each end of the computed solution branch.

solutions of chapter 33 that the adjacent branches displayed in figure 5.35.3, G10→11 and
G11→12 for instance, bifurcate from the same location on a highly periodic branch
of solutions. However, bifurcations different to those seen in chapter 33 are observed.
For instance, the branches G7→8 and G8→9 in figure 5.35.3 appear to split in multiple
locations. The reason for this is unclear.

If the high-frequency parasitic ripples observed in these standing wave solutions
are indeed exponentially small as B → 0, then their analytic treatment would require
the extension of the exponential asymptotics of chapter 44 to a time-dependent PDE.
One main difference is that the leading order solution would be a nonlinear standing
gravity wave. The singular points in the analytically continued domain of this solution
would then move in time, and thus require careful attention. Further discussion of this
occurs in the summary of section 9.49.4.

We began by formulating this problem with a travelling/standing parameter β
from (5.16e5.16e). For β = π/4 travelling waves were found, and β = π/2 yielded
standing waves. It is well known that the steadily travelling Stokes wave can approach a
limiting formulation in which the wave surface develops a crest singularity [cf. StokesStokes
(18801880), TolandToland (19781978), Amick et al.Amick et al. (19821982)]. However, whether this is also true for
standing waves is unclear. It was conjectured by Penney and PricePenney and Price (19521952) that this
limiting standing wave would occur, but following an extensive numerical investigation
by WilkeningWilkening (20112011), no bifurcation towards a limiting standing wave was found. It
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Figure 5.5: Initial profiles at t = 0 are shown for six different solutions, each of which has been selected from the middle of the

respective solution branch. The dominant component with two wavelengths in the domain is ofO(B), and the high-frequency

ripples are anticipated to be exponentially-small as B → 0.

is thus natural to ask whether very steep Stokes waves can be numerically continued
away from β = π/4. For a small numerical perturbation away from β = π/4 can
the limiting formulation still be reached in a self-similar manner? If so, this indicates
that continuation in the travelling/standing parameter towards β = π/2 would reveal
further information about whether the limiting Standing wave conjectured by Penney
and Price can be smoothly approached in a self-similar manner.
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EXTENSIONS AND POINT VORTICIES 6

6.1 Introduction

In most classical studies on water waves, the effects of vorticity are neglected.
Recently however, there has been a growing interest in the study of vortical effects
on water waves. Numerical investigations of this include (Simmen and SaffmanSimmen and Saffman
19851985, Da Silva and PeregrineDa Silva and Peregrine 19881988, Vanden-BroeckVanden-Broeck 19961996, Vanden-BroeckVanden-Broeck 19941994,
McCue and ForbesMcCue and Forbes 19991999, Kang and Vanden-BroeckKang and Vanden-Broeck 20002000, McCue and ForbesMcCue and Forbes 20022002,
ChoiChoi 20092009, Ribeiro et al.Ribeiro et al. 20172017, and Dyachenko and HurDyachenko and Hur 20192019). Exact solutions that
include vortical effects within the fluid, such as those found by Hur and WheelerHur and Wheeler
(20202020), are much more sparse.

In this section we consider the rotational effects to be localised within the fluid
at individual point vortices. This approach is motivated by historical developments in
vortex dynamics, for which point vortices were considered significantly earlier than
the equivalent formulations that include distributed vorticity within the domain. An
example of this is in the study of the wake generated by a staggered vortex street, studied
for point vortices by Von Karman and RubachVon Karman and Rubach (19121912) and areas of constant vorticity
(vortex patches) by Christiansen and ZabuskyChristiansen and Zabusky (19731973).

We consider a free surface, for which the vorticity is concentrated at submerged
points. The fluid is otherwise irrotational, and the free surface (x(s), y(s)), parame-
terised by the arclength, s, is a solution of Bernoulli’s equation

F 2

2

[
ϕ′(s)

]2
+ y(s) =

F 2

2
,

where ϕ is the velocity potential. Note that there are two other equations relating ϕ(s),
x(s), and y(s). In the low-speed limit of F → 0, Bernoulli’s equation is singularly
perturbed, and exponentially-small waves are present in the solution profiles. In this
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chapter, these are derived using the techniques of exponential asymptotics. We also
solve for the two vortex case, for which trapped waves, confine to lie between the
vortices, emerge for certain values of F . These techniques are expected to be of use
in the study of other singular perturbative effects of water waves with submerged
point vortices. This includes the small surface tension limit, for which the leading
order solutions of the asymptotic expansion would then be determined exactly by
the methods by Crowdy and NelsonCrowdy and Nelson (20102010), Crowdy and RoenbyCrowdy and Roenby (20142014), and CrowdyCrowdy
(20222022) for instance.
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Exponential asymptotics and the generation of
free-surface flows by submerged point vortices
Josh Shelton† and Philippe H. Trinh‡
Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK

(Received xx; revised xx; accepted xx)

There has been significant recent interest in the study of water waves coupled with non-zero
vorticity. We derive analytical approximations for the exponentially-small free-surface waves
generated in two-dimensions by one or several submerged point vortices when driven at low
Froude numbers. The vortices are fixed in place, and a boundary-integral formulation in the
arclength along the surface allows the study of nonlinear waves and strong point vortices. We
demonstrate that for a single point vortex, techniques in exponential asymptotics prescribe
the formation of waves in connection with the presence of Stokes lines originating from the
vortex. When multiple point vortices are placed within the fluid, trapped waves may occur,
which are confined to lie between the vortices. We also demonstrate that for the two-vortex
problem, the phenomenon of trapped waves occurs for a countably infinite set of values
of the Froude number. This work will form a basis for other asymptotic investigations of
wave-structure interactions where vorticity plays a key role in the formation of surface waves.

1. Introduction
In this paper we study the steady-state nonlinear flow of an ideal fluid past a submerged line
vortex. As the vortices have fixed depth and horizontal displacement, they reduce to point
vortices in the two-dimensional flows considered. The inviscid and incompressible fluid of
infinite depth is assumed to be irrotational everywhere, with the exception of at the point
vortices themselves. For a flow in the complex 𝑧 = 𝑥 + i𝑦-plane, with a vortex at 𝑧 = 𝑧1, the
complex potential behaves as

𝑓 = 𝜙 + i𝜓 ∼ 𝑐𝑧 − iΓ
2𝜋

log (𝑧 − 𝑧1), (1.1)

where Γ is the circulation of the vortex, and the background flow is of speed 𝑐. The non-
dimensional system is then characterised by two key parameters: Γc = Γ/(𝑐𝐻), relating
vortex strength(s) to inertial effects, and the Froude number, 𝐹 = 𝑐/

√
𝑔𝐻, relating inertial

effects to gravitational effects. Here, 𝐻 is the depth of the point vortex and 𝑔 is the constant
acceleration due to gravity.

The study of such vortex-driven potential flows is complicated by the following fact. The
solution of two-dimensional ideal fluid-flow problems involves finding the velocity potential,
𝜙, and streamfunction, 𝜓, in terms of the coordinates 𝑥 and 𝑦, in the functional form 𝑓 (𝑧).
However, it is often convenient to invert this dependency, instead calculating 𝑧( 𝑓 ), so that

† Email address for correspondence: j.shelton@bath.ac.uk
‡ Email address for correspondence: p.trinh@bath.ac.uk
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the physical variables now have the forms 𝑥(𝜙, 𝜓) and 𝑦(𝜙, 𝜓). In this formulation, the free
surface is a streamline along which 𝜓 is constant, so that the free surface is parameterised by
𝑥(𝜙) and 𝑦(𝜙). However, near the point vortex, the local behaviour (1.1), can not be inverted
analytically to give 𝑧( 𝑓 ). This motivated the work of Forbes (1985), who re-formulated the
boundary-integral formulation in terms of a free-surface arclength, 𝑠, and a more complex
set of governing equations results.

The imposition of a uniform stream as 𝑥 → −∞ results in the generation of downstream
free-surface waves, as shown in figure 1(a). As hinted in the preliminary numerical
investigations of Forbes (1985), the wave amplitude tends to zero as 𝐹 → 0. In this work,
we confirm this behaviour and demonstrate, both numerically and analytically, that the
amplitude is exponentially-small in the low-Froude limit. For instance, the amplitude versus
1/𝐹2 graph shown in figure 2 demonstrates the fit between our asymptotic predictions of §3
and numerical results of §4. We note that this theory is nonlinear in the vortex strength, Γc,
and the assumption of small Γc need not apply.

The purpose of this paper is to thus characterise the formation of water waves using
the framework of exponential asymptotics. We show that these exponentially-small waves
smoothly switch-on as the fluid passes beyond the vortex, resulting in oscillations as 𝑥 → ∞
in the far field. When two submerged vortices are considered, the waves switched-on due to
each of the vortices may be out of phase with one another and cancel for certain values of the
Froude number. This yields trapped waves between the vortices, and a free surface whose
derivative decays to zero as 𝑥 → ∞. A trapped wave solution is depicted in figure 1(b). This
phenomenon of trapped waves has previously been studied for obstructions both within the
fluid, and for flows of finite depth past lower topography. For instance, both Gazdar (1973)
and Vanden-Broeck & Tuck (1985) detected these numerically for flows over a specified lower
topography. More recent works, such as those by Dias & Vanden-Broeck (2004), Hocking
et al. (2013), and Holmes et al. (2013), have focused on detecting parameter values for which
these trapped wave solutions occur in various formulations.

The work in this paper provides a first step towards extending many of the existing ideas and
techniques of exponential asymptotics, previously developed for purely gravity- or capillary-
driven waves (e.g. Chapman & Vanden-Broeck 2002, 2006) to wave phenomena with
vortices. As noted above, because the governing equations require an alternative formulation
(originally developed by Miksis et al. 1981) the asymptotic formulation we present can be
extended to other wave-structure interactions where the more general arc-length formulation
of the water-wave equations is required. In addition, there has been significant recent interest
in the study of water-wave phenomena with dominant vorticity effects, and we reference
the recent extensive survey by Haziot et al. (2022) and references therein. The exponential-
asymptotic techniques developed in this work can also be extended to situations where
capillary ripples are forced on the surface of steep vortex-driven waves. The leading order
solution in these asymptotic regimes would then be known analytically from the works of
e.g. (Crowdy & Nelson 2010; Crowdy & Roenby 2014; Crowdy 2022). These, and other
exciting future directions, we shall discuss in §6.

2. Mathematical formulation and outline
We consider the typical configurations shown in 1. Following Forbes (1985), in nondimen-
sional form, the system is formulated in terms of the arclength, 𝑠, along the free surface,
with unknown velocity potential 𝜙 = 𝜙(𝑠), and free-surface positions, (𝑥(𝑠), 𝑦(𝑠)). Then,
the governing equations are given by Bernoulli’s equation, an arclength relation between 𝑥

and 𝑦, and a boundary-integral equation.
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Figure 1: The two physical regimes of underlying point vortices considered within this
paper are shown. In (a), a single point vortex with circulation Γ is placed within the fluid.
In (b), two point vortices, each with circulation Γ, are located at the same depth within the

fluid. These solutions have been computed using the numerical scheme detailed in §4.
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Figure 2: The amplitude, �̄�, of the free-surface waves is shown for log( �̄�) vs 1/𝐹2 for the
analytical (line) and numerical (dots) solutions of §3 and §4. These have a fixed value of

the nondimensional vortex strength, Γc = 0.25. The graph confirms exponential smallness
of the waves. The solid line has a gradient of ≈ 0.7395, computed using the exponential

asymptotic theory of §4.

For a single submerged point vortex at (𝑥, 𝑦) = (0,−1), the three equations are

𝐹2

2
[
𝜙′ (𝑠)

]2 + 𝑦(𝑠) = 𝐹2

2
, (2.1a)[

𝑥′ (𝑠)
]2 +

[
𝑦′ (𝑠)

]2
= 1, (2.1b)

𝜙′ (𝑠)𝑥′ (𝑠) − 1 =
Γc
𝜋

𝑦(𝑠) + 1
[𝑥(𝑠)]2 + [𝑦(𝑠) + 1]2 + I[𝑥, 𝑦, 𝜙′] . (2.1c)
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In the above, two nondimensional parameters appear: the Froude number, 𝐹, and the vortex
strength, Γc, defined by

𝐹 =
𝑐

√
𝑔𝐻

and Γc =
Γ

𝑐𝐻
. (2.2)

Here, 𝑐 is the speed of the fluid, 𝐻 is the depth of the submerged point vortex, 𝑔 is the
constant acceleration due to gravity, and Γ is the circulation of the point vortex. Furthermore,
we have also introduced I as the nonlinear principle-valued integral defined by

I[𝑥, 𝑦, 𝜙′] = 1
𝜋
−
ˆ ∞

−∞

[𝜙′ (𝑡) − 𝑥′ (𝑡)] [𝑦(𝑡) − 𝑦(𝑠)] + 𝑦′ (𝑡) [𝑥(𝑡) − 𝑥(𝑠)]
[𝑥(𝑡) − 𝑥(𝑠)]2 + [𝑦(𝑡) − 𝑦(𝑠)]2 d𝑡. (2.3)

When the configuration with two point vortices is considered in §3.5, the boundary-integral
equation (2.1c) will need to be modified to (3.23).

2.1. Analytic continuation
In the exponential asymptotic procedure of §3, we study the exponentially small terms
that display the Stokes phenomenon across Stokes lines of the problem. These Stokes lines
originate from singularities of the leading order asymptotic solution, which are located in
the analytic continuation of the domain, the arclength 𝑠. The analytic continuation of the
governing equations (2.1a)-(2.1c) is studied in this section.

We now analytically continue the domain 𝑠 ↦→ 𝜎, where 𝜎 ∈ C. Bernoulli’s equation
(2.1a) and the arclength relation (2.1b) may be analytically continued in a straightforward
manner, with all dependence on 𝑠 replaced by the complex valued variable 𝜎. The analytic
continuation of the boundary integral equation (2.1c) is more complicated, due to the principal
value integral I defined in (2.3). The analytic continuation of this integral is given by

I[𝑥, 𝑦, 𝜙′] = Î [𝑥, 𝑦, 𝜙′] − 𝑎i𝜙′ (𝜎)𝑦′ (𝜎), (2.4)

where 𝑎 = ±1 denotes the direction of analytic continuation into Im[𝜎] > 0 or Im[𝜎] < 0,
respectively, and Î is the complex-valued integral. Equation (2.4) may be verified by taking
the limit of either Im[𝜎] → 0+, or Im[𝜎] → 0− , which yields half of a residue contribution
associated with the singular point at 𝑡 = 𝑠 of the integrand.

Substitution of (2.4) into (2.1c) then yields the analytically continued equations, given by

𝐹2

2
[
𝜙′ (𝜎)

]2 + 𝑦(𝜎) = 𝐹2

2
, (2.5a)[

𝑥′ (𝜎)
]2 +

[
𝑦′ (𝜎)

]2
= 1, (2.5b)

𝜙′ (𝜎)𝑥′ (𝜎) − 1 + 𝑎i𝜙′ (𝜎)𝑦′ (𝜎) = Γc
𝜋

𝑦(𝜎) + 1
[𝑥(𝜎)]2 + [𝑦(𝜎) + 1]2 + Î[𝑥, 𝑦, 𝜙′] . (2.5c)

The analytic continuation for situations with multiple point vortices is similarly done, with
the only difference being the inclusion of additional point vortices in (2.5c).

2.2. Outline of paper
In this work, we will consider the following two regimes depicted in figure 1:
(i) A single submerged point vortex, which is the formulation originally considered by

Forbes (1985). Imposing free stream conditions as 𝑥 → −∞ results in surface waves
generated by the vortex. Their amplitude is exponentially-small as 𝐹 → 0. This is
the limit considered by Chapman & Vanden-Broeck (2006) in the absence of vortical
effects.
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(ii) Two submerged point vortices of the same circulation. For certain critical values
of the Froude number, 𝐹, the resultant waves are confined to lie between the two
vortices. The amplitude of these is also exponentially small as 𝐹 → 0.

We begin in §3 by determining these exponentially small waves using the techniques of
exponential asymptotics. This relies on the optimal truncation of an algebraic asymptotic
series for small Froude number, 𝐹, and deriving the connection of this to the Stokes
phenomenon that acts on the exponentially small waves. The case for two submerged point
vortices is then studied in §3.5, where we derive the critical values of the Froude number for
which the waves are trapped. Numerical solutions are computed in §4, where comparison
occurs with the exponential asymptotic predictions for the single vortex and double vortex
cases.

3. Exponential asymptotics
3.1. Early orders of the solution

We begin by considering the following asymptotic expansions, in powers of 𝐹2, for the
solutions, which are given by

𝑥(𝜎) =
∞∑︁
𝑛=0

𝐹2𝑛𝑥𝑛 (𝜎), 𝑦(𝜎) =
∞∑︁
𝑛=0

𝐹2𝑛𝑦𝑛 (𝜎), 𝜙′ (𝜎) =
∞∑︁
𝑛=0

𝐹2𝑛𝜙′𝑛 (𝜎). (3.1)

Substitution of expansions (3.1) into equations (2.5a)-(2.5c) yields at leading order three
equations for the unknowns 𝑥0, 𝑦0, and 𝜙′0. The first of these, Bernoulli’s equation (2.5a),
yields 𝑦0(𝜎) = 0. This may be substituted into the second equation, (2.5b), to find (𝑥′0)

2 = 1,
for which we consider 𝑥′0 = 1 without any loss of generality. This may be integrated to find
𝑥0 = 𝜎, where the constant of integration has been chosen to set the origin at 𝑥0(0) = 0.
Next, 𝜙′0 is determined from equation (2.5c). Since 𝑦0 = 0, the integral Î does not enter the
leading order equation. This yields the leading order solutions as

𝑦0(𝜎) = 0, 𝑥0(𝜎) = 𝜎, 𝜙′0(𝜎) = 1 + Γc
𝜋

1
(1 + 𝜎2)

. (3.2)

Note that there is a singularity in 𝜙′0 above whenever 𝜎2 = −1. This corresponds to the
point vortex within the fluid at 𝜎 = −i, as well as another singularity at 𝜎 = i, which will
produce a complex-conjugate contribution to the exponentially-small solution along the free
surface.

Next at order 𝑂 (𝐹2), 𝑦1 is found explicitly from (2.5a). We then find the equation 𝑥′1 = 0
from (2.5b), and 𝜙1 is determined explicitly from (2.5c). This yields

𝑦1(𝜎) =
1
2

(
1 −

(
𝜙′0

)2
)
, 𝑥1(𝜎) = 0,

𝜙′1(𝜎) = −𝑎i𝜙′0𝑦
′
1 +

Γc(𝜎2 − 1)
𝜋(1 + 𝜎2)2 𝑦1 + Î1(𝜎),

 (3.3)

where Î1 is the 𝑂 (𝐹2) component of the complex-valued integral Î, originally defined along
the real axis in equation (2.3).

3.2. Late-term divergence
Our derivation of the exponentially-small terms and associated Stokes phenomenon of §3.4
requires knowledge of the late-terms of the solution expansion (3.1), 𝑥𝑛, 𝑦𝑛, and 𝜙′𝑛, as
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𝑛 → ∞. We begin by determining the 𝑂 (𝐹2𝑛) components of equations (2.5a)-(2.5c). The
late-terms of Bernoulli’s equation are given by

𝑦𝑛 + 𝜙′0𝜙
′
𝑛−1 + 𝜙′1𝜙

′
𝑛−2 + · · · = 0, (3.4a)

for the arclength relation we have

𝑥′0𝑥
′
𝑛 + 𝑥′1𝑥

′
𝑛−1 + · · · + 𝑦′1𝑦

′
𝑛−1 + 𝑦′2𝑦

′
𝑛−2 + · · · = 0, (3.4b)

and finally the boundary integral equation yields

𝑥′0𝜙
′
𝑛 + 𝑥′1𝜙

′
𝑛−1 + 𝜙′0𝑥

′
𝑛 + · · · + 𝑎i

[
𝜙′0𝑦

′
𝑛 + 𝜙′1𝑦

′
𝑛−1 + 𝑦′1𝜙

′
𝑛−1 + · · ·

]
+ Γc

𝜋

[
𝑦𝑛

1 + 𝑥2
0
− 2𝑦𝑛

(1 + 𝑥2
0)2

+ · · ·
]
− Î𝑛 (𝜎) = 0. (3.4c)

In (3.4a)-(3.4c) above, only the terms that will appear at the first two orders of 𝑛 as 𝑛 → ∞
have been included.

In (3.4c), the 𝑂 (𝐹2𝑛) component of the complex-valued integral, Î has been denoted by
Î𝑛. The dominant components of this integral, as 𝑛 → ∞, require the integration of late-term
asymptotic solutions that are either a function of the real valued integration domain, such
as 𝑦𝑛 (𝑡), or a function of the complex domain, such as 𝑦𝑛 (𝜎). The first of these, 𝑦𝑛 (𝑡), is
integrated along the real-valued free surface, away from any singular behaviour. It is thus
subdominant to the other terms appearing in equation (3.4c). This is analogous to neglecting
the late terms of the complex-valued Hilbert transform in similar free-surface problems in
exponential asymptotics [c.f. Xie & Tanveer (2002), Chapman & Vanden-Broeck (2002),
Chapman & Vanden-Broeck (2006)]. All that remains is to integrate the components of Î𝑛
that involve late-term solutions evaluated in the complex-valued domain. Of these, only that
involving 𝑦𝑛 (𝜎) appears in the two leading orders, as 𝑛 → ∞, of equation (3.4c). This
component is given by

Î𝑛 ∼ − 𝑦𝑛 (𝜎)
𝜋

ˆ ∞

−∞

𝜙′0(𝑡) − 1
(𝑡 − 𝜎)2 d𝑡 = −Γc

𝜋

𝑦𝑛 (𝜎)
(𝜎 + 𝑎i)2 , (3.5)

for which the integral was evaluated by substituting for 𝜙′0 from equation (3.2). Note that
integration of 𝑦𝑛 (𝜎) was not required due to the lack of any dependence on the domain of
integration, 𝑡.

Recall that the leading order solutions were singular at 𝜎 = ±𝑖. For each of the three
solution expansions, this singularity first appeared in 𝜙′0, 𝑦1, and 𝑥2. Since successive terms
in the asymptotic expansion involve differentiation of previous terms (for instance, equation
(3.4a) for 𝑦𝑛 involves 𝜙′

𝑛−1, whose determination in equation (3.4c) requires knowledge of
𝑦′
𝑛−1), the strength of this singularity will grow as we proceed into the asymptotic series.

Furthermore, this growing singular behaviour will also lead to the divergence of the late-term
solutions as 𝑛 → ∞, which we capture analytically with the factorial-over-power ansatzes of

𝑥𝑛 ∼ 𝑋 (𝜎) Γ(𝑛 + 𝛼 − 1)
[𝜒(𝜎)]𝑛+𝛼−1 , 𝑦𝑛 ∼ 𝑌 (𝜎) Γ(𝑛 + 𝛼)

[𝜒(𝜎)]𝑛+𝛼 , 𝜙𝑛 ∼ Φ(𝜎) Γ(𝑛 + 𝛼)
[𝜒(𝜎)]𝑛+𝛼 . (3.6)

Here, 𝛼 is a constant, 𝜒 is the singulant function that will capture the singular behaviour of
the solution at 𝜎 = ±i, and 𝑋 , 𝑌 , and Φ are functional prefactors of the divergent solutions.
It can be seen from the dominant balance as 𝑛 → ∞ of equations (3.4a) and (3.4b) that
𝑥𝑛+1 = 𝑂 (𝑦𝑛) and 𝑦𝑛 = 𝑂 (𝜙𝑛), which has motivated our precise ordering in 𝑛 in the ansatzes
(3.6).

Substitution of ansatzes (3.6) into the 𝑂 (𝐹2𝑛) equations (3.4a)-(3.4c) yields at leading

§6.2 · EXPONENTIAL ASYMPTOTICS AND THE GENERATION OF FREE SURFACE FLOWS
BY SUBMERGED POINT VORTICES Shelton & Trinh (preprint) 109



Exponential asymptotics and point vortices 7

order in 𝑛 the three equations

𝑌 − 𝜙′0𝜒
′Φ = 0, 𝜒′

(
𝑋 + 𝑦′1𝑌

)
= 0, 𝜒′

(
Φ + 𝑎i𝜙′0𝑌

)
= 0. (3.7)

While the last two of these equations permit the solution 𝜒′ = 0, this is unable to satisfy the
first equation in (3.7). The remaining solutions can be solved to give 𝜒′ = 𝑎i(𝜙′0)

−2, which
we integrate to find

𝜒𝑎 (𝜎) = 𝑎i
ˆ 𝜎

𝑎i

[
1 + Γc

𝜋

1
(1 + 𝑡2)

]−2
d𝑡. (3.8)

Here, we have introduced the notation 𝜒𝑎 = 𝜒, where 𝑎 = ±1, to discern between each
singulant generated by the two singular points of 𝜙′0, which are given by 𝜎 = i and 𝜎 = −i.
The starting point of integration in (3.8) is 𝜎 = ±i to ensure that 𝜒𝑎 (𝑎i) = 0. This condition
is required in order to match with an inner solution near this singular point. Integration of
(3.8) yields

𝜒𝑎 (𝜎) =𝑎i
[
𝜎 +

Γ2
c𝜎

2(Γc + 𝜋) (𝜋𝜎2 + Γc + 𝜋)
− Γc(3Γc + 4𝜋)

2
√
𝜋(Γc + 𝜋)3/2 tan−1

( √
𝜋𝜎√︁

(Γc + 𝜋)

)]
+ 1 + Γc

2(Γc + 𝜋) −
Γc(3Γc + 4𝜋)

2
√
𝜋(Γc + 𝜋)3/2 tanh−1

( √
𝜋

√
Γc + 𝜋

)
.

(3.9)

3.3. Solution of the late-term amplitude equations
We now determine the amplitude functions, Φ, 𝑋 , and𝑌 , of the late term solutions. Note that
if one of these amplitude functions is known, then the other two may be determined by the
last two equations in (3.7). Thus, only one equation is required for the amplitude functions,
which we find at the next order of 𝑛 in the late term equation (3.4a). This equation is given
by

𝜙′0Φ
′ = 𝜙′1𝜒

′Φ, (3.10)
which may be integrated to find the solution

Φ(𝜎) = Λ exp
(
𝑎i
ˆ 𝜎

0

𝜙′1(𝑡)
[𝜙′0(𝑡)]3 d𝑡

)
. (3.11)

In the above, Λ is a constant of integration, which is determined by matching with an inner
solution near the singular points 𝜎 = 𝑎i. OnceΦ is known, the remaining amplitude functions
are determined by the equations 𝑌 = 𝑎i(𝜙′0)

−1Φ and 𝑋 = 𝑎i𝜙′′0 Φ.
We now calculate the constant, 𝛼, that appears in the factorial-over-power ansatzes (3.6).

This is determined by ensuring that the singular behaviour, as 𝜎 → 𝑎i, of each ansatz is
consistent with the anticipated singular behaviours of

𝑥𝑛 = 𝑂

(
(𝜎 − 𝑎i)1−3𝑛

)
, 𝑦𝑛 = 𝑂

(
(𝜎 − 𝑎i)1−3𝑛

)
, 𝜙𝑛 = 𝑂

(
(𝜎 − 𝑎i)−3𝑛

)
. (3.12)

In taking the inner limit of Φ from (3.11), we have Φ = 𝑂 (𝜎 − 𝑎i)3/2. Furthermore since
𝜒 = 𝑂

(
(𝜎 − 𝑎i)3) , derived later in equation (A 5), equating the power of the singularities

for 𝜙𝑛 between the ansatz (3.6) and the anticipated singular behaviour above in (3.12) yields
the value of 𝛼 = 1/2. The constant of integration, Λ, that appears in solution (3.11) for the
amplitude function, Φ, is derived in Appendix A by matching the inner limit of the divergent
solution, 𝜙𝑛, with an inner solution at 𝜎 = 𝑎i. This yields

𝛼 =
1
2

and Λ = −Γc(−𝑎i)1/2e−P(𝑎i)

6𝜋

(
− 4𝑎i𝜋2

3Γ2
c

)𝛼
lim
𝑛→∞

(
𝜙𝑛

Γ(𝑛 + 𝛼 + 1)

)
, (3.13)
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where 𝜙𝑛, determined via recurrence relation (A 10), is a constant appearing in the series
expansion for the outer limit of the inner solution for 𝜙, and P(𝜎) is defined in equation
(A 13).

To conclude, the late-term divergence of the asymptotic expansions (3.1) diverge in a
factorial-over-power manner specified by the ansatzes (3.6). Evaluation of this divergence
requires the constants 𝛼 and Λ from equation (3.13), as well as the singulant function 𝜒(𝜎)
from (3.9) and amplitude function Φ(𝜎) from (3.11). These will be required in the derivation
of the exponentially-small terms considered in the next section.

3.4. Stokes smoothing and Stokes lines
The exponentially-small components of the solutions are now determined. We truncate the
asymptotic expansions (3.1) at 𝑛 = 𝑁 − 1 and consider a remainder, yielding

𝑥 =

𝑁−1∑︁
𝑛=0

𝐹2𝑛𝑥𝑛︸      ︷︷      ︸
𝑥𝑟

+ 𝑥, 𝑦 =

𝑁−1∑︁
𝑛=0

𝐹2𝑛𝑦𝑛︸       ︷︷       ︸
𝑦𝑟

+ �̄�, 𝜙′ =
𝑁−1∑︁
𝑛=0

𝐹2𝑛𝜙′𝑛︸       ︷︷       ︸
𝜙′
𝑟

+ 𝜙, (3.14)

where the truncated asymptotic expansions have been denoted by 𝑥𝑟 , 𝑦𝑟 , and 𝜙′𝑟 . When 𝑁 is
chosen optimally at the point at which the divergent expansions reorder as 𝑛 → ∞, given by

𝑁 ∼ |𝜒 |
𝐹2 + 𝜌 (3.15)

where 0 ⩽ 𝜌 < 1 to ensure that 𝑁 is an integer, the remainders to the asymptotic expansions
(3.14) will be exponentially-small.

Equations for these remainders are found by substituting the truncated expansions (3.14)
into the analytically continued equations (2.5a)–(2.5c). These are given by

(𝐹2𝜙′0 + 𝐹4𝜙′1)𝜙
′ + �̄� = −ba, (3.16a)

2𝑥′ + 2𝐹2𝑦′1 �̄�
′ = −bb, (3.16b)

𝜙′ + 𝑎i𝜙′0 �̄�
′ = −bc. (3.16c)

In equations (3.16) above, nonlinear terms such as 𝑥2 were neglected as they will be
exponentially subdominant. In anticipating that 𝑥 = 𝑂 (𝐹2 �̄�) = 𝑂 (𝐹2𝜙), terms of the first
two orders of 𝐹2 have been retained on the left-hand side of (3.16a). Motivated by the
late-term analysis, in which equations for the amplitude functions were obtained at leading
order for the last two governing equations, we have only retained the leading order terms in
equations (3.16b) and (3.16c). Furthermore, the forcing terms introduced in equations (3.16)
are defined by

ba =
𝐹2

2
(𝜙′𝑟 )2 + 𝑦𝑟 −

𝐹2

2
, bb =

(
𝑥′𝑟

)2 +
(
𝑦′𝑟

)2 − 1,

bc = 𝜙′𝑟𝑥
′
𝑟 − 1 + 𝑎i𝜙′𝑟 𝑦′𝑟 −

Γc
𝜋

𝑦𝑟 + 1
(𝑥𝑟 )2 + (𝑦𝑟 + 1)2 − Î[𝑥𝑟 , 𝑦𝑟 , 𝜙′𝑟 ] .

 (3.17)

Since each order of these forcing terms will be identically zero up to and including
𝑂 (𝐹2(𝑁−1) ), they will be of 𝑂 (𝐹2𝑁 ). Only knowledge of ba will be required in the Stokes
smoothing procedure of this section, and this is given by

ba ∼ 𝜙′0𝜙
′
𝑁−1𝐹

2𝑁 . (3.18)

Homogeneous solutions to equations (3.16), for which the forcing terms on the right-hand
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Figure 3: The Stokes lines (bold) lie along the imaginary axis between the two singular
points of 𝜎 = −i and 𝜎 = i. Branch cuts are shown with a wavy line.

sides are omitted, are 𝑥 ∼ 𝐹2𝑋e−𝜒/𝐹2 , �̄� ∼ 𝑌e−𝜒/𝐹2 , and 𝜙 ∼ Φe−𝜒/𝐹2 , where the singulant
𝜒 and amplitude functions 𝑋 , 𝑌 , and Φ satisfy the same equations as those found for the
late-term solutions in §3.2. Next, we solve for the particular solutions of equations (3.16)
through variation of parameters by multiplying the homogeneous solutions by an unknown
function, S(𝜎), giving

𝑥 ∼ S(𝜎)𝐹2𝑋 (𝜎)e−𝜒 (𝜎)/𝐹2
,

�̄� ∼ S(𝜎)𝑌 (𝜎)e−𝜒 (𝜎)/𝐹2
,

𝜙 ∼ S(𝜎)Φ(𝜎)e−𝜒 (𝜎)/𝐹2
,

 (3.19)

where 𝑌 = 𝑎iΦ/𝜙′0 and 𝑋 = −𝑦′1𝑌 . The function S is called the Stokes multiplier, as it will
display the Stokes phenomenon across Stokes lines of the problem, which is demonstrated
next. An equation for S is obtained by substituting (3.19) into equation (3.16a), yielding
𝐹2𝜙′0Φe−𝜒/𝐹2S′ (𝜎) ∼ −ba. In substituting for the dominant behaviour of ba from (3.18) and
the factorial-over-power divergence of 𝜙′

𝑁−1 from (3.6), and changing derivatives of S from
𝜎 to 𝜒, we find

dS
d𝜒

∼ Γ(𝑁 + 𝛼)
𝜒𝑁+𝛼 𝐹2(𝑁−1)e𝜒/𝐹

2
. (3.20)

In expanding as 𝑁 → ∞, and substituting for 𝑁 ∼ |𝜒 |/𝐹2 + 𝜌 from equation (3.15), the
right-hand side of equation (3.19) is seen to be exponentially-small, except for in a boundary
layer close to contours satisfying

Im[𝜒] = 0 and Re[𝜒] > 0. (3.21)

These are the Stokes line conditions originally derived by Dingle (1973). Across the Stokes
lines, the solution for the Stokes multiplier S,

S(𝜎) = 𝑆𝑎 +
√

2𝜋i
𝐹2𝛼

ˆ √
|𝜒 | arg (𝜒)

𝐹

−∞
exp (−𝑡2/2)d𝑡, (3.22)

rapidly varies from the constant 𝑆𝑎 to 𝑆𝑎 + 2𝜋i/𝐹2𝛼. This is the Stokes phenomenon, and
the contours satisfying the Dingle conditions (3.21) are shown in figure 3 to lie along the
imaginary axis. For the one vortex case studied in this section, the upstream condition as
Re[𝜎] → −∞ requires that 𝑆1 = 0 and 𝑆−1 = −2𝜋i/𝐹2𝛼.
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Figure 4: The Stokes lines (bold) generated by the four singular points are shown.

3.5. Trapped waves generated by two submerged vortices
We have so far studied the case of a single submerged point vortex. When multiple point
vortices are placed within the fluid, the only change is to the boundary integral equation,
previously specified in (2.5c) for a single vortex. In this section we study the formulation
of two submerged point vortices of the same nondimensional strength, Γc, located at 𝑧 =

𝑥 + i𝑦 = ±_ − i, for which the analytically continued boundary integral equation is given by

𝜙′ (𝜎)𝑥′ (𝜎) − 1 + 𝑎i𝜙′ (𝜎)𝑦′ (𝜎) = Γc
𝜋

[
𝑦(𝜎) + 1

[𝑥(𝜎) − _]2 + [𝑦(𝜎) + 1]2

+ 𝑦(𝜎) + 1
[𝑥(𝜎) + _]2 + [𝑦(𝜎) + 1]2

]
+ Î[𝑥, 𝑦, 𝜙] .

(3.23)

Unlike the case for a single submerged point vortex that produces waves in the far field for
𝑥 → ∞, two identical point vortices can produce solutions for which the waves are confined
to lie between the vortices, −_ < Re[𝜎] < _. This occurs for critical values of the Froude
number, which we now predict using the techniques of exponential asymptotics developed
in the previous sections.

The first two orders of the asymptotic solution for 𝜙 are now given by

𝜙′0(𝜎) = 1 + Γc
𝜋

[
1

1 + (𝜎 + _)2 + 1
1 + (𝜎 − _)2

]
, (3.24a)

𝜙′1(𝜎) = −𝑎i𝜙′0𝑦
′
1 +

Γc𝑦1
𝜋

[
(𝜎 + _)2 − 1

[1 + (𝜎 + _)2]2 + (𝜎 − _)2 − 1
[1 + (𝜎 − _)2]2

]
+ Î𝑛 (𝜎), (3.24b)

which are singular at the four locations 𝜎 = −_ + 𝑎i (from the vortex at 𝑧 = −_ − i) and
𝜎 = _ + 𝑎i (from the vortex at 𝑧 = _ − i). Note that we have again defined 𝑎 = ±1 to
indicate whether Im[𝜎] > 0 or Im[𝜎] < 0. These four singular points each have associated
Stokes lines, shown in figure 4. In general, the waves switched on across the first Stokes
lines, emanating from the points 𝜎 = −_ + 𝑎i, will be out of phase with the waves switched
on across the second Stokes lines, from 𝜎 = _ + 𝑎i. However, for certain values of 𝐹, the
wave switched on across the first Stokes line is then switched off by the second Stokes line,
yielding solutions with no waves for Re[𝜎] > _. An example of this trapped solution was
shown earlier in figure 1(b).

Thus, in using the Stokes switching prediction for 𝜙 shown in figure 4 and writing �̄� =
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𝑎i𝜙/𝜙′0, we require for the two contributions of

�̄�1 ∼ − 2𝜋
𝐹2𝛼𝜙′0

Φ1(𝜎) exp
(
− 𝜒1(𝜎)

𝐹2

)
+ 𝑐.𝑐.,

�̄�2 ∼ − 2𝜋
𝐹2𝛼𝜙′0

Φ2(𝜎) exp
(
− 𝜒2(𝜎)

𝐹2

)
+ 𝑐.𝑐.,


(3.25)

to cancel with one another for Re[𝜎] > _. Here, we denoted 𝜒1 and Φ1 as the singulant
and amplitude function arising from the 𝜎 = −_ + 𝑎i singularities, and 𝜒2 and Φ2 as those
arising from the 𝜎 = _ + 𝑎i singularities. The first of (3.25), �̄�1, is the contribution switched
on as we pass from left to right across the Stokes lines associated with the singular points
𝜎 = −_ + 𝑎i. The second, �̄�2, is the contribution switched on from left to right by the Stokes
lines associated with the 𝜎 = _ + 𝑎i singular point. Note that the specified contributions in
(3.25) are from the 𝑎 = 1 contribution, and the unspecified complex-conjugate components
are from that with 𝑎 = −1.

We now simplify each of the expressions given in equation (3.25) by substituting for the
amplitude functions Φ1 and Φ2, which satisfy the same equation as that found previously in
(3.10). The only difference will be the constants of integration, which we denote by Λ1 and
Λ2. This yields

𝜙1 ∼ −4𝜋 |Λ1 |
𝐹2𝛼𝜙′0

exp
(
−Re[𝜒1]

𝐹2

)
cos

(ˆ 𝜎

0

𝜙′1(𝑡)
[𝜙′0(𝑡)]3 d𝑡 + arg [Λ1] −

Im[𝜒1]
𝐹2

)
,

𝜙2 ∼ −4𝜋 |Λ2 |
𝐹2𝛼𝜙′0

exp
(
−Re[𝜒2]

𝐹2

)
cos

(ˆ 𝜎

0

𝜙′1(𝑡)
[𝜙′0(𝑡)]3 d𝑡 + arg [Λ2] −

Im[𝜒2]
𝐹2

)
.


(3.26)

Note that |Λ1 | = |Λ2 |. This may be verified by matching with an inner solution, much like
that considered in Appendix A for the case of a single point vortex. In fact, the same inner
equation emerges regardless of the number of vortices considered, and the only difference
encountered in the matching procedure is in the inner limit of the outer divergent solution.
Furthermore, through integration of 𝜒′ = 𝑎i(𝜙′0)

−2 and imposing the boundary conditions
𝜒1(𝑎i− _) = 0 and 𝜒2(𝑎i + _) = 0, it may be verified that along the free-surface, Im[𝜎] = 0,
we have Re[𝜒1] = Re[𝜒2]. Thus, the prefactors multiplying each of the cosine functions in
(3.26) are identical, and the condition for them to cancel, �̄�1 + �̄�2 = 0, yields

cos

(ˆ 𝜎

0

𝜙′1(𝑡)
[𝜙′0(𝑡)]3 d𝑡 + arg [Λ1] + arg [Λ2]

2
− Im[𝜒1 + 𝜒2]

2𝐹2

)
× cos

(
arg [Λ1] − arg [Λ2]

2
− Im[𝜒1 − 𝜒2]

2𝐹2

)
= 0.

(3.27)

Note that since 𝜒1 and 𝜒2 satisfy the same differential equation, 𝜒′ = 𝑎i(𝜙′0)
−2, originally

derived in §3.2, the only difference between them are their constants of integration. Therefore
Im[𝜒1 + 𝜒2] will be a function of 𝜎, and Im[𝜒1 − 𝜒2] will be constant. Thus, only the second
cosine component of (3.27) is capable of satisfying the identity for Re[𝜎] > _. Since this
cosine function is zero when the argument equals ±𝜋/2, ±3𝜋/2, and so forth, we find

𝐹𝑘 =

√︄
Im[𝜒1 − 𝜒2]

arg [Λ1] − arg [Λ2] + 𝜋(2𝑘 + 1) . (3.28)

for 𝑘 = 0, 1, 2, . . ., and so forth. Equation (3.28) yields the discrete values of the Froude
number, 𝐹𝑘 , for which the waves are confined to lie between the two submerged vortices.
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All that remains is to evaluate Im[𝜒1−𝜒2], arg [Λ1], and arg [Λ2]. Each of these singulants
are found by integrating 𝜒′ = i(𝜙′0)

−2, where 𝜙′0 is specified in equation (3.24), from the
corresponding singular point. We may decompose each singulant into a real-valued integral
along the Stokes line, and an imaginary-valued integral along the free-surface. Thus, Im[𝜒]
is an integral along the free-surface, Im[𝜎] = 0, from the intersection of the Stokes line to
𝜎. This yields

Im[𝜒1(𝜎) − 𝜒2(𝜎)] =
ˆ _

−_

[
1 + Γc

𝜋

(
1

1 + (𝑡 + _)2 + 1
1 + (𝑡 − _)2

)]−2
d𝑡. (3.29)

In the numerical results of §4.2, the integral in (3.29) is evaluated with a symbolic
programming language. Note that the Stokes lines depicted in figure 4 are not truly vertical,
and are slightly curved such that they intersect the free surface at the points −_∗ and _∗.
Thus, the range of integration in (3.29) should actually lie between −_∗ < 𝑡 < _∗; however
since _∗ is very close in value to _ (for _ = 8 and Γ𝑐 = 0.3, _∗ ≈ 7.99998), this subtlety has
been ignored.

Comparisons between the analytical prediction of 𝐹𝑘 from (3.28) and numerical results
are performed in §4.2.

4. Numerical results
We begin in §4.1 by verifying with numerical results our analytical predictions for the
exponentially-small scaling as 𝐹 → 0 for the case of a single vortex. This is given by the
singulant function, 𝜒, from (3.9), and comparisons are made for a range of values of the
vorticity, Γc. The analytical predictions of the Froude numbers for trapped waves between
two point vortices, given in (3.28), are then compared to numerical predictions in §4.2.

A detailed description of the numerical method used is given by Forbes (1985), which we
will briefly summarise here.
(i) The real-valued domain, 𝑠, is truncated to lie between the values of 𝑠L and 𝑠R.

𝑁 discretisation points are used, such that the numerical domain is given by 𝑠𝑘 =

𝑠L + (𝑘 − 1) (𝑠R − 𝑠L)/(𝑁 − 1) for 1 ⩽ 𝑘 ⩽ 𝑁 . The unknown solution is taken to be
𝑦′ (𝑠), which we define at each gridpoint by 𝑦′

𝑘
= 𝑦′ (𝑠𝑘). The radiation conditions are

imposed by enforcing 𝑦1 = 0, 𝑦′1 = 0, 𝑥′1 = 1, 𝜙′1 = 1, 𝑥1 = 𝑠l, and 𝜙1 = 𝑠L, and the
initial guess for 𝑦′

𝑘
is either zero or a previously computed solution.

(ii) Since we assume that 𝑦′
𝑘

is known at the next gridpoint, the arclength relation (2.1b)
yields 𝑥′

𝑘
. Trapezoidal-rule integration then determines values for 𝑥𝑘 and 𝑦𝑘 , which

we use to find 𝜙′
𝑘

from Bernoulli’s equation (2.1a). This process is repeated for 𝑘 = 2
to 𝑘 = 𝑁 to find function values at every gridpoint.

(iii) The boundary-integral equation (2.1c) is evaluated at each gridpoint with the known
values of 𝑥𝑘 , 𝑦𝑘 , 𝜙′

𝑘
, 𝑥′

𝑘
, and 𝑦′. To avoid the singularity associated with the principal-

valued integral I[𝑥, 𝑦, 𝜙′], each unknown that is not a function of the integration
variable, 𝑡, is instead evaluated between gridpoints by interpolation.

(iv) This yields 𝑁 −1 nonlinear equations from evaluating the boundary-integral equation
between each gridpoint, (𝑠𝑘 + 𝑠𝑘+1)/2, which is closed by the 𝑁 − 1 unknowns 𝑦′

𝑘
for 𝑘 = 2 to 𝑘 = 𝑁 . Solutions are found by minimising the residual through Newton
iteration. For the trapped waves studied in §4.2, we impose an additional constraint of
symmetry about 𝑠 = 0 in the real-valued solution, 𝑦(𝑠), such that the Froude number,
𝐹, is determined as an eigenvalue.
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Figure 5: The exponentially-small dependence of the wave amplitude is shown (dots) for
numerical results for seven different values of Γc = {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}.

Solid lines represent the analytical gradient found from the real part of 𝜒 in equation (3.9).
The behaviour of this gradient for different values of the vortex strength Γc is shown in

figure 6.

4.1. Waves generated by a single vortex
For the numerical results presented in this section, we have used 𝑁 = 2000 grid points, and
a domain specified by 𝑠L = −40 and 𝑠R = 40. In computing numerical solutions for a wide
range of Froude numbers, and the values of Γc = {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}, the
exponentially-small scaling as 𝐹 → 0 of the high-frequency waves present for 𝑠 > 0 may be
measured. This is shown in the semilog plot of figure 5. We see that these lines, each of which
represents solutions with a different value of Γc, are straight and thus the amplitude of these
ripples is exponentially small as 𝐹 → 0. The gradient of each of these lines is expected to
closely match the exponential scaling predicted analytically, given by the singulant 𝜒. Along
the free surface, this is given by Re[𝜒] from equation (3.9) which takes constant values. In
figure 6, this analytical prediction is compared to the numerical values from figure 5, and
good agreement is observed. Note that there are small instabilities present in the numerical
solution which decay when the truncated domain is extended; upon which we expect the
numerical results to tend towards the analytical prediction shown in figure 6.

Comparison between a numerical and asymptotic solution profile is shown in figure 7 for
𝐹 = 0.45 and Γc = 0.4. The numerical solution is determined by the scheme detailed at the
beginning of §4, with 𝑁 = 2000 discretisation points in the arclength, −40 ⩽ 𝑠 ⩽ 40. The
asymptotic solution plots 𝑥(𝑠) = 𝑥0(𝑠)+𝐹2𝑥1(𝑠)+𝑥(𝑠) against 𝑦(𝑠) = 𝑦0(𝑠)+𝐹2𝑦1(𝑠)+ �̄�(𝑠).
These early order solutions, 𝑥0, 𝑥1, 𝑦0, and 𝑦1 are specified in equations (3.2) and (3.3). The
exponentially-small components, 𝑥 and �̄�, are implemented from expression (3.19). This
requires knowledge of the singulant, 𝜒, given in (3.9), the amplitude functions 𝑌 = 𝑎iΦ/𝜙′0
and 𝑋 = −𝑦′1𝑌 determined from Φ in (3.11), and the Stokes multiplier, S, given in (3.22).
A real-valued asymptotic solution is obtained through evaluating the sums 𝑥 |𝑎=1 + 𝑥 |𝑎=−1
and �̄� |𝑎=1 + �̄� |𝑎=−1 on the real-valued domain, 𝜎 = 𝑠, for Im[𝜎] = 0. Note that in the
determination of the constant Λ, its magnitude, |Λ|, has been fitted to equal that found from
the corresponding numerical solution, and its argument (corresponding to a phase shift of
the resultant wave) is determined from relation (3.13) as arg[Λ] = 𝑎𝜋/2.
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Figure 6: The analytical prediction for Re[𝜒] along the free surface Im[𝜎] = 0 from
equation (3.9) is shown against the vorticity Γc (line). The numerical predictions,

corresponding to the slopes of the semilog plot in figure 5, are shown circled.
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Figure 7: For 𝐹 = 0.45 and Γc = 0.4, a numerical solution (dashed) is compared to an
analytical solution (line) determined in §3.

4.2. Trapped gravity waves between two vortices
We considered the case of two submerged point vortices analytically in §3.5. When each
vortex had the same nondimensional circulation, Γc, and depth equal to unity, trapped waves
were seen to occur for certain discrete values of the Froude number, 𝐹𝑘 . In this section, we
compare the analytical prediction for 𝐹𝑘 from (3.28) with numerical results. These trapped
numerical solutions are found with the method detailed at the beginning of §4. In imposing
the additional constraint of symmetry to eliminate waves downstream of the vortices, the
special Froude number, 𝐹𝑘 , is determined as an eigenvalue. These results were performed
for 𝑁 = 4000 grid points, a domain between 𝑠L = −60 and 𝑠R = 60, and horizontal vortex
placement specified as _ = 8.

In figure 8, we plot the tail amplitude (for 𝑠 > _) of the asymptotic solutions for the
values of 0.3 < 𝐹 < 0.5, Γc = 0.3, and _ = 8. This amplitude is equal to zero at the values
of 𝐹𝑘 from equation (3.28). The figure also contains additional markers denoted by (a),
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Figure 8: The amplitude of oscillations present for 𝑠 > _ in the asymptotic solutions is
shown against the Froude number, 𝐹. Here, Γc = 0.3 and _ = 8. This amplitude is equal to

zero at the locations 𝐹𝑘 derived in equation (3.28). The two points marked (a) and (b)
correspond to the profiles shown in figure 9.
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Figure 9: Two different trapped wave solutions are shown for Γc = 0.3 and _ = 8
corresponding to (a) 𝐹 = 0.3383 and (b) 𝐹 = 0.4270. Asymptotic solutions (solid line) are
compared to numerical solutions (dashed) for (a) 𝑘 = 22 and (b) 𝑘 = 14. In each inset, the

two curves are nearly indistinguishable to visual accuracy.

where 𝐹 = 0.3383, and (b), where 𝐹 = 0.4270. This corresponds to the figure 9 where we
compare numerical solutions obtained in this section, and asymptotic solutions from §3 for
those given values of 𝐹. The fit is excellent and the corresponding curves are nearly visually
indistinguishable at the scale of the graphic.

Finally, in figure 10, we compare the values of 𝐹𝑘 obtained analytically and numerically.
The straight lines are the analytical prediction from (3.28), and dots represent the numerical
values for 𝐹𝑘 .

5. Conclusion
We have shown, through both numerical and analytical investigations, that the waves
generated by submerged point vortices are exponentially small in the low-speed limit of
𝐹 → 0. Furthermore, when two submerged vortices are considered, oscillatory waves
vanish downstream for certain values of the Froude number, 𝐹. Through the techniques
of exponential asymptotics, we have demonstrated how these values may be derived. Their
prediction relies on the understanding of singularities in the analytically continued domain
that generate a divergent asymptotic expansion. The remainder to this series is exponentially
small as 𝐹 → 0, and the study of the associated Stokes phenomenon yields discrete values
of 𝐹 for which the waves are trapped between each vortex.
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Figure 10: Values of the Froude number, 𝐹𝑘 , for which the waves are trapped between
each submerged vortex are shown. The numerical results of §4.2 are shown circled, and
the analytical results from equation (3.28) are shown with lines. Here, _ = 8, and for the

numerical solutions 𝑁 = 4000, 𝑠L = −60, and 𝑠R = 60.

6. Discussion
The work presented here forms a basis for a number of interesting extensions involving
exponentially-small water waves with gravity, capillarity, and/or vorticity providing singular
perturbative effects.

First, it should be remarked that the classical exponential-asymptotics theories by e.g.
Chapman & Vanden-Broeck (2002, 2006) for capillary- and gravity-driven surface waves
produced in flows over topographies rely upon the existence of closed-form conformal
maps. In such problems, the governing equations for the free-surface can be written in
terms of a single complex-valued unknown (e.g. the complex velocity), with the velocity
potential serving as the independent variable. This includes situations such as flows past
polygonal boundaries (related to the availability of the Schwarz-Christoffel mapping). The
arclength formulation we have used in this work provides a more general setting for wave-
structure interactions with arbitrary bodies, including for instance, flows past smoothed bodies
specified in (𝑥, 𝑦)-coordinates. Here, we have demonstrated that the exponential asymptotics
can be generalised to such formulations. We expect that many of the interesting wave-structure
interactions studied by e.g. Holmes et al. (2013) (symmetric bottom topography), Hocking
et al. (2013) (submerged semi-ellipse), and Elcrat & Miller (2006) (submerged point vortex
with lower topography) can be attacked using the technology we have developed here.

Secondly, the phenomenon of trapped waves is an interesting one. The exponential
asymptotics interpretation, whereby waves switched-on at one location (the Stokes line
intersection) must be switched-off at another, provides an intuitive explanation for how
trapped waves form in singularly perturbative limits. The context, in our problem, relates to
vortices fixed within the fluid for modelling submerged obstructions, such as the submerged
cylinders studied numerically by Tuck & Scullen (1998). However, trapped waves have been
detected numerically in other geometries including submerged bumps (Hocking et al. 2013),
a semi-ellipse (Holmes et al. 2013), a trigonometric profile (Dias & Vanden-Broeck 2004),
spikes (Binder et al. 2005), and a rectangular bump (Lustri et al. 2012). We expect that
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the ‘selection mechanism’ that produces the countably infinite set of values (3.28) is a kind
of universality in eigenvalue problems (cf. Chapman et al. 2022 for further discussion and
examples).

Finally, we note that in this paper, the forcing mechanism producing the waves was via the
complex-plane singularities associated with the point vortices—then, we found that the waves
were singularly perturbed due to the inertial term in Bernoulli’s equation, thus producing
exponentially small waves, scaling as exp(−const./𝐹2). Recently, analytical solutions have
been developed for pure-vorticity-driven water waves, notably in the works by Crowdy &
Nelson (2010); Crowdy & Roenby (2014); Crowdy (2022). In essence, we believe these
solutions can serve as leading-order approximations in the regime of small surface-tension;
it might be expected that exponentially-small parasitic ripples then exist on the surface of
such vorticity-driven profiles. This would then be similar to the work of Shelton et al. (2021);
Shelton & Trinh (2022) for parasitic capillary ripples on steep gravity waves. Numerical and
analytical work on this class of problems is ongoing.
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Appendix A. Inner analysis at the singularities 𝜎 = ±i
In order to determine the constant of integration of the amplitude function Φ(𝜎) from
equation (3.10), knowledge of the inner solutions at the singularities 𝜎 = i and 𝜎 = −i
is required. In this section, we study the inner boundary layer at both of these locations,
for which matching with the inner limit of the outer solutions determines the constant of
integration.

First, we note that in the outer region, where 𝜎 = 𝑂 (1), the asymptotic series first reorder
whenever

𝜙′0(𝜎) ∼ 𝐹2𝜙′1(𝜎), 𝑦1(𝜎) ∼ 𝐹2𝑦2(𝜎), 𝑥2(𝜎) ∼ 𝐹2𝑥3(𝜎). (A 1)

In substituting for the early orders of the asymptotic solutions specified in equations (3.2),
(3.3), and (3.5), we see that each of (A 1) reorder in a boundary layer of the same width,
given by 𝜎 − 𝑎i = 𝑂 (𝐹2/3). We thus introduce the inner variable, �̂�, by the relation

𝜎 − 𝑎i = �̂�𝐹2/3, (A 2)

for which �̂� = 𝑂 (1) in the inner region. Since the asymptotic series each reorder near the
two locations of 𝜎 = i and 𝜎 = −i, we have again used the notation 𝑎 = ±1 to distinguish
between these two cases.

Next, to determine the form of the inner solutions, we take the inner limit of the outer
series expansions for 𝜙′, 𝑥, and 𝑦, by substituting for the inner variable �̂� defined in (A 2)
and expanding as 𝐹 → 0. This yields

𝜙′ ∼ 1
𝐹2/3

[
− 𝑎iΓc

2𝜋
1
�̂�

+ · · ·
]
, 𝑦 ∼ 𝐹2/3

[
Γ2

c
8𝜋2

1
�̂�2 + · · ·

]
, 𝑥 ∼ 𝑎i + 𝐹2/3

[
�̂� + · · ·

]
, (A 3)

where the omitted terms, represented by (· · · ), are from the inner limit of lower order terms
of the outer asymptotic expansion. For instance, the next term in the inner limit of 𝜙′ is of
𝑂 (𝐹−2/3�̂�−4). The form of the inner limits in (A 3) motivates our definition of the inner
solutions, 𝜙(�̂�), �̂�(�̂�), and 𝑥(�̂�), through the equations

𝜙′ = − 𝑎iΓc

2𝜋𝐹2/3
𝜙(�̂�)
�̂�

, 𝑦 =
Γ2

c𝐹
2/3

8𝜋2
�̂�(�̂�)
�̂�2 , 𝑥 = 𝑎i + �̂�𝐹2/3𝑥(�̂�). (A 4)

The form of the inner variables introduced in (A 4) ensures that the first term in the series
expansion for their outer limit will be equal to unity. Furthermore, based on the form of the
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inner limit of the singulant, 𝜒, from equation (3.8),

𝜒 ∼ −4𝑎i𝜋2

3Γ2
c
�̂�3𝐹2, (A 5)

the outer limit of the inner solutions will be a series expansion in inverse powers of
−4𝑎i𝜋2�̂�3/(3Γc). We thus introduce the variable 𝑧, defined by

𝑧 = −4𝑎i𝜋2

3Γ2
c
�̂�3, (A 6)

to ensure that these series expansions are in inverse powers of 𝑧 alone.

A.1. Inner equation
The leading order inner equations, as 𝐹 → 0, may now be derived by substituting (A 4) for
the inner variables into the outer equations (2.5a)-(2.5c), yielding

�̂� − 𝜙2 = 0, (A 7a)(
𝑥 + 3𝑧𝑥′

)2
−

(
1
3𝑧

�̂� − 1
2
�̂�′

)2
= 1, (A 7b)

𝜙

(
𝑥 − 1

6𝑧
�̂�

) (
𝑥 + 3𝑧𝑥′ − 1

3𝑧
�̂� + 1

2
�̂�′

)
= 1. (A 7c)

The inner solutions, 𝜙(𝑧), �̂�(𝑧), and 𝑥(𝑧), will satisfy equations (A 7a)-(A 7c). Rather than
solve these inner equations exactly, knowledge of the inner solutions is only required under
the outer limit of 𝑧 → ∞ in order to match with the inner limit of the outer solutions to
determine their divergent form. Thus, we will consider the following series expansions for
these inner unknowns,

𝜙(𝑧) =
∞∑︁
𝑛=0

𝜙𝑛

𝑧𝑛
, �̂�(𝑧) =

∞∑︁
𝑛=0

�̂�𝑛

𝑧𝑛
, 𝑥(𝑧) =

∞∑︁
𝑛=0

𝑥𝑛

𝑧𝑛
, (A 8)

which hold as 𝑧 → ∞.
At leading order as 𝑧 → ∞ we have, by the definition on the inner solutions in equation

(A 4),

𝜙0 = 1, �̂�0 = 1, 𝑥0 = 1. (A 9)

Determination of 𝜙𝑛, �̂�𝑛, and 𝑥𝑛, as 𝑛 → ∞, requires the evaluation of a recurrence relation,
which is now given. Firstly, substitution of expansions (A 8) into the inner equation (A 7b)
yields

𝑥1 = 0, 2(1 − 3𝑛)𝑥𝑛 =
1
36

𝑛−2∑︁
𝑚=0

(2 + 3𝑚) (2𝑛 − 3𝑚 − 4) �̂�𝑚 �̂�𝑛−𝑚−2

+
𝑛−1∑︁
𝑚=1

(1 − 3𝑚) (3𝑛 − 3𝑚 − 1)𝑥𝑚𝑥𝑛−𝑚, for 𝑛 ⩾ 2.

(A 10a)
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Next, we substitute the same expansions into the inner equation (A 7c), yielding

𝜙1 =
1
2
, 𝜙𝑛 =

𝑛∑︁
𝑚=2

𝑚−1∑︁
𝑞=1

(3𝑞 − 1)𝜙𝑛−𝑚
36

(
6𝑥𝑞 − �̂�𝑞−1

) (
6𝑥𝑚−𝑞 − �̂�𝑚−𝑞−1

)
−

𝑛∑︁
𝑚=1

𝜙𝑛−𝑚
6

(
6(2 − 3𝑚)𝑥𝑚 + (3𝑚 − 2) �̂�𝑚−1

)
, for 𝑛 ⩾ 2.

(A 10b)

Lastly, a recurrence relation for �̂�𝑛 is found from equation (A 7a) to be

�̂�1 = 1, �̂�𝑛 =

𝑛∑︁
𝑚=0

𝜙𝑚𝜙𝑛−𝑚, for 𝑛 ⩾ 2. (A 10c)

Assuming that 𝜙𝑛−1, �̂�𝑛−1, and 𝑥𝑛−1 are known, 𝑥𝑛 can be determined from equation (A 10a),
which then yields a value for 𝜙𝑛 from equation (A 10b). Lastly, �̂�𝑛 is found by evaluating
equation (A 10c).

A.2. Matching and determination of the constant Λ
We now match the outer limit of the inner solution, 𝜙, with the inner limit of the outer
solution, 𝜙′. In writing the outer limit of the inner solution in outer variables, we have

𝜙′ =
−𝑎iΓc

2𝜋

∞∑︁
𝑛=0

𝐹2𝑛𝜙𝑛(
− 4𝑎i𝜋2

3Γ2
c

)𝑛
(𝜎 − 𝑎i)3𝑛+1

, (A 11)

and for the inner limit of the outer solution,

𝜙′ =
∞∑︁
𝑛=0

𝐹2𝑛𝜙′𝑛 ∼
∞∑︁
𝑛=0

−𝐹2𝑛𝜒′Φ
Γ(𝑛 + 𝛼 + 1)

𝜒𝑛+𝛼+1

∼
∞∑︁
𝑛=0

− 4𝜋2Λ

Γ2
c (−𝑎i)1/2

eP(𝑎i) 𝐹2𝑛Γ(𝑛 + 𝛼 + 1)(
− 4𝑎i𝜋2

3Γ2
c

)𝑛+𝛼+1
(𝜎 − 𝑎i)3𝑛+3𝛼−1/2

.

(A 12)

In the above, the inner limit of the amplitude function Φ from equation (3.11) has been taken
by defining

P(𝜎) =
ˆ 𝜎

0

[
𝑎i𝜙′1(𝑡)
[𝜙′0(𝑡)]3 − 3

2(𝑡 − 𝑎i)

]
d𝑡, (A 13)

such that P(𝜎) = 𝑂 (1) as𝜎 → 𝑎i. Matching (A 11) with (A 12), and substituting for 𝛼 = 1/2
from (3.13), determines the constant, Λ, as

Λ =
𝑎ie−P(𝑎i)

3
√

3
lim
𝑛→∞

(
𝜙𝑛

Γ(𝑛 + 𝛼 + 1)

)
. (A 14)
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THE HERMITE-WITH POLE EQUATION 7
7.1 Introduction

In the exponential asymptotic study of chapter 44, we considered an asymptotic
expansion for small surface tension (B → 0) of a problem with an eigenvalue (the
Froude number, F ). In order to satisfy each order of the amplitude constraint, it was
necessary to also expand the eigenvalue in asymptotic powers of the small parameter.
Thus, in addition to expanding the solution as an asymptotic series, we also considered
this eigenvalue to take the form

F = F0 +BF1 + · · ·+BN−1FN−1 + F̄ ,

where F̄ is the exponentially small remainder to the truncated base expansion, and
N = O(1/B). However the effects of FN−1 on the O(BN−1) equation and F̄ on the
remainder equation were neglected. These effects are both considered in Appendix BB.
It is demonstrated in B.1B.1 that Fn diverges as n→ ∞ in a factorial-over-power manner.
Since these all take constant values and are real-valued, this precise determination of
Fn and F̄ is largely insignificant and serves only to demonstrate the theory that may
be required in problems for which these eigenvalue expansions are important.

In this chapter, we consider a problem for which this is the case: the equatorial
Kelvin wave instability, for which the small parameter ϵ is weak latitudinal shear. In
considering travelling wave solutions of the form

u(y) = u(y)eik(x−ct),

the wavespeed, c, is an eigenvalue of the problem and must also be expanded as ϵ→ 0

as
c = c0 + ϵ2c1 + · · ·+ ϵ2(N−1)cn︸ ︷︷ ︸

real valued

+ c̄︸︷︷︸
complex valued

.

Here, while the base expansion for c is real-valued, the exponentially small compo-
nent, c̄, is complex-valued. This corresponds to an exponentially-small instability that
destabilises the equatorial Kelvin wave.

We begin by developing the associated theory for the determination of this
geophysical instability for the model Hermite-with-pole problem considered by
Boyd and NatarovBoyd and Natarov (19981998). This analysis by Shelton et al.Shelton et al. (2023a2023a), presented in the
next section, is quite technical and includes techniques beyond the scope of the
exponential asymptotic introduction of chapter 44. One of these is the higher-order
Stokes phenomenon, for which the late terms themselves of the asymptotic solution
display the Stokes phenomenon. This can, and for this problem does, lead to inactive
and partially active Stokes lines. Furthermore, the Stokes phenomenon displayed by
the exponentially small component of the solution is induced by two different sources.
In addition to the standard forcing introduced in chapter 44 from the divergent series,
the exponentially-small component of the eigenvalue also produces an associated
divergent expansion that contributes to the same Stokes phenomenon.
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PATHOLOGICAL EXPONENTIAL ASYMPTOTICS FOR A MODEL
PROBLEM OF AN EQUATORIALLY TRAPPED ROSSBY WAVE

JOSH SHELTON∗, S. JONATHAN CHAPMAN† , AND PHILIPPE H. TRINH‡

Abstract. We examine a misleadingly simple linear second-order eigenvalue problem (the Hermite-
with-pole equation) that was previously proposed as a model problem of an equatorially-trapped
Rossby wave. In the singularly perturbed limit representing small latitudinal shear, the eigenvalue
contains an exponentially-small imaginary part; the derivation of this component requires exponential
asymptotics. In this work, we demonstrate that the problem contains a number of pathological
elements in exponential asymptotics that were not remarked-upon in the original studies. This includes
the presence of dominant divergent eigenvalues, non-standard divergence of the eigenfunctions, and
inactive Stokes lines due to the higher-order Stokes Phenomenon. The techniques developed in
this work can be generalised to other linear or nonlinear eigenvalue problems involving asymptotics
beyond-all-orders where such pathologies are present.

Key words. Exponential asymptotics, beyond-all-orders analysis, Stokes phenomenon

AMS subject classifications.

1. Introduction. The motivation of this work stems from an interesting mathe-
matical model that was proposed in 1998 by Boyd & Natarov [4] in order to describe
equatorially-trapped Rossby waves when the mean shear flow is only a function of the
latitude. In such cases, the eigenfunctions are modelled by the so-called Hermite-with-
pole equation

d2u

dz2
+

[
1

z
− λ−

(
z − 1

ϵ

)2
]
u = 0, (1.1a)

u(z) → 0 as z → ±∞, (1.1b)

u(0) = 1. (1.1c)

Here, ϵ corresponds to the shear strength, u corresponds to a normal mode amplitude,
and λ is an eigenvalue determined by the boundary condition at z = 0. Although
this resembles the standard parabolic cylinder equation with Hermite functions as
eigenfunctions, the pole at z = 0 lies in the interval of consideration. Boyd & Natarov
consider the pole at z = 0 as emerging from a singularity in the analytic continuation,
which approaches the real axis as viscosity tends to zero. As it turns out, the associated
eigenvalue to (1.1a) is complex-valued; in the limit ϵ → 0, the eigenvalue contains

an exponentially-small imaginary part, Im[λ] = O(e−1/ϵ2). One of the aims of the
analysis is to derive this exponentially-small eigenvalue component.

In their work, Boyd & Natarov [4] note that an asymptotic expansion of u(z) in
integer powers of ϵ diverges, and they develop a procedure for approximating Im[λ] with
the use of an integral property from Sturm-Louville theory. Their approach relies upon
the use of special functions theory and the niceties of the linear differential equation.
In contrast, the emphasis of our work here will be on developing a framework that is
applicable for more general differential equations—particularly for nonlinear problems
where special functions theory is unavailable. Our goal is to study the divergence
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Fig. 1.1. The imaginary component of the eigenvalue, λ, is shown for the numerical
solutions of Boyd & Natarov [4] (circles) and the analytical prediction of Im[λ] =

√
π[1 −

2ϵ log (ϵ) + ϵ(log (2) + γ)]e−1/ϵ2 (line). Here, γ ≈ 0.577 is the Euler-Macheroni constant.

of the asymptotic expansion for the eigenfunction and examine its connection, via
the Stokes phenomenon, to the exponentially-small components. In §8 we discuss the
significance in the application of techniques developed in this paper, both to the more
complete geophysical problem discussed by Natarov & Boyd [15], as well as other
problems involving singular perturbations.

For analysis, there is a more convenient form of (1.1a), which is found by shifting

y = z − 1

ϵ
, (1.2)

where now y = 0 corresponds to the equator. Then we have, for u = u(y),

d2u

dy2
+

[
ϵ

1 + ϵy
− y2

]
u = λu. (1.3)

This intermediary equation contains a turning point at y = −1/ϵ which we study by

rescaling with y = Y/ϵ. We then set u(y) = e−y
2/2ψ(Y ) which yields the system

ϵ2ψ′′ − 2Y ψ′ +
ϵψ

1 + Y
= (λ+ 1)ψ, (1.4a)

e−Y
2/2ϵ2ψ(Y ) → 0 as Y → ±∞, (1.4b)

ψ(0) = 1. (1.4c)

In (1.4a) and henceforth, we use primes (′) to denote differentiation in Y .

2. A roadmap of the methodology and main results. As it turns out, the
Hermite-with-pole problem (1.4a) has a number of non-trivial elements that were
not remarked upon in the original studies; the treatment of which has required the
development of new techniques in exponential asymptotics. We explain some of
these aspects in the context of singularly perturbed linear eigenvalue problems of the
form (1.4a), L(ψ; ϵ) = λψ, although many of the same ideas apply more generally to
nonlinear eigenvalue problems.
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Firstly, asymptotic expansions for ψ = ψ0 + ϵψ1 + · · · and λ = λ0 + ϵλ1 + · · · are
sought, but these expansions are divergent and must be optimally truncated. The
solution is then expressed as a truncated series with a remainder by considering

ψ(Y ) =
N−1∑
n=0

ϵnψn(Y ) +RN (Y ), (2.1)

with a similar expression for the eigenvalue, λ. When N is chosen optimally [later
shown to be of O(ϵ−2)] the remainder RN (Y ) is exponentially-small, and satisfies the
linear eigenvalue problem of

L(RN ; ϵ) ∼ −ϵNψ′′
N−2. (2.2)

The remainder, RN , will exhibit the Stokes Phenomenon, in which its magnitude
rapidly varies across certain contours in the complex Y -plane. Indeed, as we shall
show, this behaviour can be predicted by estimating the growth of the forcing term
ψ′′
N−2. Thus, the late-term behaviour of the divergent series, ψN with N → ∞, is

required in order to correctly resolve the Stokes phenomenon on the remainder RN (Y ).
This ‘decoding’ of divergence is one of the hallmarks of exponential asymptotics.

One of our main results of this paper is that for the Hermite-with-pole problem,
additional components of the late-term divergence, ψn, are required. It is well known,
according to the principles of exponential asymptotics (cf. Chapman & Vanden-
Broeck [9]) that the nth-order approximation of most singularly perturbed differential
equations exhibits a factorial-power-divergence of a form similar to

ψn ∼ Q(Y )Γ
(
n
2 + α

)
χ(Y )

n
2 +α

as n→ ∞, (2.3)

where different problems may involve slight modifications to the above form. Thus for
instance, the fractional coefficient of n that appears above may be modified to ensure
the correct dominant balance arises in the equation. The functions Q and χ and the
constant α prescribe the divergent behaviour.

However in this work we demonstrate that the Hermite-with-pole problem exhibits
a very atypical divergence of the form

ψn ∼



S(Y )
[
L(Y ) log (n) +Q(Y )

]Γ(n2 + α0)

χn/2+α0

+Q0(Y ) log2 (n)Γ

(
n+ 1

2
+ α0

)
for n even,

S(Y )︸ ︷︷ ︸
HOSP

R(Y )
Γ(n2 + α1)

χn/2+α1︸ ︷︷ ︸
naive divergence

+R1(Y ) log (n)Γ

(
n+ 1

2
+ α1

)
︸ ︷︷ ︸

χ′=0 divergence

for n odd,

(2.4)

where the singulant, χ(Y ), takes a value of zero at singularities in the early orders of
the asymptotic expansion. This is also associated with a divergent eigenvalue of the
form

λn ∼


[
δ0 log (n) + δ1

]
Γ
(n+ 1

2
+ α0

)
for n even,

δ2Γ
(n+ 1

2
+ α1

)
for n odd.

(2.5)
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Once these components are derived, a procedure for the derivation of the exponentially-
small remainders can be followed.

We now comment on the following pathologies related to (2.4) and (2.5):

1. Divergent eigenvalues.
Although exponential asymptotics has been applied to other eigenvalue prob-
lems (cf. Tanveer [20], Kruskal & Segur [14], Chapman & Kozyreff [7], and
Shelton & Trinh [19]), in such cases, the eigenvalue divergence has not been
noted as significant. In the present work, the divergence of λn affects the
leading-order prediction of the eigenfunction divergence in (2.4), and is re-
quired to satisfy the associated boundary conditions on the late-term solution.
We note that other problems for which a real-valued eigenvalue expansion
has an imaginary beyond-all-orders component have been tacked by analysing
special function solutions by Paris & Wood (1989) [16] and Brazel (1989) [5]
for a model problem arising in optical tunnelling.

2. Spurious singularities in the late-term approximation.
It is known (cf. Dingle [11], Berry [1], Chapman et al. [6]) that typically,
divergence of the late terms is captured by a factorial-over-power ansatz of the
form displayed in (2.3). This factorial-over-power divergence is often taken as
a universality of many problems in singularly perturbed asymptotics.
However, we find that in the Hermite-with-pole problem, an additional sin-
gularity beyond that of Y = −1 is predicted by the divergent ansatz. This
misleadingly suggests that the late-order divergence of the asymptotic series
is attributed to a point where no singularity appears in the early orders. This
unusual aspect is associated with the following item.

3. The higher-order Stokes Phenomena (HOSP).
The Hermite-with-pole problem exhibits a pathology where the anticipated
Stokes Phenomenon is suppressed in certain regions of the complex plane.
This complexity is an example of the higher-order Stokes Phenomena, for
which a general analytic understanding from the viewpoint of the divergent
series has remained elusive (c.f. Howls et al. [13], Olde Daalhuis [10], Body
et al. [2], and Chapman & Mortimer [8]). An introduction of the HOSP is
given in §5.1, using the general analytical techniques developed by the current
authors [17].

4. Atypical boundary layers in the late terms.
The factorial-over-power divergence (2.4) is unable to satisfy boundary condi-
tion (1.4c) at Y = 0, due to the functional prefactor growing without bound
as Y → 0. A boundary layer of vanishing size as n→ ∞ must be introduced,
and the consideration of additional divergences with χ′ = 0, shown in (2.4),
are required to satisfy the matching criteria.

5. Even-and-odd pairing of the late terms.
Consecutive terms in the asymptotic expansion exhibit different singular
behaviour at Y = −1: one is purely algebraic, and the other is the product
of a logarithmic and an algebraic singularity. Consequently the late-term
representation (2.4) requires a different ansatz for n even and n odd.

It is the resolution of these complicated issues within that separates our work from
the previous work by Boyd & Natarov [4]. In the end, despite its misleadingly simple
form, the Hermite-with-pole problem turns out to be quite a pathological investigation
of beyond-all-orders asymptotics.
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3. An Initial Asymptotic Expansion. We begin by considering the asymptotic
expansions

ψ(Y ) =
∞∑
n=0

ϵnψn(Y ) and λ =
∞∑
n=0

ϵnλn. (3.1)

At leading order in equation (1.4a) we find the solution ψ0 = C0Y
−(1+λ0)/2, where C0

is a constant of integration. In general this solution is singular or contains a branch
point at Y = 0. In order to apply the leading-order boundary condition of ψ0(0) = 1
at the same location, a boundary layer should typically be considered. However, we
can verify through an inner-matching procedure that the leading-order eigenvalue is
λ0 = −1. Then the boundary condition at Y = 0 gives C0 = 1 and no boundary-layer
theory is required. This yields our leading-order solution of

ψ0 = 1 and λ0 = −1. (3.2)

We emphasise that the singularity at Y = 0 in the leading-order solution has been
removed by the choice of the eigenvalue, λ0 = −1. A similar argument will be applied
in subsequent orders to enforce regularity of the solution at Y = 0.

At the next order, O(ϵ), of equation (1.4a), we find the solution

ψ1 = C1 +
(1− λ1)

2
log(Y )− 1

2
log(1 + Y ), (3.3)

which contains singularities at both Y = 0 and Y = −1. To apply the boundary
condition ψ1(0) = 0, we require λ1 = 1, which then determines the constant of
integration as C1 = 0. Thus, our O(ϵ) solution is

ψ1 = −1

2
log(1 + Y ) and λ1 = 1. (3.4)

Note that the above is singular at Y = −1. Since successive terms in the asymptotic
series for ψ in (3.1) rely on repeated differentiation of previous terms, the logarithmic
singularity will result in the divergence of the series for ψn as n → ∞. It is this
divergence that we wish to characterise. Note that in the n → ∞ limit, on the
assumption that ψn is divergent, there exists a dominant balance between the two
terms ϵ2ψ′′ and −2Y ψ′ of (1.4a). Thus, we must continue to derive additional early
orders of the solution until the effects of the ϵ2ψ′′ term become apparent. Since the
singularity at Y = −1 in ψ1 first appears at O(ϵ), the effects of this term will begin at
O(ϵ3).

The same procedure is applied at O(ϵ2) and O(ϵ3), for which we find the solutions

ψ2 =
1

8
log2(1 + Y ), λ2 = 0, (3.5a)

ψ3 = − Y

4(1 + Y )
− 1

48
log3(1 + Y )− 1

4
log(1 + Y ), λ3 =

1

2
. (3.5b)

Note that while the singularities at Y = −1 in ψ1 and ψ2 were logarithmic, the
dominant singularity in ψ3 is algebraic and of order unity. Typically the order of the
singular behaviour of successive terms in the asymptotic series would increase linearly
in a predictable fashion (see e.g. the work of Chapman et al. in [6]). This is not the
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case for our current problem, which can be seen by progressing to the next order,
which has the solution

ψ4 = − log(1 + Y )

8(1 + Y )
− Y

8(1 + Y )
+

log4(1 + Y )

384
+

log2(1 + Y )

8
and λ4 =

1

4
. (3.6)

From (3.5b) and (3.6), we find the singular scalings, as Y → −1, of

ψ3 ∼ 1

4(1 + Y )
and ψ4 ∼ − log(1 + Y )

8(1 + Y )
. (3.7)

From this, we anticipate that the singular behaviour as Y → −1 of the asymptotic
series will proceed in the pairwise fashion of

ψ2k−1 = O

(
1

(1 + Y )k−1

)
and ψ2k = O

(
log(1 + Y )

(1 + Y )k−1

)
(3.8)

for integer k ≥ 2, and hence the order of the algebraic singularity increases every other
term. As it turns out, the above form in (3.8), which predicts the behaviour of the
late-order terms as Y → −1 and n → ∞ also hints at the proper ansatz for n → ∞
in general. In the late-term analysis that follows we will employ separate divergent
predictions for ψn, distinguishing between the cases of n even and n odd.

4. Typical exponential asymptotics and the naive divergence. The goal of
the exponential asymptotics procedure is to predict the exponentially-small eigenvalue
and eigenfunction solutions. We shall see in §7 that these exponentially-small terms
are connected to the divergence of the expansion (3.1).

Our task in this section is to derive the analytical form of the late terms of (3.1) in
the limit of n→ ∞. For this, we follow the procedure of introducing an ansatz for the
factorial-over-power divergence. However, this ansatz, given in equation (4.2) below,
takes an unusual form due to the inclusion of a log (n) divergent scaling for even values
of n. It is demonstrated in §4.1.2, through an inner analysis at the singularity, why
the divergent ansatz must take this form.

At O(ϵn) in (1.4a), we have

ψ′′
n−2 − 2Y ψ′

n − Y

1 + Y
ψn−1 = λ3ψn−3 + · · ·+ λn−1ψ1 + λn, (4.1a)

and the boundary-condition of (1.4c) yields at O(ϵn)

ψn(0) = 0. (4.1b)

The late-order solutions, ψn, will contain a singularity at Y = −1 in the manner
prescribed by equation (3.8). Moreover, since subsequent orders are determined by
differentiation of earlier terms in the expansion, we anticipate that the divergence of
the solution, introduced in (2.4), will be captured by the factorial-over-power ansatz,

ψn ∼


[
L(Y ) log (n) +Q(Y )

] Γ(n2 + α0)

[χ(Y )]n/2+α0
for n even,

R(Y )
Γ(n2 + α1)

[χ(Y )]n/2+α1
for n odd.

(4.2)

As we have warned, the analysis to follow is quite involved. In essence, our first
task is to derive the so-called naive divergence that appears in (2.4) and above in
(4.2). This is done in §4.2 by considering the homogeneous form of the O(ϵn) equation.
Before we do this, however, we shall motivate its unusual form by considering in the
next section the outer limit of an inner solution at the boundary-layer near Y = −1.
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4.1. Inner problem for the singularity of Y = −1. First, we note that the
early orders of expansion (3.1) reorder as we approach the singularity at Y = −1.
Instead of consecutive terms in the outer expansion reordering, those with an odd
and even powers of ϵ will reorder amongst themselves. For instance, the reordering
occurs with the odd terms for ϵ3ψ3 ∼ ϵ5ψ5 and even terms for ϵ4ψ4 ∼ ϵ6ψ6. Since
ψ3 ∼ (1+Y )−1 and ψ5 ∼ (1+Y )−2 from the singular behaviour introduced in equation
(3.8), we balance (1 + Y )−1 ∼ ϵ2(1 + Y )−2 to find the width of the boundary layer to
be of O(ϵ2). The same width is found by considering the even reordering. We thus
introduce the inner-variable, ŷ, by the relation

(1 + Y ) = ϵ2ŷ, (4.3)

for which ŷ will be of O(1) in the zone of consideration. The inner equation may then
be derived by substituting for ŷ, giving

d2ψ̂

dŷ2
+ 2(1− ϵ2ŷ)

dψ̂

dŷ
+
ϵψ̂

ŷ
= ϵ2(1 + λ)ψ̂, (4.4)

where we denote the inner solution by ψ̂.

4.1.1. Inner limit of the early orders. To motivate the correct form for the
inner solution, we take the inner limit of the outer solution by substituting for ŷ and
expanding as ϵ→ 0. This yields

ψouter ∼ 1− ϵ log (ϵ) + ϵ

[
− log (ŷ)

2
+

1

4ŷ
+ · · ·

]
+
ϵ2 log2 (ϵ)

2

+ϵ2 log (ϵ)

[
log (ŷ)

2
− 1

4ŷ
+ · · ·

]
+ ϵ2

[
log2 (ŷ)

8
− log (ŷ)

8ŷ
+

1

8ŷ
+ · · ·

]
+ · · · .

(4.5)

More specifically, this is the six-term inner limit (since we neglect terms of order
ϵ3 log3 ϵ after this limit has been taken) of the first five terms, up to and including ψ4,
of the outer expansion. The inclusion of further terms in the outer series would affect
this result since they may reorder into terms of either O(ϵ) or O(ϵ2). For instance,
including ψ5 would yield an extra term of ϵŷ−2 in (4.5).

4.1.2. Outer limit of the inner solution. In Appendix C, we solve the inner
equation (4.4) by considering an inner solution, motivated by (4.5), of the form

ψ̂ = ψ̂0 + ϵ log (ϵ)ψ̂(1,1) + ϵψ̂1 + ϵ2 log2 (ϵ)ψ̂(2,2) + ϵ2 log (ϵ)ψ̂(2,1) + ϵ2ψ̂2. In order to
find the correct form for the outer solution, where Y = O(1), we will write the inner
solution from (C.1) in outer variables by substituting for ŷ = (1 + Y )/ϵ2 from (4.3).
This outer limit (of the first six terms of the inner series) yields

ψ̂ ∼ 1− ϵ
log (1 + Y )

2
+ ϵ2

log2 (1 + Y )

8
+

∞∑
k=1

ϵ1+2k

2

Γ(k)

[2(1 + Y )]k

+
∞∑
k=1

ϵ2+2k

4

[4bk − log (1 + Y )Γ(k)]

[2(1 + Y )]k
.

(4.6)

In the above, the divergent constant bk is determined by the recurrence relation
(C.9). This may be solved under the limit of k → ∞, as performed in (C.12), to find
bk ∼ 1

2 (log (k) + γ)Γ(k). It is this extra factor of log (k) in the expansion for bk that
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causes the unusual log (n) divergent form introduced in (4.2). In order to compare
(4.6) with the late-terms of the outer solution at O(ϵn), we substitute n = 1 + 2k for
the first sum on the right-hand side of (4.6) and n = 2+ 2k for the second. The O(ϵn)
of this outer limit yields

ψ̂ ∼


ϵn
[
1

2
log (n) +

γ − log (2)

2
− 1

4
log (1 + Y )

]
Γ(n2 − 1)

[2(1 + Y )]
n
2 −1

for n even,

ϵn

2

Γ(n−1
2 )

[2(1 + Y )]
n−1
2

for n odd,

(4.7)

where we expanded bn/2−1 ∼ 1
2 [log (n) + γ − log (2)]Γ(n2 − 1) for n→ ∞ as in (C.12).

To summarise, the goal of the analysis in this section was to characterise the outer
limit of the inner solution, near Y = −1. Having done so, we have obtained (4.7).
This form motivates the dominant scaling of log (n) for even values of n that we had
previously introduced in the factorial-over-power ansatz (4.2). We are now ready to
return to study the divergence of the outer solution.

4.2. Divergence of the homogeneous late-term equation. From the O(ϵn)
equation (4.1a), we begin by considering solutions to the homogeneous equation

ψ′′
n−2 − 2Y ψ′

n − Y

1 + Y
ψn−1 = λ3ψn−3 + · · · . (4.8)

Here, we have removed the inhomogeneous terms on the right-hand side, such as
λnψ0. Later in §6, these terms will be seen to produce particular solutions that are
subdominant as n → ∞ near the singularity of Y = −1. In order for the divergent
ansatz from (4.2) to match with the outer limit of the inner solution from (4.7) we
must have

α0 = −1 and α1 = −1

2
. (4.9)

Next, we substitute the factorial-over-power ansatz (4.2) into the homogeneous equation
(4.8). Once we have done so, the dominant behaviour of the terms in the equation are

then of O(log (n)Γ(n/2)/χn/2) for n even and O(Γ(n+1
2 )/χ

n+1
2 ) for n odd. We divide

out by the factorial-over-power component of these scalings, and this results in an
equation with terms of orders O(1), O(n−1), and so forth for n odd, and O(log n),
O(1), O(n−1 log n), O(n−1) and so forth for n even.

At leading order as n→ ∞, the same equation is found for both cases of n even
or odd, and this provides an equation for the singulant function, χ(Y ), given by

χ′(χ′ + 2Y ) = 0, (4.10)

of which there are two solutions. The singular behaviour of ψn will be captured by
the non-trivial solution, χ′ = −2Y . We require χ(−1) = 0 in order to match with the
inner solution near the singularity from (4.7). Thus we obtain

χ(Y ) = 1− Y 2. (4.11)

Equations for the functional prefactors, L(Y ), R(Y ), and Q(Y ), of the divergent
ansatz are now found by considering the subsequent orders in n of equation (4.8). At
O(n−1 log n) for n even we find an equation for L(Y ). Similarly, the R(Y ) and Q(Y )
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equations are found at O(n−1) for the cases of n odd and n even, respectively. These
equations are

L′(Y ) +
1

Y
L(Y ) = 0, R′(Y ) +

1

Y
R(Y ) = 0, (4.12a)

Q′(Y ) +
1

Y
Q(Y ) =

R(Y )

2(1 + Y )
+

2Y L(Y )

1− Y 2
, (4.12b)

which may be integrated directly to find the solutions

L(Y ) =
ΛL

Y
, R(Y ) =

ΛR

Y
, (4.13a)

Q(Y ) =
ΛQ

Y
+

ΛR

2Y
log(1 + Y )− ΛL

Y
log (1− Y 2). (4.13b)

Above, ΛL, ΛR, and ΛQ are constants of integration.

Substitution of these solutions for L(Y ), R(Y ), and Q(Y ) from equations (4.13a)
and (4.13b) back into the ansatz (4.2) gives our divergent prediction for ψn, with
n→ ∞ as

ψn ∼



[
ΛL

Y
log (n) +

(
ΛQ

Y
+

ΛR

2Y
log(1 + Y )

− ΛL

Y
log (1− Y 2)

)]
Γ(n2 − 1)

[χ(Y )]n/2−1
for n even,

ΛR

Y

Γ(n−1
2 )

[χ(Y )](n−1)/2
for n odd.

(4.14)

We will refer the late-order form of (4.14) as corresponding to the naive divergence.
There are two noticeable issues present:

1. The boundary condition, ψn(0) = 0, is unable to be satisfied as our current
form is unbounded at Y = 0;

2. There are additional locations at which the singulant, χ(Y ), is equal to zero.
Since χ(Y ) = 1− Y 2, our late term expression predicts singularities at both
Y = −1 and Y = 1. This is in contrast to the early orders of the expansion,
which are singular at Y = −1 only.

The first of these issues will be resolved in §6.1. There, we demonstrate that
as n → ∞, a boundary layer emerges in the late-order solution near Y = 0. This
boundary layer is of diminishing width as n→ ∞. A matched asymptotic approach
then allows us to develop an inner solution that satisfies the boundary condition of
ψn(0) = 0.

Regarding the the second issue, we demonstrate in §5 that the late terms (4.14)
in fact switch off for Y > 0 as a surprising consequence of the higher-order Stokes
Phenomenon. This unusual phenomenon is linked to the presence of the additional
divergent component of the solution corresponding to χ = 0 from the singulant equation
(4.10).

4.3. Determination of the constants ΛL, ΛR, and ΛQ. It remains to find
values for the three constants ΛL, ΛR, and ΛQ that appear in the late-term solution
for ψn in (4.14). These are determined through matching with the outer limit of the
inner solution about the singularity at Y = −1 given in equation (4.7). Expanding
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the outer solution for ψn from (4.14) as Y → −1, we have

ψn ∼



[
− ΛL log (n) +

(
ΛL log (2)− ΛQ

+
[
ΛL − ΛR

2

]
log(1 + Y )

)]
Γ(n2 − 1)

[2(1 + Y )]n/2−1
for n even,

−ΛR

Γ(n−1
2 )

[2(1 + Y )](n−1)/2
for n odd.

(4.15)

This form may now be compared to the outer limit of the inner solution in (4.7) to find
the following solutions for the constant prefactors of the factorial-over-power solution
of

ΛR = −1

2
, ΛL = −1

2
, ΛQ = −γ

2
, (4.16)

for which γ ≈ 0.577 is the Euler-Macheroni constant.

5. Stokes lines and the higher-order Stokes phenomenon. The main goal
of this section is to discuss the unusual arrangement of Stokes lines in this problem,
and to explain the connection with the higher-order Stokes Phenomena. As we know
from the works of e.g. Dingle [11], Boyd [3], and Chapman et al. [6], Stokes lines are
expected along the contours that satisfy

Im[χ(Y )] = 0 and Re[χ(Y )] ≥ 0, (5.1)

with Y ∈ C. Here the singulant function, χ, from (4.11) is given by χ = 1 − Y 2.
With this, equations (5.1) yields Stokes lines along the real axis between −1 and 1,
and along the entire imaginary axis; this is shown in figure 5.1. We note that the

Re[Y ]

Im[Y ]

−1 1

+ 2πi
ϵα

− 2πi
ϵα

− 2πi
ϵα

+ 2πi
ϵα

Branch cut

Fig. 5.1. Classical Stokes lines predicted by the naive divergence with χ = 1−Y 2. The structure
is unusual, and contains both a segment along the real axis with Y ∈ [−1, 1], but also an infinite line
along the imaginary axis.

arrangement seen is unusual—in previous works on exponential asymptotics, Stokes
lines can typically be traced back to the originating singularity along a smooth curve;
this is in contrast to what occurs here at the origin, Y = 0.

According to the exponential asymptotics theory, a remainder to the regular
asymptotic solution (3.1) will contain exponentially-small terms in ϵ that rapidly
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switch-on or switch-off in magnitude across the Stokes lines. This switching, known as
the Stokes Phenomenon, occurs within a boundary layer about the Stokes line with
diminishing width as ϵ→ 0; the analytical derivation of this transition was first given
by Berry [1] in 1989. We shall review the derivation of the exponentially-small terms
and discuss its impact on the current problem in §7.

However, there currently exists a glaring issue with our current factorial-over-power
prediction in (4.14). This concerns the apparent presence of an additional singularity
at Y = 1 (at which χ = 1− Y 2 is zero). Note that because the perturbative procedure
of §3 is linear, singularities in the late terms must either arise in the early asymptotic
orders [cf. (3.6)], or must appear as singularities or turning points of the differential
equation. Here, Y = 1 is neither, and so we expect the late terms to be regular at this
point. In addition, we may verify that a singularity at Y = 1 is not seen to develop
in the exact solution for ψn obtained up to n = 50 using a symbolic programming
language. As it turns out, our late-term solution (4.14) is invalid in a region of the
complex plane, including Y = 1, due to the higher-order Stokes Phenomena—this is
explained in §5.1.

In fact, we can provide evidence of the correct form for ψn from this numerical
study. In figure A.2, we plot ψn evaluated at Y = −1/2 and Y = 1/2 up to n = 50. We

-0.5 0.5

-1

1

2

3

Re[Y ]

(1−Y 2)24

Γ(24)
ψ49(Y )

Fig. 5.2. The 49th order solution, ψ49, computed using a symbolic programming language in
Appendix A, is shown for real values of Y (bold line). The anticipated factorial-over-power scaling
has been divided out.

see that the asymptotic solution diverges in the predicted factorial-over-power manner
at Y = −1/2 for A.2(a). However, a different scaling is observed at Y = 1/2 in A.2(b);
this is the purely factorial divergence attributed to the additional late-order terms
with χ′ = 0 introduced briefly in (2.4). We thus conclude that the naive divergence has
“switched off” somewhere between these two points. Further study of this divergence
demonstrates that this change occurs about a boundary-layer along the imaginary
axis. We thus believe that, for a general point Y ∈ C, the corrected form to (4.14)
should be

ψn ∼


S(Y )

(
L(Y ) log (n) +Q(Y )

)
Γ(n2 − 1)

χn/2−1
for n even,

S(Y )R(Y )
Γ(n−1

2 )

χ(n−1)/2
for n odd,

(5.2)

where S(Y ) is the Stokes smoothing function shown in figure 5.3, that takes a value of
S(Y ) = 1 for Y < 0 and S(Y ) = 0 for Y > 0. This form displays Stokes phenomenon
in the late terms themselves, which is one sign of the higher-order Stokes Phenomena,
which we discuss next.
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1

Re[Y ]

S(Y )

boundary layerboundary layer

of O(n1/2)of O(n1/2)

Fig. 5.3. The Stokes prefactor, S(Y ) is shown along the real Y -axis. This transitions from a
value of 1 to 0 across a boundary layer of diminishing width as n→ ∞.

5.1. An overview of the higher-order Stokes Phenomena. The higher-
order Stokes phenomenon (HOSP) concerns two connected phenomena that often
arise in the study of singularly perturbed problems with multiple turning points or
singularities. These are:

1. Stokes switching of the late-terms of an asymptotic series.
Typically, the Stokes phenomenon occurs on exponentially-small components
of the asymptotic solution due to the forcing of a divergent Poincare series.
However, the late-terms of a divergent series are occasionally observed to
undergo a similar phenomena in which they too rapidly change in magnitude
across certain contours in the complex plane (higher-order Stokes lines). The
link between this behaviour, studied by Mortimer & Chapman [8] for instance
by analysing a recurrence relation as n→ ∞, and divergence remains elusive.
We demonstrate in §5.2 that this Stokes switching on the late-terms is linked
to a further divergent series in powers of n−1 appearing in the late-term
representation of the solution. This new divergent component may contain
additional singularities in the functional prefactor of its factorial-over-power
approximation. Thus, lower-order terms, in n, of the late-terms contain
stronger singular behaviour, and this forces a new divergent series (in n) at
each order of the original divergent series. The optimal truncation and Stokes
smoothing analysis, to be performed in future work by the current authors
[17], provides an analytical link between the HOSP on the late-terms and the
concept of divergence.

2. Inactive (or partially active) Stokes lines.
The Stokes lines naively predicted by enforcing the Dingle conditions (5.1) on
the singulant, χ, found from the late-terms are often seen to be inactive. This
is the behaviour studied by e.g. Howls et al. [13] and Honda et al. [12]. It is
related to item (1), since if the late-terms have been switched off due to the
HOSP across the higher-order Stokes lines, then they are no longer present to
induce the classical Stokes phenomenon. A Stokes line is termed inactive if it
passes through these regions. Furthermore, if a Stokes line intersects with a
higher-order Stokes line, across which the late-terms can no longer be assumed
constant, then it is denoted to be partially-active since the late-terms are
partially present across this boundary layer, which results in a non-standard
Stokes smoothing function.

In general, the conditions for a higher-order Stokes line generated by two different
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singulants, χ1 and χ2, are

Im[χ1] = Im[χ2] and Re[χ1] ≥ Re[χ2]. (5.3)

Since one of our singulants takes the value of unity and the other is χ = 1− Y 2, the
conditions for our problem are

Im[−Y 2] = 0 and Re[−Y 2] ≥ 0, (5.4)

which confirms that the higher-order Stokes lines for our problem lie along the imaginary
axis. We now motivate conditions (5.4) analytically in the next section.

5.2. Resolution of the higher-order Stokes Phenomena. It is possible
to analytically derive the Stokes-switching behaviour encountered in the late-terms
due to the HOSP. However, on account of the many complications arising in our
Hermite-with-pole problem, these techniques are easiest understood when applied to a
simpler problem displaying the HOSP, which has been the focus of present work by
the some of the current authors [17]. A simplified overview of this procedure is now
presented.

There exists additional components of the late-term solution characterised by
χ′ = 0, which we briefly introduced in (2.4). These have χ = 1 and take a form
analogous to

ψn ∼ R(Y )Γ(n/2 + α), where R(Y ) ∼ const.

Y
as n→ ∞. (5.5)

These contain a singularity at Y = 0 in the prefactor, R(Y ). One can also derive
lower orders (in n) of the late-term divergence, which we preform in Appendix B, by
expanding

R(Y ) ∼ R0(Y ) +
log (n)

n
M1(Y ) +

R1(Y )

n
+ · · · . (5.6)

The power of the singularity at Y = 0 grows as we proceed into this new series. This
forces the divergence of the series, which must be optimally truncated. This yields

R(Y ) ∼ R0(Y ) +
log (n)

n
M1(Y ) +

R1(Y )

n
+ · · ·+ Rp(Y )

np
+R(Y ), (5.7)

where the new series diverges, on account of the singularity at Y = 0, as

Rp(Y ) ∼ R̃(Y )Γ(p+ α̃)

χ̃p+α̃
, (5.8)

with χ̃ = −Y 2. Since the divergence (5.8) is generated by the solution (5.5), which
had χ′ = 0, R̃(Y ) will satisfy the same equation as that found for the prefactor of the
χ = 1− Y 2 late-terms.

Next, we study the exponentially-small remainder, R(Y ), appearing in expansion
(5.7). Since this is the remainder to the late-term difference equation, as opposed to
the standard Stokes smoothing procedure which acts on a differential equation, the
exponentially-small solution will be of the following atypical form,

R(Y ) = S(Y )R̃(Y ) exp

(
− n

2
log (1− Y 2)

)
. (5.9)

§7.2 · PATHOLOGICAL EXPONENTIAL ASYMPTOTICS FOR A MODEL PROBLEM OF AN
EQUATORIALLY TRAPPED ROSSBY WAVE Shelton, Chapman, Trinh (preprint) 141



14 Shelton, Chapman, and Trinh

Note that while the singulant appearing in (5.9) satisfies the same equation as that for
the late-late-terms, χ̃′ = −2Y , the constant of integration differs as now we require
log(χ̃(0)) = 0 as opposed to χ̃(0) = 0.

The exponentially-small solution in (5.9) displays the Stokes phenomenon through
the function S(Y ), about boundary layers of diminishing width as n→ ∞. Substitution
into (5.5) then yields

ψn = S(Y )R̃(Y )
Γ(n/2 + α)

(1− Y 2)n/2
. (5.10)

This is the Stokes switching present in the late terms that we are searching for. Note
that the conditions for a higher-order Stokes line are derived by enforcing the Dingle
criteria on χ̃ = −Y 2, which yields (5.4).

To summarise, the late-term switching is caused by other components of the late
terms, for which an expansion in powers of 1/n diverges on account of additional
singular points. When this new series is optimally truncated, the remainder displays
the Stokes phenomenon.

5.3. Inactive Stokes lines. We demonstrated in §5.1 that there are higher-order
Stokes lines along the imaginary axis. Within the vicinity of these, the naive divergence
of ψn will smoothly switch off as we transition from Y < 0 to Y > 0. Since the form
of the late-terms now differs significantly from that used to generate the initial Stokes
lines of figure 5.1, this structure may change. The main effects of the HOSP on the
Stokes line structure for the exponentially-small terms in ϵ will be:

1. An inactive Stokes line
Since the non trivial components of the late-terms have been switched off in
the sector containing the Stokes line between Y = 0 and Y = 1, they are no
longer present to induce the classical Stokes phenomenon. We thus refer to
this segment of the Stokes line as being inactive.

2. Partially-active Stokes lines
The Stokes lines along the imaginary axis coincide with the higher-order Stokes
lines. Across these, the late-terms with χ = 1− Y 2 transition from S(Y ) = 1
to S(Y ) = 0. Since the late-terms are now partially present across this Stokes
line, it too will be partially-active when considering its contribution to the
classical Stokes phenomenon. It is anticipated that the switching contribution
arising from this Stokes line will be halved due to this. We will refer to this
segment of the Stokes line as being half-active.

Later in §7.1 we incorporate both of these effects in figure 7.1, in which the Stokes
lines associated with the base asymptotic series are shown.

6. The late-term boundary layer at Y = 0. Recall that in the early orders of
the expansion, each order of the eigenvalue was determined by enforcing the boundary
condition at Y = 0. Similarly, we anticipate that the late-terms of the eigenvalue, λn,
will also be determined by applying the boundary condition on the late-term solution,
ψn. However, our current form for the naive divergence in (5.2) is unbounded at Y = 0
and can not satisfy the condition of ψn(0) = 0 from (4.1b).

In fact, there is a boundary layer about Y = 0 that must be considered to enforce
the boundary condition and correctly determine λn. This boundary layer arises as
a consequence of the singularity in the late-terms at Y = 0. In considering lower-
order solutions by expanding the functional prefactor as R0(Y ) + n−1 log (n)M1(Y ) +
n−1R1(Y ) + · · · for odd values of n, we will see that the singularity in the leading
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order, of the form R0 ∼ Y −1, forces a stronger singularity at the next order, that
behaves as R1 ∼ Y −3. Thus, this series reorders as Y = 0 is approached. We will
demonstrate that additional components of the late-term solution are required, with a
constant value of the singulant, in order to satisfy the matching criteria. the solutions
with χ′ = 0 arise from both the χ′ = 0 homogeneous solution previously neglected
in (4.10) as well as the particular solution which balances with λn in the late term
equation (4.1a).

6.1. Reordering of the late-terms as Y → 0. In order to determine the
width of this boundary layer in the late-term solution, we introduce in Appendix B a
factorial-over-power ansatz of the form

ψn ∼


[
L0(Y ) log (n) +Q0(Y ) +

log (n)

n
L1(Y )+ · · ·

]
Γ(n2 − 1)

χn/2−1
for n even,[

R0(Y ) +
log (n)

n
M1(Y ) +

R1(Y )

n
+ · · ·

]
Γ(n−1

2 )

χ(n−1)/2
for n odd.

(6.1)

Here, the leading order solutions of L0(Y ), R0(Y ), and Q0(Y ) have the same solution
as L(Y ), R(Y ), and Q(Y ) derived previously in (4.13a) and (4.13b). The solutions
of M1(Y ), L1(Y ), and R1(Y ) are presented in equations (B.3) and (B.4). For the
purposes of observing the reordering of these series near Y = 0, it is sufficient to
display only their singular behaviour here, of the form

L0 ∼ ΛL

Y
, L1 ∼ ΛL

Y 3
, R0 ∼ ΛR

Y
, R1 ∼ ΛR

Y 3
. (6.2)

The series expansions of ψn reorder when the two consecutive terms in each of (6.1)
are of the same order as n→ ∞. This occurs for

Y = O(n−1/2),

from which we introduce the inner variable ŷ by the relation

ŷ = n1/2Y. (6.3)

The inner limit of the outer late-term solution ψn may now be found by writing
equation (5.2) in terms of the inner variable ŷ and taking n→ ∞. We note here that
this procedure is subtly different from that considered for the other boundary layer at
Y = −1, as in this case the inner limit of the singulant contributes to the leading-order
solution. With χ = 1− Y 2, we have

(1− Y 2)−n/2 =

(
1− ŷ2

n

)−n/2
∼ eŷ

2/2 as n→ ∞, (6.4)

where this last result arises from the limit definition of the exponential function.
Furthermore, the scaling of Q(Y ) ∼ Y −1 will increase the argument of the gamma
function by one half. We therefore find

ψn ∼


S(ŷ)

[
− log (n)√

2
− γ√

2

]
eŷ

2/2

ŷ
Γ
(n− 1

2

)
for n even,

−S(ŷ) 1√
2

eŷ
2/2

ŷ
Γ
(n
2

)
for n odd.

(6.5)
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Here, we have taken the (Van-Dyke) inner limit of two terms in the outer solution for
even values of n, written in inner variables to two terms. For odd values of n we have
taken the one-term inner limit, written to a single term in the inner expansion. The
form of (6.5) hints at the required form of the inner solution near Y = 0.

6.2. Inner equation. Substituting the inner variable, ŷ = n1/2Y , into the O(ϵn)
outer equation (4.1a) yields the inner equation

n
d2ψ̂n−2

dŷ2
− 2ŷ

dψ̂n
dŷ

+
ŷ

n1/2

(
1 +

ŷ

n1/2

)−1

ψ̂n−1 = λ3ψ̂n−3 + · · ·+ λn−1ψ̂1 + λn. (6.6)

Here, ψ̂1 = − 1
2 log(1 + n−1/2ŷ) ∼ − 1

2n
−1/2ŷ.

6.3. An Inner solution. We now consider an inner solution to equation (6.6)
with the ansatz

ψ̂n ∼


[
L̂(ŷ) log (n) + Q̂(ŷ)

]
Γ
(n− 1

2

)
for n even,

R̂(ŷ)Γ
(n
2

)
for n odd.

(6.7)

Since the divergent eigenvalues, λn, will appear as a forcing term in the equations for
L̂(ŷ), Q̂(ŷ), and R̂(ŷ), we introduce a similar ansatz for their form, given by

λn ∼


[
δ0 log (n) + δ1

]
Γ
(n− 1

2

)
for n even,

δ2Γ
(n
2

)
for n odd.

(6.8)

Substituting (6.7) and (6.8) into the inner equation (6.6), and isolating the domi-
nant factorial divergence of Γ(n2 ) for n odd and Γ(n−1

2 ) for n even, yields at leading
order the equations

R̂′′ − ŷR̂′ =
δ2
2
, L̂′′ − ŷL̂′ =

δ0
2
, Q̂′′ − ŷQ̂′ =

δ1
2
. (6.9)

These three equations all have solutions of a similar form. We will now focus on
the first equation for R̂, and adapt the following results analogously for L̂ and Q̂.
Integrating the first of (6.9), we find

R̂(ŷ) = B̂R̂ + ÂR̂

∫ ŷ

0

et
2/2 dt+

δ2
2

∫ ŷ

0

et
2/2

[ ∫ t

0

e−p
2/2 dp

]
dt, (6.10)

for constants ÂR̂ and B̂R̂. The inner boundary condition (4.1b) may be enforced on

this solution. Since we require that ψ̂n(0) = 0, then necessarily B̂R̂ = 0. Thus, for n
odd, this yields an inner solution of

ψ̂n ∼
(
ÂR̂

∫ ŷ

0

et
2/2 dt+

δ2
2

∫ ŷ

0

et
2/2

[ ∫ t

0

e−p
2/2 dp

]
dt

)
Γ
(n
2

)
. (6.11)

It now remains to take the outer limit of this form to match with the inner
limit of the outer solution. Since the outer solution exhibits the Higher order Stokes
phenomenon across a boundary-layer of the same width as that studied currently, we
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will match in §6.5 to the outer solution with S(Y ) = 1 for ŷ → −∞ and S(Y ) = 0 for
ŷ → ∞. Taking the outer limit of (6.11), we have firstly for ŷ → ∞,

R̂(ŷ) ∼
[
ÂR̂ +

1

2

(π
2

) 1
2
δ2

]
eŷ

2/2

ŷ
− iÂ

(π
2

) 1
2 − δ2

4

(
log(2) + γ + log(−ŷ2)

)
, (6.12)

where γ ≈ 0.577 is the Euler-Mascheroni constant. Next, the outer limit is taken as
ŷ → −∞. Noting that the first integral on the right-hand side of (6.10) is an odd
function in ŷ, and the second integral is an even function, we have

R̂(ŷ) ∼
[
ÂR̂ − 1

2

(π
2

) 1
2

δ2

]
eŷ

2/2

ŷ
+ iÂ

(π
2

) 1
2 − δ2

4

(
log(2) + γ + log(−ŷ2)

)
. (6.13)

We note here that the inner limit of the outer solution with χ = 1 − Y 2 from
(6.5) alone can not match to this form. This is because there are other, previously
neglected, components of the outer solution with χ′ = 0 required. These are derived
in the following section.

6.4. The outer constant χ solution. We now consider an outer solution with
χ′ = 0. Since the O(ϵn) equation is linear in ψn, this type of solution may be considered
separately to that derived previously in §4.2 with χ = 1− Y 2. In order to match with
the outer limit of ψ̂(ŷ) from equations (6.12), and (6.13), we require χ = 1. Thus, we
posit the following divergent ansatz for their form

ψn(Y ) ∼


[
Q0(Y ) log2 (n) +Q1(Y ) log(n) +Q2(Y )

]
Γ
(n− 1

2

)
for n even,[

R1(Y ) log(n) +R2(Y )

]
Γ
(n
2

)
for n odd.

(6.14)

Note that while the inner solution from (6.7) has a coefficient of O(log (n)) for n even,
and O(1) for n odd, we have introduced in (6.14) the terms Q0 and R1 corresponding
to orders not seen in the inner solution. These components are required in the outer
solution to cancel out with a further log(n) term arising when the inner limit of Q1

and R1 is taken. We note that ansatz (6.14) will include particular solutions arising
from the forcing terms in the O(ϵn) equation that include the divergent eigenvalue
from (6.8).

Substituting ansatz (6.14) into the O(ϵn) equation (4.1a), we divide out by Γ((n−
1)/2) for n even and Γ(n/2) for n odd. At O(log (n)) for n odd and O(log2(n)) for n
even, we find the equations

R′
1(Y ) = 0 and Q′

0(Y ) = 0, (6.15)

which have the solutions

R1(Y ) = A1 and Q0(Y ) = B0, (6.16)

where A1 and B0 are constants. Next, for O(1) for n odd and O(log (n)) for n even,
we find

R′
2(Y ) = − δ2

2Y
and Q′

1(Y ) = − δ0
2Y

− R1(Y )

2(1 + Y )
, (6.17)
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which have the solutions

R2(Y ) = A2 −
δ2
2
log (Y ) and Q1(Y ) = B1 −

δ0
2
log (Y )− A1

2
log (1 + Y ), (6.18)

where A2 and B1 are the constants of integration. At the next order of O(1) for n
even, we find

Q′
2(Y ) = − δ1

2Y
− δ2

2Y
ψ1(Y )− R1(Y )

2(1 + Y )
. (6.19)

This has the solution

Q2(Y ) = B2 −
δ1
2
log(Y )− A2

2
log(1 + Y ) +

δ2
4
log(Y ) log(1 + Y ). (6.20)

We now take the inner limit of this outer χ′ = 0 solution from (6.14) by substituting
for the inner variable ŷ = n1/2Y and expanding as n→ ∞. This yields

ψn ∼



[(
B0 +

δ0
4

)
log2 (n) +

(
B1 +

δ1
4

− δ0
2
log (ŷ)

)
log(n)

+

(
B2 −

δ1
2
log(ŷ)

)]
Γ
(n− 1

2

)
for n even,[(

A1 +
δ2
4

)
log(n) +

(
A2 −

δ2
2
log(ŷ)

)]
Γ
(n
2

)
for n odd.

(6.21)

The full outer solution is then given by combining the χ′ = 0 solution from
equation (6.14) with the χ = 1−Y 2 solution from equation (5.2), yielding the relevant
divergence rate as

ψn ∼



S(Y )
[
L(Y ) log (n) +Q(Y )

]Γ(n2 − 1)

χn/2−1

+
[
Q0(Y ) log2 (n) +Q1(Y ) log(n) +Q2(Y )

]
Γ
(n− 1

2

)
for n even,

S(Y )R(Y )
Γ(n−1

2 )

χ(n−1)/2
+
[
R1(Y ) log(n) +R2(Y )

]
Γ
(n
2

)
for n odd.

(6.22)

We may combine this result with the inner limit of the χ = 1− Y 2 divergent solution
from (6.5) to find, for n even

ψn ∼
[(
B0 +

δ0
4

)
log2 (n) +

(
− S(Y )eŷ

2/2

√
2ŷ

+B1 +
δ1
4

− δ0
2
log (ŷ)

)
log(n)

+

(
−S(Y )γeŷ

2/2

√
2ŷ

+B2 −
δ1
2
log (ŷ)

)]
Γ

(
n− 1

2

)
,

(6.23)

and for n odd

ψn ∼
[(
A1 +

δ2
4

)
log(n) +

(
−S(Y )eŷ

2/2

√
2ŷ

+A2 −
δ2
2
log (ŷ)

)]
Γ

(
n

2

)
. (6.24)
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6.5. Matching and conclusions. We may now match the inner limit of the
outer solution, given above in equations (6.23) and (6.24), with the outer-limit of the
inner solution as ŷ → ∞ from (6.12) and ŷ → −∞ from (6.13). Firstly, the inner
solution contains no terms of O(log n) for n odd and O(log2 (n)) for n even, requiring
that

A1 = −δ2
4

and B0 = −δ0
4
. (6.25)

Next, we match the terms of O(ŷ−1eŷ
2/2). Taking S(Y ) = 0 for ŷ → ∞ and S(Y ) = 1

for ŷ → −∞, we find at leading order for n odd, and orders log (n) and O(1) for n
even, six equations for the eigenvalue coefficients δ0, δ1, and δ2. These are

ÂL̂ + δ0

√
π

8
= 0, ÂQ̂ + δ1

√
π

8
= 0, ÂR̂ + δ2

√
π

8
= 0,

ÂL̂ − δ0

√
π

8
= − 1√

2
, ÂQ̂ − δ1

√
π

8
= − γ√

2
, ÂR̂ − δ2

√
π

8
= − 1√

2
.

 (6.26)

The first of (6.26) yields ÂL̂ = −δ0
√

π
8 , which we substitute into the second

equation for δ0 in (6.26) to find a value for δ0. This approach yields the solutions

δ0 =
1√
π
, δ1 =

γ√
π
, δ2 =

1√
π
. (6.27)

Note that the χ′ = 0 outer solutions were not required to determine the eigenvalue
divergence, as their inner limit does not contribute to the eŷ

2/2 terms whose coefficients
were matched between the inner and outer regions. These terms are however important
to view the divergence of the outer solution for Re[Y ] > 0, since the factorial-over-power
divergence has been switched off in this region due to the HOSP.

7. Stokes smoothing. We now truncate the divergent expansions for the solution
and eigenvalue at n = N − 1 and consider an exponentially-small remainder. These
are taken to be of the form

ψ(Y ) =
N−1∑
n=0

ϵnψn(Y )︸ ︷︷ ︸
ψr(Y )

+ψ(Y ) and λ =
N−1∑
n=0

ϵnλn︸ ︷︷ ︸
λr

+λ, (7.1)

where we have denoted the truncated series by ψr(Y ) and λr and optimally truncated
at

N =
2|χ|
ϵ2

+ ρ, (7.2)

where 0 ≤ ρ < 1 to ensure that N takes integer values. Substitution of these
expansions into the Hermite-with-pole equation (1.4a) yields the following linear
differential equation of

ϵ2ψ
′′ − 2Y ψ

′
+

[
ϵ

1 + Y
− (1 + λr)

]
ψ − ψrλ = ξeq +O(λψ), (7.3)

where the forcing term ξeq is of O(ϵN ) and defined by

ξeq = (1 + λr)ψr − ϵ2ψ
′′
r + 2Y ψ

′
r − ϵ

ψr
1 + Y

. (7.4)
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Our goal is to determine the leading order divergence of λ̄ by considering the
behaviour of ψ̄(Y ) throughout the complex plane. This requires the analytical under-
standing of the Stokes phenomenon, in which ψ̄(Y ) rapidly transitions in magnitude
across contours in the Y-plane known as Stokes lines. The details presented here will
be brief, and we refer the reader to the geophysical study for the Kelvin wave problem
[18] for complete details of this procedure.

Re[Y ]

Im[Y ]

−1 1

Inactive

+ 2πi
ϵα

− πi
ϵα

− πi
ϵα

Branch cut

Fig. 7.1. The Stokes lines generated by the divergent series expansion for our problem are shown
(bold). Inactive Stokes lines are shown dashed, and along the imaginary axis the Stokes line is half
active.

7.1. Stokes lines. Across the Stokes lines, shown in figure 7.1, a multiple of
the homogeneous solution to equation (7.3) will switch on, due to the inhomogenous
forcing term. The homogeneous solution is given by

ψ̄(Y ) ∼
(
Λ̄R
Y

+ ϵ log (ϵ)
Λ̄L
Y

+ ϵ

[
Λ̄Q
Y

+
Λ̄R log (1 + Y )

2Y

])
e−χ/ϵ

2

. (7.5)

Note that while these constants may take any value, in order to achieve consistency
with the anticipated 2πiϵ−α switching, we require

Λ̄R = −1

2
, Λ̄L = 1, Λ̄Q = −γ + log (2)

2
. (7.6)

These have been found by substituting the optimal truncation point (7.2) into the
naive late-term approximation (4.14) and matching orders of ϵ with (7.5).

Thus, across the Stokes line −1 ≤ Y < 0, a 2πiϵ−α multiple of (7.5) will switch
on, and across the imaginary axis, Re[Y ] = 0, a πiϵ−α multiple of (7.5) will switch on.
This is demonstrated in figure 7.1. Note that this solution alone is unable to satisfy
both of the decay conditions as Y → ±∞ from (1.4b). This is because in addition to
this Stokes switching generated by the base expansion, which appears in equation (7.3)
as the forcing term ξeq, there is another switching generated by a base exponential
which is the particular solution associated with the forcing term λ̄.

This additional Stokes smoothing may be derived by noting that (to the first two
orders in ϵ), the particular solution of (7.3) satisfies the equation

ϵ2ψ̄′′ − 2Y ψ̄′ = λ̄. (7.7)
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This equation may be solved in terms of special functions, to which the limits of
Y → ±∞ may be applied. The solution switches on a contribution of

ψ̄ ∼ ϵλ̄
√
π

2Y
eY

2/ϵ2 (7.8)

as we travel from Y = ∞ to Y = −∞. In our study of the equatorial Kelvin wave
problem [18], we demonstrate how to derive this additional Stokes switching analytically
without the use of an integral representation of the particular solution. It is found
that there is another Stokes line along the imaginary axis across which (7.8) switches
on, generated by a new divergent series expansion within this particular solution.

7.2. Determination of Im[λ]. We now calculate the exponentially-small com-
ponent of the eigenvalue, λ, by enforcing the decay conditions at Y → ±∞ on the
exponentially-small solution. We demonstrated in §7.1 that there are two Stokes
smoothings that must be considered: one generated by the base expansion for which
the Stokes lines are shown in figure 7.1, and another generated by a particular solution,
which we denote the base exponential.

In imposing the decay condition at Y = ∞, any contributions switched on by the
time we reach Y = −∞ must cancel with one other. Note that the decay condition at
Y = −∞ may be enforced on different Riemann sheets generated by the singularity at
Y = −1. The Stokes switching associated with the base expansion thus yields either a
switching of −πiϵ−α, or +πiϵ−α if we enter the other Riemann sheet by crossing over
the −1 ≤ Y < 0 Stokes line. This must cancel with the contribution from (7.8), which
yields

λ̄ ∼ ±√
πi
[
1− 2ϵ log (ϵ) +

(
γ + log (2)

)
ϵ
]
e−1/ϵ2 . (7.9)

These are the complex-conjugate pairs for λ̄, which correspond to growing and decaying
temporal instabilities in the solution.

7.3. Conclusion. We have derived the exponentially-small component of the
eigenvalue,

Im[λ] ∼ ±√
π
[
1− 2ϵ log (ϵ) +

(
γ + log (2)

)
ϵ
]
e−1/ϵ2 ,

by considering the Stokes phenomenon displayed by the solution, ψ(Y ), throughout
the complex plane. Since this exponentially-small component of λ is imaginary, it
corresponds to a growing temporal instability of the solution associated with weak shear.
This is known as a critical layer instability, for which the resolution of the associated
equatorial Kelvin wave problem by the current authors in [18] has necessitated this
prior study.

8. Discussion. As we noted in §2, the Hermite-with-pole problem posed by Boyd
& Natarov [4] as a model for weak latitudinal shear of the equatorial Kelvin wave is an
unusually difficult problem in exponential asymptotics. In order to derive the Stokes
phenomenon throughout the complex plane, we have had to consider multiple unusual
effects. This includes the divergent eigenvalue expansion, for which the solution
expansion has an associated particular component which must be considered in detail
as it leads to the higher-order Stokes phenomenon. Additionally, determination of
the late-terms of the solution required the analysis of a boundary layer at Y = 0 of
diminishing width as n→ ∞.
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Nevertheless, in this work, we have shown that these can be handled. Resolution
of the boundary layer at Y = 0 in §6 required the consideration of further components
of the late-term divergence in addition to the naive factorial-over-power component
that generates the singular behaviour at Y = −1.

This work will be followed by a forthcoming study of the full geophysical problem
of weak latitudinal shear of the equatorial Kelvin wave. In contrast to equation (1.4a),
the physical problem requires the study of three coupled equations for the velocity
field u(y), v(y), and depth h(y). However we see that these techniques in exponential
asymptotics can be applied to that problem as well by formulating the governing
equations into a single second-order differential equation for one of the unknowns.

Acknowledgments. P.H.T. is supported by the Engineering and Physical Sci-
ences Research Council [EP/V012479/1].

Appendix A. Comparison with numerical results. We now validate the
analytical predictions for the divergence of the eigenvalue and eigenfunction expansions
numerically.

A.1. Divergence of the eigenvalue expansion. Following the approach of
Boyd & Natarov [4], we consider a solution to the Hermite-with-pole equation (1.4a),
written in the original variable y = ϵ−1Y , in which each order of the solution is
expressed as an expansion of Hermite polynomials of the form

ψ(y) =
∞∑
n=0

∞∑
k=0

ϵna(n,k)Hk(y). (A.1)

Here, Hk(y) is the kth Hermite-polynomial, and a(n,k) is a constant. Substitution of
(A.1) into (1.4a) yields at O(ϵ0) and O(ϵ) the solutions

λ0 = −1, a(0,0) = 1, λ1 = 1, a(1,0) = 0, a(1,1) = 0. (A.2)

A general expression may be found at O(ϵn), to which we apply the normalisation
choice of a(n,0) = 0. This yields

λn +
n−1∑
k=1

2ka(n,k)Hk(y) = (−y)n−1 +
n−1∑
p=2

n−p−1∑
j=0

[
(−y)p−1 − λp

]
a(n−p,j)Hj(y) (A.3)

for n ≥ 2. In (A.3), the left-hand side is a polynomial of order n− 1 containing the
unknowns λn and a(n,k). The right-hand side is also a polynomial of order n− 1 in
which all the coefficients are known. Equations relating λn and a(n,k) for 1 ≤ k ≤ n−1
are then found by equating the polynomial coefficients on each side of equation (A.3).

Boyd & Natarov [4] used orthogonality properties of Hk(y) to integrate (A.3) with
a symbolic programming language, which yielded λn. However, since the left-hand
side of (A.3) has only one term containing the highest order polynomial Hn−1(y),
we may determine a(n,n−1) by equating coefficients with the right-hand side of (A.3).
This procedure may be repeated until all of a(n,k) and λn are known. In implementing
their method, we find that in the time taken for theirs to reach n = 24 ours exceeds
n = 300.

These results for λn are displayed in figure A.1, which show good agreement with
our analytical prediction of §6.5.
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Fig. A.1. The eigenvalue λn, calculated by the Rayleigh-Schrodinger scheme of Appendix A.2,
is shown (circles) for n even in (a) and n odd in (b). These are compared to our analytical prediction
for λn (6.8) (dashed).

A.2. Divergence of the solution expansion. The Rayliegh-Schrodinger
scheme of Appendix A.1 efficiently calculated the divergence of λn. However, the
normalisation condition required was different to boundary condition (1.4c) used in
this work. In this section, we compute each order of the asymptotic solution, ψn(Y ),
up to n = 50 with a symbolic programming language in order to compare with our
analytical prediction. This allows us to verify two of our analytical predictions:

0 10 20 30 40 50
0

1

2

0 10 20 30 40 50

-0.2

-0.1

0

1
F

1
(n

)
ψ
n
(−

1 2
)

n

1
F

2
(n

)
ψ
n
(
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Fig. A.2. The divergence of the asymptotic solution, ψn, solved analytically up to n = 50,
is shown in (a) for Y = −1/2 and in (B) for Y = 1/2. For Y = −1/2, we have rescaled with
F1(n) = log (n)Γ(n/2−1)/(1−Y 2)n/2−1 for n even and F1(n) = Γ((n−1)/2)/(1−Y 2)(n−1)/2 for n
odd. For Y = 1/2, we have taken F2(n) = log2 (n)Γ((n− 1)/2) for n even and F2(n) = log (n)Γ(n/2)
for n odd.

1. We assumed that the higher-order Stokes phenomenon would switch off the
naive late-term solution (2.4) with S(Y ) = 0 for Re[Y ] > 0. We verify this
in figure 5.2, in which we plot ψ49(Y ). This indicates that ψn(Y ) does follow
the expected factorial-over-power scaling for Re[Y ] < 0, and switches off as
we proceed into Re[Y ] > 0.
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2. In figure A.2, we plot the divergent trends of ψk(Y ) at the two values of
Y = −1/2 and Y = 1/2. We see that the solution diverges in the expected
factorial-over-power form at Y = −1/2, but at Y = 1/2 the divergence is seen
to be purely factorial. This confirms that our divergent form in (2.4) with
χ = 1 dominates for Re[Y ] > 0.

Appendix B. Lower-order divergence of the naive ansatz. As noted in §4.2,
the naive factorial-over-power solution to the homogeneous late term equation (4.8)
is unable to satisfy the boundary condition at Y = 0. This is due to a singularity in
the prefactors of the divergent ansatz, L(Y ), R(Y ), and Q(Y ), from equations (4.13a)
and (4.13b). One may consider lower order terms, as n→ ∞, in the divergence of the
homogeneous solution by considering a prefactor of the form (for n odd)

R(Y ) = R0(Y ) +
log (n)

n
M1(Y ) +

R1(Y )

n
+ · · · , (B.1)

where the subsequent terms in this series will be of O(n−2 log n) and O(n−2). We will
see that the strength of the singularity in R0(Y ) at Y = 0 increases in later orders
and thus forces a reordering of the series as Y → 0.

The method to calculate these lower order solutions is similar to that briefly
presented in §4.2 for the leading orders. We substitute an ansatz for ψn(Y ) of the
form

ψn ∼


[
L0(Y ) log (n) +Q0(Y ) +

log (n)

n
L1(Y )+ · · ·

]
Γ(n2 − 1)

χn/2−1
for n even,[

R0(Y ) +
log (n)

n
M1(Y ) +

R1(Y )

n
+ · · ·

]
Γ(n−1

2 )

χ(n−1)/2
for n odd,

(B.2)

into the homogeneous equation (4.8). The reordering we seek to capture as Y → 0
will first occur for n even between L0(Y ) and L1(Y ), and for n odd between R0(Y )
and R1(Y ).

Dividing out by the dominant factorial-over-power scaling in the O(ϵn) equation
(4.8) yields terms of orders n0, n−1 log (n), n−1, n−2 log (n), and n−2 for odd values of
n. The case for even values of n is similar, except for terms of order log (n) appearing.
Distinct equations are found at each of these orders for the cases of n even or n odd.

The first few equations are the same as that considered in §4.2, and yield the
singulant χ(Y ) = 1 − Y 2 from equation (4.11) and prefactors L0(Y ), R0(Y ), and
Q0(Y ) from (4.12a) and (4.13b).

Equations for M1(Y ) and L1(Y ) are then found at O(n−2 log (n)) for odd and
even values of n, respectively, which have the solutions

M1(Y ) =

[
ΛM1 + ΛL0 log (1 + Y )

]
(1− Y 2)

Y
,

L1(Y ) =

[
ΛL1 +

ΛM1

2
log (1 + Y ) +

ΛL0

Y 2
+

ΛL0

4
log2 (1 + Y )

]
(1− Y 2)

Y
,

(B.3)

where ΛM1 and ΛL1 are constants of integration. It remains to determine R1(Y ), the
governing equation for which will be found at O(n−2) when n is odd. This has the
solution of

R1(Y ) =

[
ΛR1

+ ΛQ0
log (1 + Y ) +

ΛR0

Y 2
+

ΛR0

4
log2 (1 + Y )+

− ΛM1
log (1− Y 2)− ΛL0

log (1 + Y ) log2 (1− Y 2)

]
(1− Y 2)

Y
,

(B.4)
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where ΛR1
is a constant of integration.

To conclude, the functional prefactor of a factorial-over-power ansatz for the
late-term solution may contain singularities or branch points at locations not seen
in the early orders of the expansion. In our case this is the location Y = 0. In
these instances, it is necessary to consider lower order terms of the ansatz in order to
determine the correct inner-variable scaling for the resultant boundary layer matching
procedure.

Appendix C. Inner solution at the singularity Y = −1. Motivated by the
inner limit of the outer solution, (4.5), we consider an inner solution of the form

ψ̂inner(ŷ) =

∞∑
n=0

n∑
m=0

ϵn logm (ϵ)ψ̂(n,m)(ŷ). (C.1)

Substitution into the inner equation (4.4) yields at O(1), O(ϵ log (ϵ)), and O(ϵ2 log2 (ϵ))

L̂[ψ̂(0,0)] =
d2ψ̂(0,0)

dŷ2
+ 2

dψ̂(0,0)

dŷ
= 0, L̂[ψ̂(1,1)] = 0, L̂[ψ̂(2,2)] = 0. (C.2)

These equations have solutions of a similar form, given by ψ̂(0,0)(ŷ) = A(0,0) +

B(0,0) exp (−2ŷ), ψ̂(1,1)(ŷ) = A(1,1)+B(1,1) exp (−2ŷ), and ψ̂(2,2)(ŷ) = A(2,2)+B(2,2) exp (−2ŷ).

Matching with the O(1), O(ϵ log (ϵ)), and O(ϵ2 log2 (ϵ)) components of the inner-limit
of ψouter in (4.5) requires A(0,0) = 1, B(0,0) = 0, A(1,1) = −1, B(1,1) = 0, A(2,2) = 1/2,
and B(2,2) = 0. This yields

ψ̂(0,0)(ŷ) = 1, ψ̂(1,1)(ŷ) = −1, ψ̂(2,2)(ŷ) =
1

2
. (C.3)

At the next orders of O(ϵ) and O(ϵ2 log ϵ), we find similar equations to (C.2) with the

exception of a forcing term that relies on ψ̂(0,0)(ŷ) and ψ̂(1,1)(ŷ), respectively. These
equations are found to be

L̂[ψ̂(1,0)] = −1

ŷ
and L̂[ψ̂(2,1)] =

1

ŷ
, (C.4)

where L̂ is the linear differential operator defined in (C.2). For brevity, only the exact
solution of the first of these is provided here. This has the solution of

ψ̂(1,0)(ŷ) = A(1,0) +B(1,0)e
−2ŷ − e−2ŷ

∫ ŷ

0

log (y)e2ydy. (C.5)

Analogously for the second equation in (C.4) the exact solution will have constants
A(2,1) and B(2,1), and a positive sign (+) in front of the last component of the solution
in (C.5). To facilitate matching with the O(ϵ) outer solution, we take the outer-limit
of (C.5) as ŷ → ∞, yielding

ψ̂(1,0)(ŷ) ∼ −1

2
log (ŷ)+

1

2

∞∑
k=1

Γ(k)

(2ŷ)k
and ψ̂(2,1)(ŷ) ∼

1

2
log (ŷ)− 1

2

∞∑
k=1

Γ(k)

(2ŷ)k
. (C.6)

Here we set A(1,0) = 0, B(1,0) = 0, A(2,1) = 0, and B(2,1) = 0 to match with the O(ϵ)
term of the inner limit of the outer solution from (4.5).
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Note that we have been able to construct an exact solution for these. In general,
and typically for nonlinear problems, this is not possible and an ansatz must be
introduced to capture the series expansion of the outer-limit behaviour of ψ̂(ŷ), from
which the coefficients of this series, in our case Γ(k), would determined via the solution
to a recurrence relation problem. This will be the approach used when considering the
O(ϵ2) equation,

L̂[ψ̂(2,0)] =
log (ŷ)

2ŷ
−

∞∑
k=1

Γ(k)

(2ŷ)k+1
, (C.7)

for which we consider a series expansion as ŷ → ∞ of the form

ψ̂(2,0)(ŷ) =
log2 (ŷ)

8
+ log (ŷ)

∞∑
k=1

ak
(2ŷ)k

+

∞∑
k=1

bk
(2ŷ)k

. (C.8)

Substitution of series (C.8) into equation (C.7) yields terms that are either algebraic
powers of (2ŷ)−k or log (y)(2ŷ)−k. Examining the equations which arise at each of
these orders yields the following recurrence relations for ak and bk where k ≥ 2,

a1 = −1

4
, ak = (k − 1)ak−1,

b1 =
1

4
, bk = (k − 1)bk−1 +

(2k − 1)

4k
Γ(k − 1).

(C.9)

In substituting for bk = Γ(k)dk, the recurrence relation for bk may be written in a
form with s series solution, yielding for k ≥ 2

ak = −Γ(k)

4
and bk =

[
1

2
− 1

4k
+

1

2

k∑
j=2

1

j

]
Γ(k). (C.10)

Thus, as ŷ → ∞, our O(ϵ2) inner solution is given by

ψ̂(2,0)(ŷ) =
log2 (ŷ)

8
− log (ŷ)

4

∞∑
k=1

Γ(k)

(2ŷ)k
+

∞∑
k=1

bk
(2ŷ)k

, (C.11)

where bk is defined in equation (C.10). In §4.1.2, we use the outer limit of this solution
to motivate the correct form for the factorial-over-power ansatz of ψn as n→ ∞. Thus,
we are also interested in the limit of k → ∞ of bk. Expanding bk given in (C.10) as
k → ∞ yields

bk ∼
[
1

2
log (k) +

γ

2
+O(k−1)

]
Γ(k), (C.12)

where γ ≈ 0.577 is the Euler-Macheroni constant.
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8.1 Introduction

We demonstrated in the study of the Hermite-with-pole equation of chapter 77 that a
divergent asymptotic expansion for an eigenvalue may be real-valued to each algebraic
order of ϵ, but still have a non zero imaginary component. For the equatorial Kelvin
wave studied in this section, the wavespeed, c, is an eigenvalue of the problem. In the
presence of small latitudinal shear, denoted by ϵ, this also has an imaginary component
that destabilises the motion of the travelling wave. The purpose of this chapter is to
derive this imaginary component asymptotically, which we show is exponentially small
as ϵ → 0. This work both provides the first analytical treatment of this instability, as
well as a correction to the numerical work by Natarov and BoydNatarov and Boyd (20012001) who predicted
that Im[c] = O(e−1/ϵ2). In this chapter, we demonstrate that the exponentially-small
component of the eigenvalue is given by

Im[c] = ± 1

4
√
π
ϵ3e−1/ϵ2 , (8.1)

which comes in complex-conjugate pairs. One of these corresponds to the growing
temporal instability of the travelling wave solution.

This result is derived through two different methods. First, by restricting the
domain to take real-values, an asymptotic procedure connects two inner solutions, one
at Y = 0, and another at Y = 1, through matching with an outer solution. Secondly,
the late-term divergence of the asymptotic expansions, and their exponentially small
remainder, are considered for complex values of Y . The exponentially-small compo-
nent of the eigenvalue is then determined by considering the Stokes line structure and
decay conditions as Re[Y ] → ±∞, much like that seen for the Hermite-with-pole
equation in chapter 77.
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2Department of Applied Mathematics, University of Leeds, Leeds, LS2 9JT, UK
3Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute,
University of Oxford, OX1 3LB, UK
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The equatorial Kelvin wave is destabilised by weak shear, which we denote by 𝜖 . This is
caused by an imaginary component of an associated eigenvalue, the wavespeed 𝑐, that is
exponentially small as 𝜖 → 0. We derive this exponentially-small component asymptotically
using the techniques of exponential asymptotics. The asymptotic scaling of this instability
was studied numerically by Natarov & Boyd (Dynam. Atmos. Oceans, vol. 33, 2001, pp.
191-200), who concluded that Im[𝑐] = 𝑂 (exp (−1/𝜖2)). We show that this is not the case,
and that the correct asymptotic scaling is actually of order 𝜖3 exp (−1/𝜖2).

1. Introduction
The equatorial Kelvin wave is an oceanographic wave that travels east along the equator
without any change of form. However along the equator of the ocean, zonal jets may be
present. These travel faster than the fluid at surrounding latitudes and thus introduce latitudinal
shear. It is known by the investigation of Boyd & Christidis (1982) that the Kelvin wave is
unstable with respect to this weak shear. In writing the solutions in travelling-wave form, the
wavespeed 𝑐 becomes an eigenvalue of the problem. For small shear (𝜖 → 0), the asymptotic
expansion for the eigenvalue,

𝑐 = 𝑐0 + 𝜖2𝑐1 + 𝜖4𝑐2 + · · · , (1.1)

is real-valued to each order of 𝜖 . However, the Kelvin wave instability is governed by the
imaginary component of 𝑐, which we show to be given by

Im[𝑐] = ± 1
4
√
𝜋
𝜖3e−1/𝜖 2

. (1.2)

Equation (1.2) is the main result of this paper. The difficulty in deriving this analytically
is that it lies beyond-all-orders of the asymptotic expansion (1.1), our resolution of which
relies on the use of sophisticated techniques in asymptotic analysis known as exponential
asymptotics. In order to understand the cause of this, a simplified toy model, the Hermite-
with-pole equation, was proposed by Boyd & Natarov (1998). They were able to determine

† Email address for correspondence: j.shelton@bath.ac.uk
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2 Shelton, Griffiths, Chapman and Trinh

the imaginary component of the associated eigenvalue through the application of an optical
theorem. This equation was revisited by Shelton & Trinh (2022) to develop the associated
exponential asymptotic theory as a precursor to this present work. However, the imaginary
component of the eigenvalue to this model problem differs from (1.2) for the Kelvin wave.
Numerical values for Im[𝑐] were found Natarov & Boyd (2001), which indicated that Im[𝑐] =
𝑂 (exp (−1/𝜖2)). We demonstrate in this paper that this numerical prediction is incorrect,
and that the correct value from equation (1.2) has an additional scaling factor of 𝜖3, which is
difficult to detect numerically.

1.1. Outline of the paper
In §2, we derive the governing equations of the equatorial Kelvin wave for a specified
background shear. Two formulations are derived, both of which contain an eigenvalue: the
wave-speed, 𝑐. The first is a system of three equations for three unknowns, which we consider
in §3, and the second is a single second-order differential equation for a single unknown,
which we consider in §4 and §5. The asymptotic limit of small shear is considered with the
intention of studying the imaginary component of the eigenvalue. First, in §3, we restrict
the domain to take real values and perform a matched asymptotic procedure to determine
Im[𝑐]; this is shown to be exponentially small. In §4 and §5, we use exponential asymptotic
techniques to derive the exponentially small component of the eigenvalue, which is imaginary.
This procedure requires the understanding of singularities in the asymptotic solution, and the
connection between the consequent divergent series and the Stokes phenomenon that affects
exponentially-small orders of the solution. We conclude in §6 and discussion of this work
occurs in §7.

2. Mathematical formulation
We begin by considering a perturbation, Λ𝑦, to the zonal flow on the equatorial 𝛽-plane. The
strength of the shear in this perturbation is Λ. The resultant equations are given by

𝑢′𝑡 + Λ𝑦𝑢′𝑥 − (𝛽𝑦 − Λ)𝑣′ = −𝑝′𝑥 , (2.1a)
𝑣′𝑡 + Λ𝑦𝑣′𝑥 + 𝛽𝑦𝑢′ = −𝑝′𝑦 , (2.1b)

𝑝′𝑡 + Λ𝑦𝑝′𝑥 + 𝑐2
e (𝑢′𝑥 + 𝑣′𝑦) = 0, (2.1c)

where 𝑢′ (𝑥, 𝑦, 𝑡) and 𝑣′ (𝑥, 𝑦, 𝑡) are the velocity perturbations, and 𝑝′ (𝑥, 𝑦, 𝑡) is the pressure
perturbation. Here, 𝑥 and 𝑦 are the longitudinal and latitudinal distances, respectively. The
Coriolis parameter is 𝛽, and 𝑐e is the speed of the base zonal flow. We will also impose the
decay conditions as |𝑦 | → ∞, given by[

𝑢′, 𝑣′, 𝑝′
]
→ 0 as |𝑦 | → ∞. (2.1d)

We now nondimensionalise equations (2.1a)-(2.1c) with the length scale 𝐿d = (𝑐e/𝛽)1/2,
which is the equatorial radius of deformation, and timescale 𝐿d/𝑐e. We also nondimension-
alise velocities by 𝑐e, and the pressure by 𝑐2

e . This yields

𝑢′𝑡 + 𝜖 𝑦𝑢′𝑥 − (𝑦 − 𝜖)𝑣′ = −𝑝′𝑥 , (2.2a)
𝑣′𝑡 + 𝜖 𝑦𝑣′𝑥 + 𝑦𝑢′ = −𝑝′𝑦 , (2.2b)

𝑝′𝑡 + 𝜖 𝑦𝑝′𝑥 + 𝑢′𝑥 + 𝑣′𝑦 = 0, (2.2c)

for which a single nondimensional parameter appears, given by

𝜖 =
Λ

√
𝛽𝑐e

. (2.3)
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The Kelvin wave instability 3

Since 𝜖 is proportional Λ, we will refer to it as the nondimensional shear. However, note
that by the definition of the equatorial radius of deformation, 𝐿d = (𝑐e/𝛽)1/2, we may also
write 𝜖 = Λ𝐿d/𝑐e or 𝜖 = Λ/(𝛽𝐿d). The first of these is a Froude number: the ratio of the
background flow, Λ𝐿d, with the base zonal flow, 𝑐e. The second is a Rossby number: the ratio
of the vorticity induced by the shear, Λ, to the planetary vorticity, 𝛽𝐿d. Within this paper we
will be concerned with the limit of 𝜖 → 0.

We consider travelling wave solutions of the form

𝑢′ = Re
[
�̂�(𝑦)ei𝑘 (𝑥−𝑐𝑡 )

]
, 𝑣′ = Re

[
i𝑘�̂�(𝑦)ei𝑘 (𝑥−𝑐𝑡 )

]
, 𝑝′ = Re

[
𝑝(𝑦)ei𝑘 (𝑥−𝑐𝑡 )

]
. (2.4)

Here, 𝑘 is the prescribed zonal wavenumber which will be both real and positive, and 𝑐

is the phase speed. It is important to note that 𝑐 will take complex values, for which the
imaginary component will correspond to a growing (or decaying) mode of the solution.
As we will find solutions for which the complex phase speed comes in complex conjugate
pairs, there will always be a growing temporal instability for 𝜖 ≠ 0. In the limit of 𝜖 → 0,
Im[𝑐] = 𝑂 (𝜖3e−1/𝜖 2) and thus is exponentially-small in 𝜖 . The analytical derivation of this
imaginary component of 𝑐 is the main result of our paper. Substitution of the normal mode
solutions (2.4) into the nondimensional equations (2.2a)-(2.2c) yields

(𝜖 𝑦 − 𝑐)�̂� − (𝑦 − 𝜖)�̂� = −𝑝, (2.5a)
−𝑘2(𝜖 𝑦 − 𝑐)�̂� + 𝑦�̂� = −𝑝′, (2.5b)
(𝜖 𝑦 − 𝑐)𝑝 + �̂� + �̂�′ = 0, (2.5c)

where primes (′) now denote differentiation in 𝑦. This is the system of equations used by
Natarov & Boyd (2001) in their numerical investigation of the limit of 𝜖 → 0.

As 𝑦 → ±∞, the solutions of equations (2.5a)-(2.5c) decay with the behaviour of e−𝑦2/2.
For convenience, we remove this behaviour from the solutions by writing

[�̂�(𝑦), �̂�(𝑦), 𝑝(𝑦)] = [𝑢(𝑦), 𝑣(𝑦), 𝑝(𝑦)]e−𝑦2/2. (2.6)

It will be convenient to rewrite equations (2.5a)-(2.5c) as a single differential equation for
one of the unknowns, much like that considered by Boyd (1978) [cf their equation (3.14)].
We therefore also make the substitution

𝑞(𝑦) = 𝑝(𝑦) + 𝑢(𝑦)
2

and 𝑟 (𝑦) = 𝑝(𝑦) − 𝑢(𝑦)
2

, (2.7)

which yields

2(𝜖 𝑦 − 𝑐 + 1)𝑞(𝑦) + 𝑣′ (𝑦) + (𝜖 − 2𝑦)𝑣(𝑦) = 0, (2.8a)
2(𝜖 𝑦 − 𝑐 − 1)𝑟 (𝑦) + 𝑣′ (𝑦) − 𝜖𝑣(𝑦) = 0, (2.8b)

𝑞′ (𝑦) + 𝑟 ′ (𝑦) − 2𝑦𝑟 (𝑦) − 𝑘2(𝜖 𝑦 − 𝑐)𝑣(𝑦) = 0. (2.8c)

In addition to these three equations, we also have the decay conditions as |𝑦 | → ∞ from
(2.1d), and a normalisation condition at 𝑦 = 0. Written in terms of the solutions 𝑞, 𝑟 , and 𝑣,
these are given by [

𝑞(𝑦), 𝑟 (𝑦), 𝑣(𝑦)
]
e−𝑦

2/2 → 0 as |𝑦 | → ∞, (2.8d)

𝑞(0) = 𝑣(0) = 1, 𝑟 (0) = 0. (2.8e)
This system of equations, (2.8a)-(2.8e) will be used throughout §3, in which we perform

a matched asymptotic procedure along the real 𝑦-axis to determine Im[𝑐]. A consequence
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of enforcing boundary condition (2.8e) is that 𝑐 will be determined as an eigenvalue of the
problem.

2.1. Single equation for 𝑉 (𝑌 )
We now develop a single differential equation for just one of the unknowns in equations
(2.8a)-(2.8c). Note that while each equation of system (2.5) depended on all three unknowns,
equations (2.8a) and (2.8b) each have linear dependence on only two unknowns. Thus, we
may substitute into (2.8c) expressions for 𝑞(𝑦) from (2.8a) and 𝑟 (𝑦) from (2.8b) to obtain a
single second order linear differential equation for 𝑣(𝑦). This resultant equation is similar to
that derived by Griffiths (2008) for a general Coriolis force and base flow. We then pose this
as an outer solution by rescaling with 𝑌 = 𝜖 𝑦, yielding

𝜖2
[
− (𝑌 − 𝑐 − 1) (𝑌 − 𝑐 + 1)2 − (𝑌 − 𝑐 − 1)2(𝑌 − 𝑐 + 1)

]
𝑉 ′′ (𝑌 )

+2𝑌
[
(𝑌 − 𝑐 − 1) (𝑌 − 𝑐 + 1)2 + (𝑌 − 𝑐 + 1) (𝑌 − 𝑐 − 1)2 + 2𝜖2(𝑌 − 𝑐)2

𝑌

]
𝑉 ′ (𝑌 )

+
[
− 2𝑌 (𝑌 − 𝑐 − 1) (𝑌 − 𝑐 + 1)2 + 2(𝑌 − 𝑐 − 1)2(𝑌 − 𝑐 + 1) − 𝜖2(𝑌 − 𝑐 + 1)2

+ (𝜖2 − 2𝑌 ) (𝑌 − 𝑐 − 1)2 − 2𝑘2(𝑌 − 𝑐) (𝑌 − 𝑐 + 1)2(𝑌 − 𝑐 − 1)2
]
𝑉 (𝑌 ) = 0,

(2.9a)

where primes (′) denote differentiation in 𝑌 . The decay and boundary conditions are now
given by

𝑉 (𝑌 )e−𝑌2/2𝜖 2 → 0 as Re[𝑌 ] → ±∞, (2.9b)

𝑉 (0) = 1. (2.9c)
Note that we use a different choice of normalisation in the study of equation (2.9a),𝑉 (0) = 1,
to that for the coupled system of equations (2.8), 𝑞(0) = 𝑣(0) = 1 and 𝑟 (0) = 0. This has no
effect on the eigenvalue, 𝑐.

Since in §4 we consider the analytic continuation of 𝑌 in order to study the Stokes
phenomenon throughout 𝑌 ∈ C, we have now specified decay condition (2.9b) to hold
only for real values of 𝑌 . In fact, the decay condition will also be satisfied more generally
for |𝑌 | → ∞ along wedges of arg[𝑌 ] that include Re[𝑌 ] → −∞ and Re[𝑌 ] → ∞. The
specification of these zones in more detail requires the understanding of the exponentially-
small solution throughout the complex plane.

3. Along the axis matching for 𝑌 ∈ R
We begin by solving equations (2.8a)-(2.8e) at each order of 𝜖 by expanding about the leading
order solution of 𝑞0(𝑦) = 1, 𝑟0(𝑦) = 𝑣0(𝑦) = 0, and 𝑐0 = 1 with the following asymptotic
series

𝑞(𝑦) = 1 + 𝜖𝑞1(𝑦) + 𝜖2𝑞2(𝑦) + · · · , 𝑟 (𝑦) = 𝜖𝑟1(𝑦) + 𝜖2𝑟2(𝑦) + · · · ,
𝑣(𝑦) = 𝜖𝑣1(𝑦) + 𝜖2𝑣2(𝑦) + · · · , 𝑐 = 1 + 𝜖𝑐1 + 𝜖2𝑐2 + · · · .

(3.1)

Note that since odd powers of the eigenvalue expansion are identically zero, we later expand
in §4 as 𝑐 = 1+ 𝜖2𝑐1 + · · · . At 𝑂 (𝜖), we find from (2.8a) an equation for 𝑣1(𝑦), which has the
solution 𝑣1(𝑦) = 1+ 2𝑐1𝑒

𝑦2 ∫ 𝑦

−∞ e−𝑦2d𝑦, where the constant of integration has been specified
to satisfy the decay condition (2.8d) as 𝑦 → −∞. In order to satisfy the same decay condition
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The Kelvin wave instability 5

as 𝑦 → ∞, we then require 𝑐1 = 0, yielding 𝑣1(𝑦) = 1. Solutions for 𝑞1(𝑦) and 𝑟1(𝑦) are
then similarly found from equations (2.8b) and (2.8c), which gives

𝑞1(𝑦) = −𝑘2𝑦, 𝑟1(𝑦) = 0, 𝑣1(𝑦) = 1, 𝑐1 = 0. (3.2)

Next, we proceed to 𝑂 (𝜖2) to find the first non-zero perturbative term, 𝑐2, in the eigenvalue.
The analysis proceeds similarly to that used to derive the 𝑂 (𝜖) solutions (3.2), yielding

𝑞(𝑦) = 1 − 𝜖 𝑘2𝑦 + 𝜖2 (2𝑘4 + 𝑘2 − 1)𝑦
4

+𝑂 (𝜖3), 𝑟 (𝑦) = −𝜖2 (1 + 𝑘2)
4

+𝑂 (𝜖3),

𝑣(𝑦) = 𝜖 − 𝜖2𝑘2𝑦 +𝑂 (𝜖3), 𝑐 = 1 + 𝜖2 1 − 𝑘2

2
+𝑂 (𝜖3).

(3.3)

This analysis may be continued to any algebraic order of 𝜖 , but the series expansion for
the eigenvalue, 𝑐, will always be real-valued. The first non-zero imaginary component will
be at an asymptotic order that is exponentially-small in 𝜖 . Typically, this would require a
beyond-all-orders analysis in which understanding the Stokes phenomenon throughout 𝑦 ∈ C
is required. However, for this current problem it is sufficient to study the imaginary part of
the solutions, which we consider next.

As the series expansions in (3.3) reorder as 𝑦 → ∞, we will introduce in §3.2 the outer
variable,𝑌 , defined by𝑌 = 𝜖 𝑦. In addition to the boundary layer near𝑌 = 0 presently studied,
there will be another at 𝑌 = 1. In the following section we will therefore refer 𝑦 as the inner
variable near 𝑌 = 0.

3.1. Inner solution near 𝑌 = 0
We begin by studying the imaginary component of the solution. In writing 𝑐 = 𝑐𝑟 + i𝑐i,
𝑞 = 𝑞𝑟 + i𝑞i, 𝑟 = 𝑟𝑟 + i𝑟i, and 𝑣 = 𝑣𝑟 + i𝑣i, the imaginary components of equations (2.8a)-
(2.8c) yield three equations for 𝑞i, 𝑟i, 𝑣i, with eigenvalue 𝑐i. These equations also involve
𝑞𝑟 , 𝑟𝑟 , 𝑣𝑟 , and 𝑐𝑟 , for which the leading order behaviours are already known from (3.3) to
be 𝑞𝑟 = 1 + 𝑂 (𝜖), 𝑟𝑟 = −𝜖2(1 + 𝑘2)/4 + 𝑂 (𝜖3), 𝑣𝑟 = 𝜖 + 𝑂 (𝜖2), and 𝑐𝑟 = 1 + 𝑂 (𝜖2). In
substituting for these, we also retain only the dominant behaviour as 𝜖 → 0 of the imaginary
components of the solutions, yielding

2𝜖 𝑦𝑞i(𝑦) + 𝑣′i (𝑦) + −2𝑦𝑣i(𝑦) = 2𝑐i, (3.4a)

−4𝑟i(𝑦) + 𝑣′i (𝑦) = − 𝜖2

2
(1 + 𝑘2)𝑐i, (3.4b)

𝑞′i (𝑦) + 𝑟 ′i (𝑦) − 2𝑦𝑟i(𝑦) + 𝑘2𝑣i(𝑦) = −𝜖 𝑘2𝑐i. (3.4c)

Since 𝑞i, 𝑟i, and 𝑣i, all have the same asymptotic behaviour as 𝜖 → 0, the dominant
component of equation (3.4) is 𝑣′i (𝑦) − 2𝑦𝑣i(𝑦) = 2𝑐i. This may be integrated to find

𝑣i(𝑦) = 2𝑐ie𝑦
2
∫ 𝑦

−∞
e−𝑦

2
d𝑦, (3.5)

where the constant of integration is zero in order to satisfy the decay condition (2.8d) as
𝑦 → −∞. We may then take the outer limit of 𝑦 → ∞ of (3.5) to find

𝑣i(𝑦) ∼ 2
√
𝜋𝑐ie𝑦

2
. (3.6)

This solution currently can not satisfy the decay condition as 𝑦 → ∞. this is because there is
an additional boundary-layer in an outer region at 𝑌 = 1, across which the component (3.6)
is switched off.
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3.2. The outer solution
Motivated by the reordering of the asymptotic expansion, (3.3), as 𝑦 → ∞, we introduce the
outer variable 𝑌 by the relation

𝑌 = 𝜖 𝑦. (3.7)
This outer problem is now considered to determine any boundary layers, in addition to that at
𝑌 = 0, arising in this problem. This will be demonstrated from the second-order differential
equation for 𝑉 (𝑌 ), previously given in (2.9a). As 𝜖 → 0, the leading order solution is given
by

𝑉0(𝑌 ) ∼ 𝜖 (1 − 𝑌 )1/2 exp
(
(1 − 2𝑘2)𝑌

2
+ 𝑘2𝑌2

4

)
, (3.8)

where the constant of integration has been specified to ensure that (3.8) matches as 𝑌 → 0
to the early orders derived in (3.3).

We see that there is a branch point at 𝑌 = 1 in (3.8). Since later terms in the asymptotic
expansion for 𝑉 (𝑌 ) will require differentiation of earlier orders, this branch point will turn
into a singularity in the solution 𝑉1(𝑌 ), and cause a reordering of the asymptotic series as
𝑌 → 1. We thus have an additional boundary layer at𝑌 = 1 that will be considered in §3.3. In
order to determine 𝑐i, we will need to match the imaginary component of the outer solution
to inner solutions near 𝑌 = 0 and 𝑌 = 1. We thus now study the imaginary component of the
outer system of equations.

In substituting for𝑌 = 𝜖 𝑦 in equations (2.8a)-(2.8c) and taking the imaginary part, we find

2𝜖𝑌𝑄i(𝑌 ) + 𝜖2𝑉 ′
i (𝑌 ) + (𝜖2 − 2𝑌 )𝑉i(𝑌 ) = 2𝜖𝑐i𝑄𝑟 (𝑌 ), (3.9a)

2(𝑌 − 2)𝑅i(𝑌 ) + 𝜖𝑉 ′
i (𝑌 ) − 𝜖𝑉i(𝑌 ) = 2𝑐i𝑅𝑟 (𝑌 ), (3.9b)

𝜖2𝑄′
i (𝑌 ) + 𝜖2𝑅′

i (𝑌 ) − 2𝑌𝑅i(𝑌 ) − 𝜖 𝑘2(𝑌 − 1)𝑉i(𝑌 ) = −𝜖 𝑘2𝑐i𝑉𝑟 (𝑌 ), (3.9c)

where the outer solutions are denoted by 𝑄, 𝑅, and𝑉 . Since the dominant behaviour of these
equations includes balances between 𝜖2𝑉 ′

i = 𝑂 (𝑉i) for instance, we consider WKB solutions
of the form

[𝑄i(𝑌 ), 𝑅i(𝑌 ), 𝑉i(𝑌 )] = [�̂�i(𝑌 ), �̂�i(𝑌 ), �̂�i(𝑌 )] exp
(
𝜙(𝑌 )
𝜖2

)
. (3.10)

Matching with the outer limit of the inner solution near𝑌 = 0, given in equation (3.6) requires
𝜙(𝑌 ) = 𝑌2, and also yields �̂�i = 𝑂 (𝑐i). Thus, since 𝑉𝑟 = 𝑂 (1) for instance from (3.8), the
terms on the left-hand side of equations (3.9a)-(3.9c) will be exponentially dominant over
those on the right-hand side. This is because 𝑉i = 𝑂 (𝑐ie𝑌

2/𝜖 2), and thus 𝑉i ≫ 𝑐i as 𝜖 → 0.
Equations for the leading order behaviour of the amplitude functions �̂�i(𝑌 ), �̂�i(𝑌 ), and

�̂�i(𝑌 ), are then found to be given by

2𝑌�̂�i(𝑌 ) + 𝜖�̂� ′
i (𝑌 ) + 𝜖�̂�i(𝑌 ) = 0, (3.11a)

𝜖 (𝑌 − 2) �̂�i(𝑌 ) + 𝑌�̂�i(𝑌 ) = 0, (3.11b)
2𝑌�̂�i(𝑌 ) + 𝜖2�̂�′

i (𝑌 ) − 𝜖 𝑘2(𝑌 − 1)�̂�i(𝑌 ) = 0. (3.11c)

From equations (3.11a) and (3.11c), �̂�i may be eliminated to form a relationship between �̂�i
and �̂�i. We then substitute for �̂�i from equation (3.11b) to find

�̂� ′
i (𝑌 ) +

1
2

[
𝑘2(𝑌 − 2) + 𝑌2 − 4𝑌 + 2

(𝑌 − 1) (𝑌 − 2)

]
�̂�i(𝑌 ) = 0. (3.12)

162 CHAPTER 8 · THE EQUATORIAL KELVIN WAVE INSTABILITY



The Kelvin wave instability 7

Solving (3.12) then yields an outer solution given by

𝑉i(𝑌 ) =
𝐴(2 − 𝑌 )e−𝑌/2e−𝑘2 (𝑌−2)2/4

(1 − 𝑌 )1/2 e𝑌
2/𝜖 2

,

=

√
𝜋𝑐ie−𝑌/2(2 − 𝑌 )e−𝑘2𝑌 (𝑌−4)/4

(1 − 𝑌 )1/2 e𝑌
2/𝜖 2

,

(3.13)

where 𝐴 is a constant of integration, which has been determined as 𝐴 =
√
𝜋𝑐ie𝑘

2 by matching
to (3.6) near 𝑌 = 0. Note the similarity between solution (3.13) and (5.12) derived later for
the exponentially-small component of the outer solution. Since the leading order component
of the imaginary solution is exponentially-small, these are equivalent.

3.3. Inner solution near 𝑌 = 1
Our goal is now to match the imaginary component of the outer solution (3.13) to an inner
solution at 𝑌 = 1. To study this region, we introduce the inner variable, `, given by

𝑌 − 1 =
𝜖2

2
[` + (1 − 𝑘2)] . (3.14)

Here, the width of the boundary layer is of 𝑂 (𝜖2), and we have written the relationship
between the outer variable, 𝑌 , and inner variable, `, in a particular form in order to obtain
an inner equation with known special function solutions.

Substitution of relation (3.14) into the differential equation for 𝑉 (𝑌 ) from (2.9a) yields at
leading order as 𝜖 → 0 the equation

`𝑉 ′′ (`) − `𝑉 ′ (`) + 1
2
𝑉 (`) = 0. (3.15)

This is the confluent hypergeometric equation, which is satisfied by any linear combination
of the two solutions 𝑀 (−1/2, 0, `) and 𝑈 (−1/2, 0, `), yielding

𝑉 (`) = 𝐴𝑀 (−1/2, 0, `) + 𝐵𝑈 (−1/2, 0, `), (3.16)

where 𝐴 and 𝐵 are constants. Note that the solution (3.16) will be complex valued, and as
` → −∞ the imaginary component must match to the inner limit of (3.13) as 𝑌 → 1. This
is how we determine Im[𝑐] in the next section.

3.4. Matching and determination of Im[𝑐]
We now match the inner solution near 𝑌 = 1, derived in §3.3 as a combination of the special
functions 𝑈 (−1/2, 0, `) and 𝑀 (−1/2, 0, `), with the outer solution from §3.2. The real part
of the outer solution is given in equation (3.8), and the imaginary part in (3.13).

Firstly, we note that as ` → ∞, 𝑈 (−1/2, 0, `) = 𝑂 (`1/2) and 𝑀 (−1/2, 0, `) =

𝑂 (e``−1/2). This exponential growth in the latter is unable to match to the outer solution
for 𝑌 > 1, requiring 𝐴 = 0 in (3.16). Next, since 𝑈 (−1/2, 0, `) ∼ `1/2 as |` | → ∞, we have
that 𝑉 (`) ∼ ±i𝐵|` |1/2 as ` → −∞. Here, the plus sign corresponds to the limit taken with
arg[`] = 𝜋− , and the minus sign with arg[`] = −𝜋+. This must match with the inner limit
of 𝑉𝑟 (𝑌 ) from (3.8), yielding

𝑉 (`) = ± i𝜖2
√

2
e(2−3𝑘2 )/4𝑈 (−1/2, 0, `). (3.17)

We have now matched the dominant component of𝑉 (`) to the real part of the outer solution
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as ` → −∞. It remains to match the imaginary component, which will be exponentially-
small, to (3.13) under the same limit. This requires knowledge of Re[𝑈 (−1/2, 0, `)] as ` →
−∞, which may be determined by the use of special function theory as Re[𝑈 (−1/2, 0, `)] ∼
e` |` |−1/2/2. This yields

𝑉i(`) ∼ ± i𝜖2

2
√

2|` |1/2
e(2−3𝑘2 )/4e`, (3.18)

which we match to the inner limit of (3.13) to find

𝑐i = ± 𝜖3e−𝑘2/2e−1/𝜖 2

4
√
𝜋

. (3.19)

This analytical derivation of 𝑐i, combined with the exponential asymptotics approach to
find the same prediction in §5, is the main result of this paper. To summarise, we have
constructed an outer solution holding for 0 < 𝑌 < 1. This was matched to an inner solution at
𝑌 = 0, which is the only region in which 𝑐i affects the imaginary component of the solution.
We then matched the outer solution to a boundary layer at 𝑌 = 1, yielding 𝑐i in (3.19).

4. Exponential asymptotics for 𝑌 ∈ C
We now consider an asymptotic expansion for the solution and eigenvalue of the form

𝑉 (𝑌 ) =
∞∑︁
𝑛=0

𝜖2𝑛𝑉𝑛 (𝑌 ) and 𝑐 =

∞∑︁
𝑛=0

𝜖2𝑛𝑐𝑛, (4.1)

for which we have expanded in powers of 𝜖2, which is the small parameter in the differential
equation for 𝑉 (𝑌 ). Substituting expansions (4.1) into equation (2.9a) for 𝑉 (𝑌 ), we find at
leading order in 𝜖 , 𝑂 (𝜖0), a first-order differential equation for𝑉0(𝑌 ), which has the solution

𝑉0(𝑌 ) = 𝐴0(𝑐0 − 𝑌 )
1

2𝑐0 e𝑌/2
[
𝑌

1
2 (1−1/𝑐0 ) + (1 − 𝑐0)𝑌− 1

2 (1+1/𝑐0 )
]
. (4.2)

This form either contains a singularity at 𝑌 = 0, or has the behaviour 𝑉0(𝑌 ) → 0 as 𝑌 → 0,
depending on the precise value of the eigenvalue, 𝑐0. The exception to this is the choice of
𝑐0 = 1, for which 𝑉0(𝑌 ) approaches a non-zero constant as 𝑌 → 0. Thus, in order to apply
the 𝑂 (1) boundary condition from (2.9c), 𝑉0(0) = 1, we require that 𝑐0 = 1, which yields
𝐴0 = 1. This gives the 𝑂 (1) solution as

𝑉0(𝑌 ) = (1 − 𝑌 ) 1
2 e𝑌/2 and 𝑐0 = 1, (4.3)

which is the same as that, with 𝑘 = 0, derived in equation (3.8) with a different normalisation
condition.

At the next order of equation (2.9a) we have terms of 𝑂 (𝜖2), from which we find a
first-order differential equation for 𝑉1(𝑌 ). Similarly to that seen in the leading order solution
eqrefeq:O1sol, this expression is singular at𝑌 = 0 and is unable to satisfy the𝑂 (𝜖2) boundary
condition of 𝑉1(0) = 0. Typically this would require a boundary-layer matching procedure
for an inner solution at 𝑌 = 0, but we note that the issue is quickly resolved by the choice of
𝑐1 = (1 − 𝑘2)/2. This yields

𝑉1(𝑌 ) =
(
𝐴1(1 − 𝑌 ) 1

2 + (1 − 𝑌 )−1/2

16

[
2 + 2(1 − 𝑌 ) log (𝑌 − 1)

] )
e𝑌/2, (4.4a)

𝑐1 =
1
2
. (4.4b)
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The above procedure may be extended repeatedly to any arbitrary order in 𝜖2, but the analysis
becomes considerably more difficult. For instance, at 𝑂 (𝜖4) we are unable to solve the
resultant first order differential equation for 𝑉2(𝑌 ) using a symbolic programming language.
The singular behaviour for𝑉2(𝑌 ) can however be extracted from this equation by considering
the limit of 𝑌 → 0. Imposition of the boundary condition, 𝑉2(0) = 0, requires the singular
behaviour near 𝑌 = 0 to cancel, which yields

𝑐2 = −1
8
. (4.5)

This difficulty encountered in solving for higher orders of the solution expansion analytically
highlights the significance of our approach of §4.1 in which we solve for the leading-order
divergent behaviour of 𝑉𝑛 (𝑌 ) and 𝑐𝑛 as 𝑛 → ∞.

Note that𝑉0(𝑌 ) contains a branch point of the form𝑉0(𝑌 ) ∼ (1−𝑌 )1/2 as𝑌 → 1. Since the
coefficients of the differential equation for𝑉1(𝑌 ) contain derivatives of𝑉0(𝑌 ), the next order
of the solution has the singular behaviour of 𝑉1(𝑌 ) ∼ (1 − 𝑌 )−1/2. We therefore anticipate
that the singular behaviour near 𝑌 = 1 of the asymptotic solution will be of the form

𝑉𝑛 (𝑌 ) = 𝑂

(
(1 − 𝑌 )1/2−𝑛

)
. (4.6)

This result can be proved by induction by working in an inner boundary layer at𝑌 = 0, which
we consider in Appendix A.

4.1. Late-term divergence of the expansions
We now seek to characterise the behaviour of the late-terms of expansions (4.1) for the
solution, 𝑉𝑛 (𝑌 ), and the eigenvalue, 𝑐𝑛, under the limit of 𝑛 → ∞. At 𝑂 (𝜖2𝑛) in equations
(2.9a) and (2.9c), we find the equation

2𝑌 (1 − 𝑌 ) (𝑌 − 2)𝑉 ′′
𝑛−1(𝑌 ) + 4𝑌2(𝑌 − 1) (𝑌 − 2)𝑉 ′

𝑛 (𝑌 ) − (𝑌2 − 2𝑌 + 2)𝑉 ′′
𝑛−2(𝑌 )

+ 2𝑌 (3𝑌2 − 6𝑌 + 4)𝑉 ′
𝑛−1(𝑌 ) − 2𝑌3(𝑌 − 2)𝑉𝑛 (𝑌 ) + · · ·

= 𝑐𝑛

[(
2𝑌3 + 2𝑌2 − 8𝑌 + 8

)
𝑉0(𝑌 ) − 4𝑌

(
𝑌2 − 2𝑌 + 2

)
𝑉 ′

0 (𝑌 )
]
,

(4.7a)

and the boundary condition
𝑉𝑛 (0) = 0. (4.7b)

In (4.7a) above, we have included on the left-hand side the two leading orders in 𝑛 of the
homogeneous terms that contribute to the divergence of 𝑉𝑛 (𝑌 ). On the right-hand side of
(4.7a) we have retained only the leading order in 𝑛 of the inhomogeneous forcing term
involving the divergent eigenvalue, 𝑐𝑛.

4.2. The naive divergence
We begin by considering solutions to the homogeneous 𝑂 (𝜖2𝑛) equation,

2𝑌 (1 − 𝑌 ) (𝑌 − 2)𝑉 ′′
𝑛−1(𝑌 ) + 4𝑌2(𝑌 − 1) (𝑌 − 2)𝑉 ′

𝑛 (𝑌 ) − (𝑌2 − 2𝑌 + 2)𝑉 ′′
𝑛−2(𝑌 )

+ 2𝑌 (3𝑌2 − 6𝑌 + 4)𝑉 ′
𝑛−1(𝑌 ) − 2𝑌3(𝑌 − 2)𝑉𝑛 (𝑌 ) = 0,

(4.8)

found by ignoring the forcing terms in (4.7a) that involve the late-terms of the eigenvalue.
For this we follow the approach of e.g. Dingle (1973) and Chapman et al. (1998) and impose
a typical factorial-over-power ansatz for the solution of the form

𝑉𝑛 (𝑌 ) ∼ 𝐴(𝑌 ) Γ(𝑛 + 𝛾)
𝜒(𝑌 )𝑛+𝛾 . (4.9)
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Here, the singulant 𝜒(𝑌 ) is responsible for the growing singular behaviour of𝑉𝑛 (𝑌 ) as 𝑛 → ∞
shown in equation (4.6). The gamma function captures the factorial divergence of the solution,
and 𝐴(𝑌 ) is a functional prefactor. We also assume that 𝛾 is constant. With ansatz (4.9), the
dominant singular behaviour as 𝑛 → ∞ of equation (4.8) is of 𝑂 (𝜒−𝑛−𝛾−1Γ(𝑛 + 𝛾 + 1)).
Dividing out by this divergence results in terms that are of 𝑂 (1), 𝑂 (𝑛−1), and so forth.

At leading order, we find the following equation for the singulant,

𝜒′ (𝜒′ + 2𝑌 ) = 0. (4.10)

Integrating the non-trivial solution and enforcing the condition 𝜒(1) = 0, required for
matching with the inner region near the singularity at 𝑌 = 1 in Appendix A, we find

𝜒(𝑌 ) = 1 − 𝑌2. (4.11)

At 𝑂 (𝑛−1) in (4.8), we find the equation

𝐴′

𝐴
= − (𝑌2 − 4𝑌 + 2)

2(𝑌 − 1) (𝑌 − 2) , (4.12)

which has the solution

𝐴(𝑌 ) = Λ
(𝑌 − 2)

(1 − 𝑌 )1/2 e−𝑌/2. (4.13)

Here, Λ is the constant of integration, which we determine in Appendix A by matching with
an inner solution near the singularity at 𝑌 = 1.

The late-term boundary condition (4.7b) can not be satisfied by solution (4.13) alone,
as it is unbounded as 𝑌 → 0. This is because there are other components of the late-term
representation of the solution, with 𝜒′

𝑐 = 0 from (4.10), currently neglected. We denote these
constant values of the singulant by 𝜒𝑐. Due to the linearity of the 𝑂 (𝜖2𝑛) equation, additional
components of the late-term solution may be considered independently of one another. These
are:
(i) Inhomogeneous contributions from the forcing term in the 𝑂 (𝜖2𝑛) equation (4.7a).

The late-terms of the eigenvalue expansion will diverge in the factorial-over-power
manner of

𝑐𝑛 ∼ 𝛿
Γ(𝑛 + 𝛾1)
Δ𝑛+𝛾1

, (4.14)

where 𝛿 and Δ are constants. Since particular solutions to (4.7a) are generated by
the eigenvalue, 𝑐𝑛, they will be determined by substituting into the (4.7a) a factorial-
over-power ansatz with 𝜒𝑐 = Δ;

(ii) Homogeneous solutions with 𝜒′
𝑐 = 0. Lower orders in 𝑛 of the late-term solution are

seen in §4.5 to reorder as 𝑌 → 0. This necessitates the consideration of an inner
solution, for which the associated inner-outer matching procedure requires outer
homogeneous solutions with 𝜒𝑐 = 𝜒(0) = 1.

We note that these solutions with 𝜒′
𝑐 = 0 are subdominant when matching to an inner

solution near the singularity at 𝑌 = 1, since 𝜒(𝑌 ) → 0 as 𝑌 → 1. Thus, they do not affect
the matching procedure that determines the constants 𝛾 and Δ, which are found next in §4.3.

4.3. Determination of the constants 𝛾 and Λ

It remains to determine the constants 𝛾 and Λ appearing in our naive factorial-over-power
ansatz (4.9). These are determined by matching with an inner solution near the singularity
at 𝑌 = 1. This singular behaviour forces a reordering in the early orders, 𝑉0 ∼ 𝜖2𝑉1, of the
outer expansion (4.1) as 𝑌 → 1, which we consider with an inner solution in Appendix A.
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Firstly, the constant 𝛾 is determined by matching the inner limit of the factorial-over-power
ansatz (4.9) with the anticipated singular scaling in the inner region from equation (4.6). This
gives

−Λe−1/2(1 − 𝑌 )−1/2 Γ(𝑛 + 𝛾)
[2(1 − 𝑌 )]𝑛+𝛾 = 𝑂

(
(1 − 𝑌 )1/2−𝑛

)
, (4.15)

from which we compare the power of the singularity as 𝑌 → 1 to find

𝛾 = −1. (4.16a)

Next, Λ is determined by matching the inner limit of 𝑉𝑛 (𝑌 ) with a series expansion for the
outer-limit of the inner solution. This is performed in Appendix A, in which we find

Λ = − e
2

lim
𝑛→∞

𝑎𝑛

Γ(𝑛 − 1) =
1

4𝜋
. (4.16b)

Here, 𝑎𝑛 is the coefficient of the 𝑛th term in a series expansion of the inner solution near
𝑌 = 1. It is determined by recurrence relation (A 8c), which we iterate to 𝑛 = 150 numerically
to find Λ ≈ 0.0079.

4.4. Stokes lines and the higher-order Stokes phenomenon
In this section, we demonstrate that the late-term solution with 𝜒(𝑌 ) = 1 − 𝑌2 takes a
more complicated form than that considered initially in §4.2 for the homogeneous equation.
Typically, only the exponentially-small remainder to an optimally truncated divergent series
will display the Stokes phenomenon, in which the functional form rapidly changes in
magnitude across a boundary layer of diminishing width as 𝜖 → 0. However in our problem,
the late terms themselves, 𝑉𝑛 (𝑌 ), display the Stokes phenomenon across a boundary layer
with width of 𝑂 (𝑛−1). This is known as the higher-order Stokes phenomenon, to which we
refer the reader to the works of Howls et al. (2004), Chapman & Mortimer (2005), and
Shelton & Trinh (2022).

We will instead consider the late-term divergence to take the modified form

𝑉𝑛 (𝑌 ) ∼ S(𝑌 )𝐴(𝑌 ) Γ(𝑛 + 𝛾)
𝜒𝑛+𝛾 , (4.17)

where S(𝑌 ) is the Stokes smoothing function that takes a value of S(𝑌 ) = 0 for Re[𝑌 ] < 0
and S(𝑌 ) = 1 for Re[𝑌 ] > 0. The contour Re[𝑌 ] = 0 is a higher-order Stokes line, about
which this transition in S(𝑌 ) occurs. Note that previously in the naive divergence (4.9), the
singulant 𝜒(𝑌 ) = 1 − 𝑌2 took a value of zero at the locations of 𝑌 = −1 and 𝑌 = 1. This
incorrectly predicted singularities in the late-terms at 𝑌 = −1, about which the early orders
of §4 are regular. Since the late-terms are now “switched off” with S(𝑌 ) = 0 at 𝑌 = −1 in
equation (4.17), this issue is resolved.

It is necessary to consider this switching of the late-terms when the exponentially-small
components of the asymptotic solution are determined in §5. This is because the Stokes
phenomenon, in which the magnitude of these exponentially-small (in 𝜖) terms rapidly
changes across Stokes lines, is induced by forcing terms that rely on the late-term divergent
solution, 𝑉𝑛 (𝑌 ). If the late-terms have been switched off in certain regions through the
higher-order Stokes phenomenon, then any Stokes lines passing through this region will be
inactive. The Stokes lines generated by 𝑉𝑛 (𝑌 ) are shown in figure 1, for which there are two
interesting features to note:
(i) The Stokes line connecting𝑌 = −1 and𝑌 = 0 in inactive. This is due to the late-terms,

𝑉𝑛 (𝑌 ), being switched off for Re[𝑌 ], 0 through the higher-order Stokes phenomenon;
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Figure 1: The final Stokes lines generated by the divergent series are shown. Active Stokes
lines are shown with bold lines, and inactive Stokes lines dashed.

(ii) The Stokes line along the imaginary axis, Re[𝑌 ] = 0, is partially active, as it coincides
with the higher-order Stokes line across which the late-terms 𝑉𝑛 (𝑌 ) switch off.

4.5. Reordering of the late-terms at 𝑌 = 0
Recall that in §4 the early orders of the eigenvalue expansion were determined by enforcing
boundary-condition (2.9c) at𝑌 = 0 on the asymptotic solution. Our current late-term solution
(4.17) alone is unable to satisfy this condition. This is because there is a boundary layer near
𝑌 = 0 that must be considered, which is generated by the reordering of the late-term solution
as 𝑌 → 0, which we now discuss.

The late-term solution will contain a boundary-layer of width 𝑂 (𝑛−1/2) at 𝑌 = 0. To
see this, one can derive lower orders, in 𝑛, of the naive divergence (4.9) by considering a
factorial-over-power ansatz of the form

𝑉𝑛 (𝑌 ) ∼
[
𝐴0(𝑌 ) +

𝐴1(𝑌 )
𝑛

+ 𝐴2(𝑌 )
𝑛2 + · · ·

]
Γ(𝑛 + 𝛾)
𝜒𝑛+𝛾 . (4.18)

The method to derive the solutions 𝐴1(𝑌 ) and 𝐴2(𝑌 ) is similar to that considered in §4.2 for
𝐴(𝑌 ) = 𝐴0(𝑌 ). Lower order terms in the 𝑂 (𝜖2𝑛) equation must be retained, which yields at
the subsequent orders in 𝑛 equations for 𝐴1(𝑌 ) and 𝐴2(𝑌 ). Near 𝑌 = 0, these each have the
singular scaling of

𝐴0(𝑌 ) = 𝑂 (1), 𝐴1(𝑌 ) = 𝑂 (𝑌−1), 𝐴2(𝑌 ) = 𝑂 (𝑌−3). (4.19)

As 𝑌 → 0, the series first reorders for 𝑛−1𝐴1(𝑌 ) ∼ 𝑛−2𝐴2(𝑌 ), from which we introduce in
equation (4.20) the inner variable �̂� to study this reordering.

4.6. An inner solution at 𝑌 = 0 for the late terms
Since the late-terms, 𝑉𝑛 (𝑌 ), each reorder as 𝑌 → 0, an inner problem must be considered in
which we enforce boundary condition (2.9c). The associated inner variable, �̂�, is determined
by the reordering of the late-terms from equations (4.18) and (4.19). This is given by

𝑌 =
�̂�

𝑛1/2 , (4.20)

where we will consider �̂� = 𝑂 (1) in the inner region. We now derive the inner equation for
the inner solution 𝑉 ( �̂�) by substituting (4.20) into the 𝑂 (𝜖2𝑛) equation (4.7a) and expanding
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as 𝑛 → ∞. In retaining only the terms that will be seen to appear at leading order in 𝑛, we
find

−𝑛3/2

�̂�

d2𝑉𝑛−1

d�̂�2 + 2𝑛1/2 d𝑉𝑛

d�̂�
+ 𝑛3/2

�̂�2
d𝑉𝑛−1

d�̂�
=

2𝑛𝑐𝑛
�̂�2 . (4.21)

To view the correct form for the inner solution 𝑉 ( �̂�) as 𝑛 → ∞, the inner limit of the outer
solution is now considered. Since 𝜒−(𝑛+𝛾) = (1 − 𝑛−1 �̂�2)−(𝑛+𝛾) ∼ e�̂�2 as 𝑛 → ∞, we find
this to be

𝑉𝑛 ∼ −2ΛS(𝑌 )e�̂�2
Γ(𝑛 + 𝛾). (4.22)

As the higher-order Stokes phenomenon will occur in a boundary layer of the same width in
𝑛 as that considered currently for �̂�, we will have S(𝑌 ) = 1 as Re[𝑌 ] → 0+ and S(𝑌 ) = 0 as
Re[𝑌 ] → 0− under this inner limit.

Thus, to facilitate matching with (4.22), we consider an inner solution to (4.21) of the form

𝑉𝑛 ( �̂�) = 𝑅( �̂�)Γ(𝑛 + 𝛾) and 𝑐𝑛 ∼ 𝛿Γ(𝑛 + 𝛾 − 1/2). (4.23)

In the above, we have also taken the divergent form for 𝑐𝑛 from (4.14) with Δ = 1 and
𝛾1 = 𝛾−1/2 to ensure that the divergent eigenvalue and solution both appear at leading order
in the inner late-term equation (4.21). If this assumption is incorrect due to the eigenvalue
balancing at lower orders of 𝑛, then we would expect to find 𝛿 = 0, which would require the
analysis of lower-order components of solutions (4.23).

Substitution of ansatzes (4.23) into the inner late-term equation (4.21) yields at leading
order the second-order differential equation

d2𝑅

d�̂�2 −
(
2�̂� + 1

�̂�

)
d𝑅
d�̂�

= −2𝛿
�̂�
, (4.24)

which has the solution

𝑅( �̂�) = �̂� + �̂�e�̂�
2 + 2𝛿e�̂�

2
∫ �̂�

0
e−𝑡

2
d𝑡. (4.25)

Imposition of the inner boundary condition 𝑅(0) = 0 requires that �̂� = −�̂�. The outer limit
of (4.25) is now taken for the two cases of �̂� → ∞ and �̂� → −∞ in order to match with
(4.22). This yields

𝑅( �̂�) ∼

[
�̂� +

√
𝜋𝛿

]
e�̂�

2 + · · · as �̂� → ∞,[
�̂� −

√
𝜋𝛿

]
e�̂�

2 + · · · as �̂� → −∞,
(4.26)

where the result for �̂� → −∞ follows from that for �̂� → ∞ due to the first integral in solution
(4.25) for 𝑅( �̂�) being an odd function about �̂� = 0.

It is now possible to match the terms of 𝑂 (e�̂�2) in (4.26) with the inner limit of the outer
solution in (4.22), which is performed in §4.7. We note that the omitted terms in the outer limit
(4.26), which are of algebraic orders in �̂� and also of 𝑂 (log ( �̂�)), do not match to the inner
limit of the factorial-over-power ansatz (4.22). Their matching requires the consideration of
additional inhomogeneous components of the outer divergent solution, with 𝜒′ = 0, which
are not discussed further here.
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4.7. Matching and conclusions
We now match the outer limit of the inner solution, from equation (4.26), with the inner limit
of the outer factorial-over-power solution. Matching the terms of 𝑂 (e�̂�2) requires that

�̂� +
√
𝜋𝛿 = −2Λ and �̂� −

√
𝜋𝛿 = 0, (4.27)

where the first equation above arose from matching as �̂� → ∞ and the latter from �̂� → −∞.
The solution of equations (4.27) is found to be

�̂� = −Λ and 𝛿 = − Λ
√
𝜋
. (4.28)

We have thus determined the divergence of the eigenvalue to be of the form

𝑐𝑛 = − Λ
√
𝜋
Γ(𝑛 + 𝛾 − 1/2). (4.29)

5. Optimal truncation and Stokes smoothing
The goal of this section is to determine the exponentially-small solution and eigenvalue,
which are found through optimal truncation of the divergent expansion derived in §4.1. Unlike
the base asymptotic expansion for the eigenvalue, 𝑐, the exponentially-small component is
imaginary valued, which corresponds to a growing temporal instability of the normal mode
solution.

We will consider an asymptotic solution of the form

𝑉 (𝑌 ) =
𝑁−1∑︁
𝑛=0

𝜖2𝑛𝑉𝑛 (𝑌 )︸           ︷︷           ︸
base expansion

+ 𝐵(𝑌 )e−1/𝜖 2︸        ︷︷        ︸
𝜒𝑐=1

+ 𝐴(𝑌 )e−(1−𝑌2 )/𝜖 2︸               ︷︷               ︸
𝜒=1−𝑌2

. (5.1)

Here, the exponentially-small term with 𝜒 = 1−𝑌2 displays the Stokes phenomenon through
optimal truncation of the base series 𝑉𝑛 (𝑌 ), and that with 𝜒𝑐 = 1 arises as a particular
solution generated by the exponentially-small eigenvalue.

The exponentially-small component of the eigenvalue will be determined in §5.4 by
matching the inner limit of the e−(1−𝑌2 )/𝜖 2 exponential with the outer limit of an inner
solution near 𝑌 = 0. However, this current problem displays a very unusual feature, in which
the primary Stokes smoothing associated with optimal truncation of the base expansion,
performed in §5.2, is insufficient in order to correctly determine the behaviour of the
e−(1−𝑌2 )/𝜖 2 exponential throughout the complex 𝑌 -plane. In fact, there is an additional
Stokes switching generated by optimal truncation of an asymptotic expansion for 𝐵(𝑌 ) in
the e−1/𝜖 2 exponential that also generates terms of order e−(1−𝑌2 )/𝜖 2 . In expanding

𝐵(𝑌 ) = 𝐵0(𝑌 ) + 𝜖2𝐵1(𝑌 ) + · · · + 𝜖2𝑁𝐵𝑁 (𝑌 ) + 𝐶 (𝑌 )e𝑌2/𝜖 2
, (5.2)

there is a singularity at𝑌 = 0 in 𝐵0(𝑌 ) which forces the divergence of the late-terms, 𝐵𝑁 (𝑌 ).
In §5.3, we show that this new exponential is of order e𝑌2/𝜖 2 , which when multiplied by the
factor of e−1/𝜖 2 yields a term of order e−(1−𝑌2 )/𝜖 2 .

Remark on terminology: Note that while the Stokes phenomenon generated by a divergent
series expansion of an exponentially-small term is called the second-generation Stokes
phenomenon, since the 𝜒𝑐 = 1 exponential, e−1/𝜖 2 , in (5.8) is uniformly present across
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the domain, we refer to this as a base exponential for which there is an associated secondary
Stokes phenomenon.

Both of these Stokes switchings together allow for determination of the exponentially-small
eigenvalue when matched to the inner solution, which we discuss next in §5.1.

5.1. The inner solution at 𝑌 = 0
Analogous to the reordering of the late-terms near 𝑌 = 0 shown in (4.19), the outer solution
for 𝐴(𝑌 ) in (5.8) will also reorder as 𝑌 → 0. To study the solution near 𝑌 = 0, we introduce
the inner variable, 𝑦, defined by

𝑌 = 𝜖 𝑦, (5.3)
where 𝑦 = 𝑂 (1) in the inner region. As the inner limit of the early orders of the outer
expansion for 𝑉 (𝑌 ), obtained by substituting for 𝑌 = 𝜖 𝑦 and expanding as 𝜖 → 0, yields
contributions to each order of 𝜖 , we consider an inner solution of the form

𝑣inner(𝑦) =
2𝑁−2∑︁
𝑛=0

𝜖𝑛𝑣𝑛 (𝑦) + �̄�(𝑦) and 𝑐𝑛 =

𝑁−1∑︁
𝑛=0

𝜖2𝑛𝑐𝑛 + 𝑐. (5.4)

An inner equation for 𝑣inner(𝑦) may also be derived by substituting (5.3) into the outer
equation (2.9a) for 𝑉 (𝑌 ). Substitution of the expansions (5.4) into this yields the following
second-order differential equation for �̄�(𝑦), given by

d2�̄�

d𝑦2 −
(
2𝑦 + 1

𝑦

)
d�̄�
d𝑦

+ 2𝑐
𝜖 𝑦

= −𝜖 �̄�b̄eq(𝑦). (5.5)

In the above, we have retained only the leading order terms, in 𝜖 , that involve �̄�(𝑦) and 𝑐.
The function b̄eq(𝑦) on the right-hand side is a forcing term of order 𝜖2𝑁−1, obtained by
substituting the base expansions asymptotic expansions for 𝑣(𝑦) and 𝑐 into the inner equation.
However, unlike for the outer equation, the particular solution associated with the forcing
term will be subdominant as 𝑁 → ∞ to the solution determined next, and is thus ignored.

The solution to equation (5.5) is

�̄�(𝑦) = �̄� + �̄�e𝑦
2 + 2𝑐e𝑦2

𝜖

∫ 𝑦

0
e−𝑡

2
d𝑡, (5.6)

where �̄� and �̄� are constants of integration. Next, imposing the boundary condition of
�̄�(0) = 0, yields �̄� = −�̄�. We may now take the outer limit as 𝑦 → ±∞ of solution (5.6) to
find

�̄�(𝑦) ∼



[
�̄� + 𝑐

√
𝜋

𝜖

]
e𝑦

2 − �̄� − 𝑐

𝜖 𝑦

(
1 +

∞∑︁
𝑛=1

Γ(𝑛 + 1
2 )√

𝜋(−𝑦2)𝑛

)
as 𝑦 → ∞,[

�̄� − 𝑐
√
𝜋

𝜖

]
e𝑦

2 − �̄� − 𝑐

𝜖 𝑦

(
1 +

∞∑︁
𝑛=1

Γ(𝑛 + 1
2 )√

𝜋(−𝑦2)𝑛

)
as 𝑦 → −∞,

(5.7)

where we have included terms of𝑂 (𝑦−2𝑛) which will later be required in §5.3 to determine the
constant prefactor associated with the divergence that forces the secondary Stokes-switching.
This form will be matched to the inner limit of an outer solution, determined in §5.2 and
§5.3.

5.2. The Stokes phenomenon induced by 𝑉𝑛 (𝑌 )
In this section, we optimally truncate the divergent expansion (4.1) and study the Stokes
phenomenon that occurs on the exponentially-small remainder. We consider the truncated
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asymptotic expansion and remainder for the solution, 𝑉 (𝑌 ), to be of the form

𝑉 (𝑌 ) =
𝑁−1∑︁
𝑛=0

𝜖2𝑛𝑉𝑛 (𝑌 ) + �̄� (𝑌 ). (5.8)

The optimal value of 𝑁 is at the point where the series first reorders as 𝑛 → ∞. Balancing
𝑉𝑛 ∼ 𝜖2𝑉𝑛+1 yields 𝑁 ∼ |𝜒(𝑌 ) |/𝜖2, which we shift by the integer 𝜌 ∈ (0, 1] to ensure that 𝑁
takes integer values. This yields

𝑁 =
|𝜒(𝑌 ) |
𝜖2 + 𝜌. (5.9)

Substitution of the truncated expansion (5.8) for 𝑉 (𝑌 ), and (5.4) for 𝑐 into the governing
equation (2.9a) yields an equation for �̄� with eigenvalue 𝑐. Terms of orders 𝑐2, and 𝑐�̄� are
neglected as they are exponentially subdominant as 𝜖 → 0. Furthermore, since we anticipate
solutions of the form �̄� (𝑌 ) ∼ e−𝜒/𝜖 2 , we neglect terms of 𝑂 (𝜖6) in the coefficient of �̄� ′′,
𝑂 (𝜖4) for �̄� ′, and 𝑂 (𝜖2) for �̄� to find[

− 2𝑌 (𝑌 − 1) (𝑌 − 2)𝜖2 − (𝑌2 − 2𝑌 + 2)𝜖4
]
�̄� ′′

+ (𝑌 − 1)
[
4𝑌2(𝑌 − 2) + 2(𝑌3 − 2𝑌 − 2)𝜖2

]
�̄� ′ − 2𝑌3(𝑌 − 2)�̄�

+ 2(𝑌 − 2) (2𝑌2 − 3𝑌 + 2) − 4𝑘2𝑌 (𝑌 − 2) (𝑌 − 1)3

(1 − 𝑌 )1/2 e𝑌/2𝑐 = beq.

(5.10)

In (5.10) above, beq is the forcing term obtained by substituting the truncated asymptotic
expansions (5.8) into equation (2.9a). Since each order of this forcing term is identically
satisfied up to and including 𝑂 (𝜖2𝑁−2), beq will be of 𝑂 (𝜖2𝑁 ). This yields

beq ∼ 2𝑌 (𝑌 − 1) (𝑌 − 2)𝑉 ′′
𝑁−1(𝑌 )𝜖

2𝑁 , (5.11)

where we have retained only the leading order component as 𝑁 → ∞ at 𝑂 (𝜖2𝑁 ), which is
𝑉 ′′
𝑁−1.
We will now derive the form of the solution that displays the Stokes phenomenon across

Stokes lines associated with the late terms, 𝑉𝑁 , of the asymptotic expansion. Note that we
will not consider the effect of the exponentially-small eigenvalue, 𝑐, in this section; this
will be considered when deriving the secondary generation smoothing in §5.3. We begin
by considering the solution to the homogeneous equation, which is found from (5.10) by
neglecting the forcing term beq and eigenvalue 𝑐. This equation has solutions of the following
WKB form,

�̄�homog = 𝐴(𝑌 )e−𝜒 (𝑌 )/𝜖 2
, (5.12)

where 𝜒(𝑌 ) and 𝐴(𝑌 ) satisfy the same equations found for the late-term analysis in (4.10)
and (4.12). Following the method established by Chapman et al. (1998), we will describe
the Stokes phenomenon induced by the forcing term beq through variation of parameters by
considering a solution of the form

�̄� = S(𝑌 )𝐴(𝑌 )e−𝜒 (𝑌 )/𝜖 2
. (5.13)

Here, S(𝑌 ) is the Stokes multiplier that will be seen to rapidly vary across the Stokes lines.
Substitution of (5.13) into (5.10) yields on the left-hand side terms that are exponentially-
small in 𝜖 . Since the leading order equation, at 𝑂 (𝜖−2e−𝜒/𝜖 2), is identically satisfied due
to our choice of 𝜒 = 1 − 𝑌2, the first non-zero order on the left-hand side of (5.10) is of
𝑂 (e−𝜒/𝜖 2). This will balance with the dominant component of beq as 𝜖 → 0 from (5.11) to
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form a first order differential equation for S(𝑌 ). Upon changing variables from𝑌 to 𝜒, terms
involving 2𝑌 (𝑌 − 1) (𝑌 − 2)𝐴(𝑌 ) (𝜒′)2 cancel, and we find

dS
d𝜒

∼ 𝜖2𝑁 Γ(𝑁 + 𝛾 + 1)
𝜒𝑁+𝛾+1 e𝜒/𝜖

2
. (5.14)

This equation for S(𝜒) is now of a similar form to that found by Chapman & Vanden-
Broeck (2006). We use Stirling’s approximation to expand the gamma function in (5.14)
as 𝑁 → ∞, and substitute for the optimal value of 𝑁 = |𝜒 |/𝜖2 + 𝜌 from (5.9). In writing
𝜒 = 𝑟ei\ , this yields a differential equation for S(\) that rapidly changes in form across a
boundary layer at \ = 0. This is the Stokes phenomenon along the anticipated contours of
Im[𝜒] = 0 and Re[𝜒] ⩾ 0. The resultant equation for the Stokes prefactor, S(𝑌 ), has the
solution of

S(𝑌 ) = 𝑆1 +
√

2𝜋i
𝜖2𝛾

∫ √
𝑟 \

𝜖

−∞
exp (−𝑡2/2) d𝑡, (5.15)

where 𝑆1 is a constant. As 𝜖 → 0, we see that there is a jump in the expected value of S(𝑌 )
that depends on the sign of \. For \ < 0, S(𝑌 ) → 𝑆1, and for \ > 0, we integrate the error
function to find S(𝑌 ) → 𝑆1 + 2𝜋i

𝜖 2𝛾 . Thus, we have predicted the jump condition of

S(\ → 0+) − S(\ → 0−) = 2𝜋i
𝜖2𝛾 , (5.16)

where the change occurs smoothly in a boundary layer of width 𝑂 (𝜖) about \ = 0.
Note that this condition of \ = 0 and 𝑟 > 0 is equivalent to the Dingle conditions of

Im[𝜒] = 0 and Re[𝜒] ⩾ 0, (5.17)

which are satisfied along the real axis between 𝑌 = −1 and 𝑌 = 1, and the entire imaginary
axis. However, due to the higher-order Stokes phenomenon detailed in §4.4, the Stokes line
between𝑌 = −1 and𝑌 = 0 is inactive, and that along the imaginary axis is half-active. These
Stokes lines are shown in figure 1, and are also shown alongside additional Stokes lines,
generated by the particular solution associated with 𝑐, in figure 2, which we derive next in
§5.3.

5.3. The Stokes phenomenon induced by 𝑐

Previously in §5.2, we derived the Stokes phenomenon displayed by the exponential
e−(1−𝑌2 )/𝜖 2 that is forced by the base asymptotic series. However, as briefly discussed at
the beginning of §5, there is another Stokes switching that occurs on the prefactor of an
e−1/𝜖 2 exponential generated as a particular solution from 𝑐 in equation (5.10). This new
switching also yields terms of order e−(1−𝑌2 )/𝜖 2 . In conjunction with the classical Stokes
smoothing of the previous section, this allows for determination of the exponentially-small
eigenvalue, 𝑐.

The particular solution of equation (5.10) is

�̄� (𝑌 ) ∼ − 𝑐

𝑌 (1 − 𝑌 )1/2 as 𝑌 → 0, (5.18)

which contains a singularity at 𝑌 = 0. One may also consider lower orders of this particular
solution with an expansion of the form

�̄� (𝑌 ) = 𝑐

∞∑︁
𝑛=0

𝜖2𝑛𝐵𝑛 (𝑌 ). (5.19)
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Since determination of the next order solution, 𝐵1(𝑌 ), requires differentiation of the leading
order solution 𝐵0(𝑌 ) = −𝑌−1(1 − 𝑌 )−1/2 from (5.18), the power of the singularity at 𝑌 = 0
will grow. This results in a divergent series, which we capture with the factorial-over-power
ansatz of

𝐵𝑛 (𝑌 ) ∼ �̃�(𝑌 ) Γ(𝑛 + �̃�)
�̃�(𝑌 )𝑛+�̃� . (5.20)

Here, �̃� and �̃� are functions of the domain,𝑌 , and �̃� is a constant. Since the solution expansion
(5.23) has a value of 𝜒′ = 0 within the exponentially-small eigenvalue 𝑐, the equations for �̃�
and �̃� will be the same as that found for the divergence of the base asymptotic series in §4.2.
These are equations (4.10) and (4.12), which we integrate to find

�̃�(𝑌 ) = −𝑌2 and �̃�(𝑌 ) = Λ̃
(𝑌 − 2)

(1 − 𝑌 )1/2 e−𝑌/2. (5.21)

Here, Λ̃ is a constant of integration (not necessarily the same as that for 𝐴(𝑌 ) in (4.12)), and
the constant of integration for �̃� has been set to zero to satisfy the condition �̃�(0) = 0.

The constants associated with this divergent form, �̃� and Λ̃may be determined by matching
the inner limit of (5.20), with𝑌 = 𝜖 𝑦, with an inner solution found in §5.1. This is analogous
to the matching procedure near 𝑌 = −1 performed in Appendix A to determine the constants
associated with the base divergent series. This yields

�̃� =
1
2

and Λ̃ =
i

2
√
𝜋
. (5.22)

Next, we optimally truncate expansion (5.23) and consider an exponentially-small remain-
der, �̄� by writing

�̄� (𝑌 ) = 𝑐

[
𝑁−1∑︁
𝑛=0

𝜖2𝑛𝐵𝑛 (𝑌 ) + �̄�(𝑌 )
]
. (5.23)

This Stokes phenomenon displayed by this remainder is denoted the secondary Stokes
phenomenon, as it is forced by an exponentially-small term, as opposed to the base asymptotic
expansion. There will be secondary Stokes lines whenever the Dingle conditions of

Im[ �̃�] = 0 and Re[ �̃�] ⩾ 0, (5.24)

are satisfied. Moreover, the direction of the switching will be from regions where arg [𝜒] < 0
to arg [𝜒] > 0. This occurs along the imaginary axis, which is shown in figure 2.

5.4. Determination of 𝑐
We now determine the exponentially-small eigenvalue by combining the primary Stokes
switching results of §5.2 with those derived in §5.3 for the secondary Stokes switching. Since
we require the solution to decay as 𝑌 → −∞, there will be no exponentially-small terms
present when𝑌 < 0. There are now two ways to proceed to determine the exponentially-small
eigenvalue:
(i) We can match along the axis to determine 𝑐. This is the method employed in §3, where

we note that the inner solution near 𝑌 = 0 must decay to zero as we take the outer
limit of 𝑦 → −∞. This yields an outer limit as 𝑦 → ∞ of �̄� ∼ 2𝜖−1𝑐

√
𝜋e𝑦2 in equation

(5.7). When matched to an outer solution obtained from half of the contribution from
the Re[𝑌 ] > 0 Stokes line, this yields the prediction in equation (5.28);

(ii) The contributions from the primary and secondary Stokes lines must cancel due to
the decay conditions.
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It is this second method which we will employ in this section. This is visualised in figure 2,
for which we note that there is a subtle choice of which Riemann sheet the decay conditions
as 𝑌 → ∞ are evaluated on. In starting at point A in figure 2, passing across the imaginary
axis yields a contribution of −𝜋i𝜖−2𝛾Λ from the primary Stokes line, and −2𝜋i𝜖−2�̃�Λ̃ from
the secondary Stokes line. We may then stay on the same Reimann sheet and evaluate the
decay condition as 𝑌 → ∞ at point B, which requires these two contributions to cancel.
Alternatively, we may enter the other Riemann sheet associated with the branch point at
𝑌 = 1 by passing through the 0 < Re[𝑌 ] < 1 primary Stokes line. The decay condition at
point C then requires that the three contributions of −𝜋i𝜖−2𝛾Λ, −2𝜋i𝜖−2�̃�Λ̃, and 2𝜋i𝜖−2𝛾Λ
cancel. This yields a similar prediction for 𝑐, but with a minus sign.

Across the primary Stokes line, we switch on a solution of the form

�̄� (𝑌 ) ∼ −𝜋iΛ
𝜖2𝛾

(𝑌 − 2)
(1 − 𝑌 )1/2 e−𝑌/2e−(1−𝑌2 )/𝜖 2

, (5.25)

and across the secondary Stokes line

�̄� (𝑌 ) ∼ −2𝜋iΛ̃
𝜖2�̃�

(𝑌 − 2)
(1 − 𝑌 )1/2 e−𝑌/2e𝑌

2/𝜖 2
𝑐, (5.26)

switches on. Thus, for the exponentially-small terms to decay as 𝑌 → ±∞, we require these
two contributions to cancel. Since 𝛾 = −1 and Λ = 1/(4𝜋) from equation (4.16), and �̃� = 1/2
and Λ̃ = i/(2

√
𝜋) from (5.22), we have

𝑐 =
Λ

−2Λ̃
𝜖2( �̃�−𝛾)e−1/𝜖 2

=
i

4
√
𝜋
𝜖3e−1/𝜖 2

. (5.27)

This is the result for evaluation of the decay condition as 𝑌 → ∞ on the Riemann sheet
associated with the point B in figure 2. Alternatively, one may evaluate the decay condition
at point C on another Riemann sheet, which requires crossing the 0 < Re[𝑌 ] < 1 Stokes
line. This yields a similar prediction for 𝑐 as in (5.27) above, but with a minus sign. Thus,
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we have derived the complex conjugate pairs of 𝑐, given by

𝑐 = ± i
4
√
𝜋
𝜖3e−1/𝜖 2

. (5.28)

6. Conclusions
We have analytically determined the imaginary component of the eigenvalue for weak
latitudinal shear, 𝜖 , of the equatorial Kelvin wave. Since the eigenvalue, 𝑐, is the phase
speed of the travelling wave solutions (2.4), the imaginary component which is exponentially
small in 𝜖 corresponds to a growing temporal instability in the solution. We have employed
the following two methods:
(i) Firstly in §3, we restricted the domain, 𝑌 , to be real valued. Since the asymptotic

expansions for the solution and eigenvalue are then real valued to each algebraic
order of 𝜖 , we have been able to study the imaginary components of the governing
equations to extract information about 𝑐i. The associated matching procedure to𝑌 = 0
and 𝑌 = 1 then yielded prediction (3.19) for 𝑐i.

(ii) Secondly, in §4 and §5, we considered complex values of 𝑌 in order to study the
Stokes phenomenon and associated Stokes lines, which yield the exponentially-small
solution throughout 𝑌 ∈ C. The analysis is difficult, and requires understanding of
the higher-order Stokes phenomenon, divergent eigenvalue expansions, and boundary
layers of diminishing width as 𝑛 → ∞ in the late-terms of the asymptotic expansion
𝑉 (𝑌 ) = ∑∞

𝑛=0 𝜖
2𝑛𝑉𝑛 (𝑌 ).

7. Discussion
Unlike most instability problems in fluid dynamics such as those that are unstable when the
Reynolds number exceeds a certain value, the equatorial Kelvin wave is unstable no matter
how small we take the latitudinal shear, 𝜖 . Higher solution modes however, the equatorial
Rossby waves, are stable under this limit. Whether this exponentially-small critical latitude
instability occurs for other geophysical problems is not clear.

The exponential asymptotic approach of §4 and §5 required the consideration of additional
divergent effects that influenced the exponentially-small component of our asymptotic
solution. In addition to the Stokes phenomenon generated by the divergent asymptotic
series of the solution, studied in §5.2, there was another Stokes phenomenon effect that
contributed to terms of the same order, 𝑂 (e−(1−𝑌2 )/𝜖 2). Derived in §5.4, this was generated
by a particular solution forced by the exponentially-small component of the eigenvalue. The
asymptotic expansion for this particular solution, of 𝑂 (e−1/𝜖 2), diverged and upon optimal
truncation yielded an exponentially small remainder of 𝑂 (e𝑌/𝜖 2). This is similar to the
second-generation switching discussed by Chapman & Mortimer (2005), which is a further
Stokes phenomenon induced by an exponentially-small term that itself was switched on by
the base asymptotic series.
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Appendix A. Inner analysis at the singularity, 𝑌 = 1
The constant prefactor, Λ, of the naive late-term solution (4.9) is determined by matching
with an inner solution near the singularity at 𝑌 = 1. Close to this point, the early orders of
the asymptotic expansion reorder as 𝑉0(𝑌 ) ∼ 𝜖2𝑉1(𝑌 ). Since 𝑉0(𝑌 ) = 𝑂 ((1 − 𝑌 )1/2) and
𝑉1(𝑌 ) = 𝑂 ((1−𝑌 )−1/2) by taking the limit of𝑌 → 1 in equations (4.3) and (4.4a), the width
of the boundary layer is of 𝜖2. We thus introduce the inner variable, �̄�, by the relation

(1 − 𝑌 ) = −𝜖2 �̄�, (A 1)

for which �̄� = 𝑂 (1) in the inner region. To observe the correct scaling to take for the inner
solution, we take the inner limit of the first order of the outer solution by substituting for �̄�
from (A 1) and taking the limit of 𝜖 → 0. This yields

𝑉0(𝑌 ) ∼ 𝜖 (−�̄�)1/2e1/2, (A 2)

where we have retained only the leading order terms in 𝜖 . We may also take the inner limit
of our factorial-over-power solution, which yields

𝜖2𝑛𝑉𝑛 (𝑌 ) ∼ −𝜖
√

2Λe−1/2 Γ(𝑛 − 1)
(−2�̄�)𝑛−1/2 . (A 3)

Motivated by the form of the inner limit of𝑉0(𝑌 ) in (A 2), we define the inner solution, �̄� ( �̄�),
by the relation

𝑉outer = 𝜖 (−�̄�)1/2e1/2�̄�inner. (A 4)
We will consider in §A.1 a series expansion for the outer limit of the inner solution, �̄�inner,
in order to match with (A 3). In taking

𝑧 = −2�̄�, (A 5)

the resultant expansion will be in integer powers of 𝑧−1.

A.1. Inner solution
We now derive the inner equation for �̄� (𝑧). Only the leading order, as 𝜖 → 0, of the inner
solution needs to be considered to match with the inner limit of 𝜖2𝑛𝑉𝑛 (𝑌 ) given in (A 3). We
substitute for 𝑧 = 2(1 − 𝑌 )/𝜖2 and �̄� from (A 4) into the outer equation (2.9a) for 𝑉 (𝑌 ), and
retain only the leading order as 𝜖 → 0, yielding

4𝑧2(𝑧 + 1) d2�̄�

d𝑧2 + 4𝑧(𝑧 + 1)2 d�̄�
d𝑧

+ (𝑧 − 1)�̄� (𝑧) = 0. (A 6)

Now we determine the outer-limit, as 𝑧 → ∞, of the inner solution with a series expansion
of the form

�̄� (𝑧) =
∞∑︁
𝑛=0

𝑎𝑛

𝑧𝑛
. (A 7)

Substitution of (A 7) into the inner equation (A 6) yields equations at each order of 𝑧−𝑛.
These are

4𝑎1 = 𝑎0, (A 8a)

8𝑎2 = 𝑎1 − 𝑎0, (A 8b)

4(𝑛 + 1)𝑎𝑛+1 = (2𝑛 − 1)2𝑎𝑛 + (2𝑛 − 3) (2𝑛 − 1)𝑎𝑛−1 for 𝑛 ⩾ 2. (A 8c)
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In matching the inner limits of𝑉0(𝑌 ) and 𝜖2𝑉1(𝑌 ) from (A 2) with (A 7) to determine 𝑎0 and
𝑎1, we find

𝑎0 = 1, 𝑎1 =
1
4
, 𝑎2 = − 3

32
, (A 9)

where 𝑎2 above was found from equation (A 8b). Values for 𝑎𝑛 may the be found numerically
by iterating recurrence relation (A 8c) to large values of 𝑛. With equation (A 4) we can
compare the 𝑛th order of the inner solution to that of the inner limit of the outer solution
from (A 3). This yields

−𝜖
√

2Λe−1/2Γ(𝑛 − 1)
𝑧 (𝑛−1/2) = 𝜖

(
𝑧

2

)1/2
e1/2 𝑎𝑛

𝑧𝑛
, (A 10)

which we may rearrange and consider the limit of 𝑛 → ∞ to determine the constant Λ as

Λ = − e
2

lim
𝑛→∞

𝑎𝑛

Γ(𝑛 − 1) . (A 11)

Numerically we iterate recurrence relation (A 8c) to 𝑛 = 150 to find Λ ≈ 0.079.
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DISCUSSION AND FUTURE WORK 9

9.1 Summary of thesis

We have demonstrated the crucial role that exponentially-small effects play in water
waves. Firstly, the small surface tension limit considered in Part II contained high-
frequency parasitic ripples, whose amplitude was seen to be exponentially small in the
surface tension parameter. This was demonstrated numerically for steadily travelling
waves in chapter 33 and standing waves in chapter 55. In these chapters, portions of
the bifurcation structure were computed numerically for small surface tension. The
analytical work of chapter 44 required the use of exponential asymptotic techniques
in order to study these exponentially small parasitic ripples for the steadily travelling
formulation.

Motivated by the potential influence of divergent eigenvalues, in Part IIII, we
developed exponential asymptotics for two model problems exhibiting this feature. In

179



particular, we studied the limit of vanishing latitudinal shear for the equatorial Kelvin
wave. No matter how small this shear was taken, the travelling wave was seen to be
unstable. This analysis also required the use of exponential asymptotic techniques, as
the instability arose from the imaginary component of the eigenvalue (wavespeed),
which was seen to be exponentially small with respect to the weak shear.

Future extensions to the work performed throughout this thesis are now discussed.

9.2 The inclusion of viscosity

In chapter 33, we considered steadily travelling gravity-capillary waves in the absence
of viscous effects. Consequently, the numerical solutions found were symmetric with
parasitic ripples located on both sides of the wave crest. Experimental solutions
however are asymmetric as the parasitic ripples are predominantly located ahead of
the crest of the travelling water wave. This could be attributed to any of the physical
effects we have neglected, such as viscosity, vorticity, and time dependence. We note
that previous authors, such as Longuet-HigginsLonguet-Higgins (19921992), Fedorov and MelvilleFedorov and Melville (19981998),
Dias et al.Dias et al. (20082008), and Milewski and WangMilewski and Wang (20162016), have developed models to include
the effect of viscosity in a boundary layer near the wave surface. This results in similar
dynamic and kinematic boundary conditions for the free surface, but now with a
Reynolds number, Re, multiplying a viscous term, in addition to the Froude, F , and
Bond, B, numbers.

This formulation was solved numerically by Fedorov and MelvilleFedorov and Melville (19981998), who
considered steadily travelling solutions for which a pressure forcing was necessary to
counteract the viscous dissipation. They presented a few very interesting numerical
solutions that, for small surface tension, contained parasitic ripples located ahead of the
wave crest. Visually, these solutions agree well with the experimental profiles calculated
by Perlin et al.Perlin et al. (19931993).

It is therefore interesting to ask whether any self-similar bifurcation structure
emerges, much like our inviscid investigation of chapter 33, for fixed energy in this
viscous formulation. Would the resultant solutions contain parasitic ripples that are
exponentially small as the surface tension tends to zero? If so, the resultant exponential
asymptotic theory, analogous to our chapter 44, for the determination of these might
also produce a solvability condition that forbids certain combinations of values of the
speed, c, and wavelength, λ.

9.3 Temporally periodic travelling waves

In chapter 55, we computed a portion of the bifurcation structure of gravity-capillary
standing waves. We began this investigation with a more general formulation posed
by WilkeningWilkening (20212021) that contained a travelling/standing parameter, β, for temporally
periodic solutions. With β = π/2, standing waves were found; for π/2 > β > π/4

travelling/standing waves emerged; and β = π/4 characterised travelling solutions.
Our steadily travelling solutions of chapters 33 and 44 trivially fall into this classifi-

cation for β = π/2. It is unclear however whether if for β = π/4 there also contain
unsteady travelling waves that are temporally periodic. The asymptotic characterisation
of these solutions for small surface tension would contain a steadily travelling leading
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order solution, with unsteadiness first appearing at either algebraic or exponentially-
small orders of the surface tension.

Previous authors, such as JervisJervis (19961996) and Murashige and ChoiMurashige and Choi (20172017), have
studied a similar formulation of this problem. In considering the time-evolution system
with an initial condition of a steadily travelling gravity wave at t = 0, they subsequently
“switched on” the surface tension to a constant value for t > 0. Parasitic capillary ripples
were observed to develop on the forward face of the solution profile. This is shown in
figure 9.19.1. However, while the parasitic ripples first emerge on the forward face of the
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0

3

·10−2
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y

Figure 9.1: The free surface of an unsteady travelling gravity capillary wave is shown at intervals of t = 0.5. The initial

condition at t = 0 is a gravity wave with Froude number F = 0.4104, and for t > 0 the Bond number is taken to be

B = 0.0084. The numerical computations have solved the time evolution equations (A.2A.2) with the method detailed in 55.

travelling wave, they eventually spread out to the entire periodic domain and continue
to act in an unsteady manner. This led JervisJervis (19961996) to conjecture that temporally
periodic solutions may exist in this formulation, possibly with parasitic ripples that
move at a different speed to that of the underlying wave.

9.4 Time-dependent exponential asymptotics

We demonstrated in section 55 that, for small surface tension, gravity-capillary standing
waves contain high-frequency ripples. these are likely to be exponentially small in
amplitude.The exponential asymptotic theory to describe these requires the asymptotic
solution to two coupled nonlinear PDEs, for which the leading order solution (a
standing gravity wave) is known only numerically. In most previous exponential
asymptotic studies on PDEs, for instance that by Chapman and MortimerChapman and Mortimer (20052005), the
equations have been linear.

Furthermore, the time-dependent asymptotic study may also be able to reveal
whether the temporally periodic solutions discussed in section 9.39.3 exist. The leading
order solution of this study would be a steadily travelling gravity wave, which satisfies a
nonlinear ODE. Only the subsequent orders of the asymptotic expansion would then
require the solution of PDEs. This is analogous to Lustri and ChapmanLustri and Chapman (20132013) and
Lustri et al.Lustri et al. (20192019), in which the initial condition was chosen to be that of the leading
order solution, ensuring a steady solution at leading order.
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9.5 The higher-order Stokes phenomenon

Our studies of the Hermite-with-pole equation in chapter 77 and the Kelvin wave
problem in chapter 88 displayed the higher-order Stokes phenomenon. This is when the
late-terms of the asymptotic series display the Stokes phenomenon across higher-order
Stokes lines. This can lead to classic Stokes lines, obtained by evaluating Im[χ] = 0

and Re[χ] > 0 from DingleDingle (19731973), being inactive, or even partially active (with an
atypical Stokes multiplier) if the higher order and classical Stokes lines coincide.

We did not rely on a derivation of this phenomenon, and assumed that the higher-
order Stokes lines would lie along the imaginary axis for our examples. Knownmethods
of deriving the higher-order Stokes phenomenon are through integral representations
of the solution by Howls et al.Howls et al. (20042004), or through asymptotics of the equation directly,
such as for the linear PDE studied by Chapman and MortimerChapman and Mortimer (20052005). Extending
these ideas for nonlinear PDEs remains an open problem.
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TIME DEPENDENT CONFORMAL MAPPING FOR
GRAVITY CAPILLARY WAVES A
In chapter 55, numerical solutions were found for gravity-capillary standing waves when
the Bond number,B, was small.This corresponds to the regime of small surface tension.
Computation of these time dependent standing waves required us to conformally map
the unknown fluid domain, −∞ < y ≤ ζ(x, t), to a fixed domain. For the steady
solutions considered in chapter 33, this conformal mapping was simply the mapping to
the potential (ϕ, ψ)-plane. In this case, the free surface was a streamline for which ψ
was constant, and was parameterised by the remaining variable: the velocity potential,
ϕ. The time dependent case is more complicated, for while the free surface, y = ζ(x, t),
is still a streamline along which the streamfunction, ψ, is constant, this constant will
change with time.

We now derive this time-dependent conformal mapping that transforms our
equations in the physical (x, y) domain,

ϕxx + ϕyy = 0 for y ≤ ζ, (A.1a)
ζt − ϕy + ζxϕx = 0 at y = ζ, (A.1b)

F 2ϕt +
F 2

2
(ϕ2x + ϕ2y) + y −B

ζxx

(1 + ζ2x)
3

2

= 0 at y = ζ, (A.1c)

ϕx → 0 and ϕy → 0 as y → −∞, (A.1d)

into the time evolution equations for the free surface variables (found by evaluating x,
y, ψ, and ϕ on the free surface η = 0) in the conformal (ξ, η) domain, given by

Yt = YξH
[
Ψξ

J

]
−Xξ

(
Ψξ

J

)
, (A.2a)

Φt =
1

2

(
Ψ2

ξ − Φ2
ξ

J

)
+ΦξH

[
Ψξ

J

]
− Y

F 2
+

B

F 2

(XξYξξ − YξXξξ)

J3/2
. (A.2b)

Here, H is the periodic Hilbert transform. System (A.2A.2) contains two evolution
equations for four unknowns, and is closed by the harmonic relations

Xξ = 1−H[Yξ] and Ψξ = H[Φξ]. (A.3)

We begin by deriving these harmonic relationships in the following sections. The map-
ping derived in the following sections originates from the work by Dyachenko et al.Dyachenko et al.
(19961996) and our presentation follows closely to that by Choi and CamassaChoi and Camassa (1999a1999a) and
Milewski et al.Milewski et al. (20102010).

A.1 The free-surface variables

The conformal mapping derived in this section maps the physical (x, y)-plane to the
conformal (ξ, η)-plane. This is depicted in figure A.1A.1. Note that the free surface, y =

ζ(x, t) is mapped to the line η = 0. Thus, we define the free surface variables through
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x ξ

y η

Figure A.1: The conformal map from −1/2 < x < 1/2 and y ≤ ζ(x) to −1/2 < ξ < 1/2 and η ≤ 0 is shown.

evaluation at η = 0, yielding

X(ξ, t) = x(ξ, 0, t), Y (ξ, t) = ζ(x(ξ, 0, t), t),

Φ(ξ, t) = ϕ(ξ, 0, t), Ψ(ξ, t) = ψ(ξ, 0, t).

}
(A.4)

A.2 Harmonic relations betweenX and Y

The harmonic relationship between X(ξ, t) and Y (ξ, t) is now found by solving the
following harmonic system, given by

yξξ + yηη = 0 for η ≤ 0, (A.5a)
y = Y (ξ, t) at η = 0, (A.5b)

y ∼ η as η → −∞. (A.5c)

We will express y(ξ, η, t) as a Fourier series in ξ, to which the Cauchy-Riemann
equations are applied to form the relationship between the harmonic variables x and
y. Evaluation of this relationship on η = 0 then yields equation (A.3A.3).

In writing

y = a0(t)N0(η) +

∞∑
n=1

[
an(t)Nn(η) cos (2nπξ) + bn(t)Mn(η) sin (2nπξ)

]
, (A.6)

substitution into equation (A.5aA.5a) yields

N ′′
0 (η) = 0,

N ′′
n(η)− (2nπ)2Nn(η) = 0,

M ′′
n(η)− (2nπ)2Mn(η) = 0,

 (A.7)

where the last two equations in (A.7A.7) hold for n ≥ 1. Solutions of equations (A.7A.7) are
found by integration to be

N0(η) = C0η +D0,

Nn(η) = Cne2nπη +Dne−2nπη,

Mn(η) = Ene2nπη + Fne−2nπη,

 (A.8)

where Cn, Dn, En, and Fn are constants of integration.
Boundary condition (A.5cA.5c), y ∼ η as η → −∞ may now be applied to solution

(A.6A.6) for y(ξ, η, t). This yields a0(t)C0 = 1, Dn = 0, and Fn = 0. Substitution of
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solutions (A.8A.8) into Fourier series (A.6A.6) for y yields

y = η +D0a0(t) +

∞∑
n=1

[
ān(t)e2nπη cos (2nπξ) + b̄n(t)e2nπη sin (2nπξ)

]
, (A.9)

where we have defined ān(t) = Cnan(t) and b̄n(t) = Enbn(t) for convenience.
Differentiation of solution (A.9A.9) yields the expressions

yξ =

∞∑
n=1

2nπe2nπη
[
− ān(t) sin (2nπξ) + b̄n(t) cos (2nπξ)

]
, (A.10a)

yη = 1 +

∞∑
n=1

2nπe2nπη
[
ān(t) cos (2nπξ) + b̄n(t) sin (2nπξ)

]
. (A.10b)

Equations (A.10aA.10a) and (A.10bA.10b) are now related by using properties of the Hilbert
transform,

H[y](ξ′) = −
∫ ∞

−∞

y(ξ, η, t)

ξ − ξ′
dξ. (A.11)

Since H[sin(2nπξ)] = cos(2nπξ) and H[cos (2nπξ)] = − sin(2nπξ), we have that
yη = 1−H[yξ]. Next, we note that z = x+ iy is an analytic function of ξ + iη. Thus,
the Cauchy-Riemann equation xξ = yη may be applied, and evaluation on η = 0

yields our anticipated result of

Xξ = 1−H[Yξ]. (A.12)

A.3 Harmonic relations betweenΦ andΨ

Derivation of the harmonic relationship between Φ and Ψ follows similarly to that
presented in §A.2A.2 betweenX and Y . We will solve the following harmonic system for
ϕ(ξ, η, t), given by

ϕξξ + ϕηη = 0 for η ≤ 0, (A.13a)
ϕ = Φ(ξ, t) at η = 0, (A.13b)

ϕη → 0, ϕξ → 0 as η → −∞. (A.13c)

Here, the lower boundary conditions as η → −∞ are derived from the equations
ϕη = ϕxxη + ϕyyη and ϕξ = ϕxxξ + ϕyyξ, which are obtained by the chain rule for
partial derivatives. Since u = ϕx → 0 and v = ϕy → 0 as y → −∞ from (A.1dA.1d), and
noting that y ∼ η as η → −∞, we find ϕη → 0 and ϕξ → 0 as η → −∞.

In considering a Fourier series solution for ϕ, substitution into equation (A.13aA.13a)
yields

ϕ =

∞∑
n=1

e2nπη
[
ãn(t) cos (2nπξ) + b̃n(t) sin (2nπξ)

]
. (A.14)

This is a similar result to equation (A.9A.9) for y. Thus, we may differentiate (A.14A.14) with
respect to both ξ and η, which in using properties of the Hilbert transform yields
ϕη = −H[ϕξ]. Since the complex velocity, ϕ + iψ is an analytic function of ξ + iψ,
we may then use the Cauchy-Riemann equation ϕη = −ψξ. This yields the relation
ψξ = H[ϕxi], which we evalaute on the free surface, η = 0, to find

Ψξ = H[Φξ]. (A.15)
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A.4 Time evolution equations for the free-surface variables

We now derive the time evolution equations (A.2aA.2a) and (A.2bA.2b) by finding expressions
for each component of these equations in terms of the free surface variables,X , Y , Φ,
and Ψ, introduced in equation (A.4A.4). Expressions for ϕx, ϕy, ζt, ϕt, ζx, and ζxx are
required. Differentiation of these expressions yields

Yt = ζt + ζxXt, (A.16a)
Yξ = ζxXξ, (A.16b)
Yξξ = ζxXξξ + ζxxX

2
ξ , (A.16c)

Φt = ϕxXt + ϕyYt + ϕt, (A.16d)
Φξ = ϕxXξ + ϕyYξ, (A.16e)
Ψξ = ψxXξ + ψyYξ = ϕxYξ − ϕyXξ, (A.16f )

where for the last equation we have used the Cauchy-Riemann equations ϕx = ψy

and ϕy = −ψx. The last two of these, equations (A.16eA.16e) and (A.16fA.16f), may be solved
to find

ϕx =
YξΨξ +XξΦξ

X2
ξ + Y 2

ξ

and ϕy =
YξΦξ −XξΨξ

X2
ξ + Y 2

ξ

. (A.17)

Next, expressions for ζx, ζxx, ζt, and ϕt are found from equations (A.16A.16) to be given
by

ζx =
Yξ
Xξ

, ζxx =
XξYξξ − YξXξξ

X3
ξ

, ζt = Yt −
YξXt

Xξ
,

ϕt = Φt −
Ψξ(YξXt −XξYt) + Φξ(XξXt + YξYt)

X2
ξ + Y 2

ξ

.

 (A.18)

Substitution of these into the kinematic and dynamic boundary conditions (A.1bA.1b) and
(A.1cA.1c) yields

Ψξ = Yξ(1 +Xt)−XξYt, (A.19a)

Φt = −
(Φ2

ξ +Ψ2
ξ)

2J
− Y

F 2
+

B

F 2

(XξYξξ − YξXξξ)

J3/2

+
Ψξ

J

[
Yξ(1 +Xt)−XξYt

]
+

Φξ

J

[
Xξ(1 +Xt) + YξYt

]
,

(A.19b)

where we have defined J = X2
ξ +Y

2
ξ . Note that these are not the desired equations as

dependence onXt and Yt still remains. This can be removed by noting that in defining
Z(ξ, t) = t+X(ξ, t) + iY (ξ, t), we have

Re
[
Zt

Zξ

]
=
Xξ(1 +Xt) + YξYt

J
and Im

[
Zt

Zξ

]
=
XξYt − Yξ(1 +Xt)

J
. (A.20)

This imaginary component is seen from equation (A.19aA.19a) to equal −Ψξ/J . Since
Z, and therefore Zt/Zξ, are analytic functions, their real and imaginary parts satisfy
harmonic relations, given by Re[Zt/Zξ] = −H[Im[Zt/Zξ]]. Thus, we have that

Xξ(1 +Xt) + YξYt
J

= −H
[
Ψξ

J

]
and

XξYt − Yξ(1 +Xt)

J
= −

Ψξ

J
. (A.21)
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These expressions are substituted into equation (A.19bA.19b) to find our first time evolution
equation,

Φt =
1

2

(
Ψ2

ξ − Φ2
ξ

J

)
+ΦξH

[
Ψξ

J

]
− Y

F 2
+

B

F 2

(XξYξξ − YξXξξ)

J3/2
. (A.22a)

The second time evolution equation is derived by eliminating Xt from equations
(A.21A.21), yielding

Yt = YξH
[
Ψξ

J

]
−Xξ

(
Ψξ

J

)
, (A.22b)

which together with the harmonic relations

Xξ = 1−H[Yξ] and Ψξ = H[Φξ], (A.22c)

forms a closed system for X , Y , Φ, and Ψ. Assuming that Y and Φ are known for
a certain value of time, t = t0, Xξ and Ψξ are calculated via the harmonic relations
(A.22cA.22c). Substitution into time evolution equations (A.22aA.22a) and (A.22bA.22b) then allows
for the numerical determination of Y and Φ at the next time step, t = t0 +∆t.
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THE DIVERGENT EIGENVALUE OF GRAVITY
CAPILLARY WAVES B
In chapter 44, we considered asymptotic solutions for the small surface tension limit of
periodic gravity capillary waves subject to fixed energy,

E =

∫ 1/2

−1/2

[
G0(ϕ) +BG1(ϕ) +B2G2(ϕ)

]
dϕ, (B.1)

where

G0(ϕ) =
F 4
(
1− q2

)
8q

(
3 cos (θ)− 2q − q2 cos (θ)

)
,

G1(ϕ) =

(
1− cos (θ)

)
q

+
F 2θϕ
2

(
2 cos (θ)− q − q2 cos (θ)

)
,

G2(ϕ) =
qθ2ϕ cos (θ)

2
.


(B.2)

However, in expanding the solutions as

q(f) =

N−1∑
n=0

Bnqn(f) + q̄(f) and θ(f) =

N−1∑
n=0

Bnθn(f) + θ̄(f), (B.3)

our factorial-over-power representation for the divergence of qn and θn was unable
to satisfy the O(Bn) component of the energy condition, as well as periodicity across
the domain −1/2 < Re[f ] ≤ 1/2. This is because we considered only the divergent
component that was dominant along the Stokes lines and which led to the Stokes
phenomenon. Furthermore, we were also unable to satisfy the exponentially-small
component of the energy condition on the remainders q̄ and θ̄.The techniques required
to fix these issues are discussed in this chapter.

B.1 Analytical solutions for the divergent Froude number

In order to satisfy the energy constraint (B.5aB.5a) to each order in B, it is necessary to
also expand the eigenvalue, F , as

F =

N−1∑
n=0

BnFn + F̄ . (B.4)

The late-terms, Fn, of this expansion will be determined by enforcing the O(Bn)

energy condition and periodicity conditions,∫ 1/2

−1/2

[
Fn
F 3
0

(
1− q20

)
2q0

(
3 cos (θ0)− 2q0 − q20 cos (θ0)

)
+ θ′n−1

F 2
0

2

(
2 cos (θ0)− q0 − q20 cos (θ0)

)
+ θn

F 4
0

(
1− q20

)
8q0

(
q20 sin (θ0)− 3 sin (θ0)

)
− qn

F 4
0

8q20

(
3 cos (θ0)− 4q30 − 3q40 cos (θ0) + 4q20 cos (θ0)

)]
dϕ = 0,

(B.5a)
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qn(−1/2) = qn(1/2), (B.5b)

q′n(−1/2) = q′n(1/2). (B.5c)

Here, we have retained only the dominant components as n → ∞, and furthermore
defined qn = qn|a=1 + qn|a=−1 and θn = θn|a=1 + θn|a=−1 to combine the
contributions from the singularities at f = f∗ and f = −f∗, where the direction
of analytic continuation a = ±1 into either Im[f ] > 0 or Im[f ] < 0 discerns between
these. Note that rather than consider the periodicity condition, q(f) = q(f + 1), we
instead consider the two conditions (B.5bB.5b) and (B.5cB.5c) in this section. Furthermore, it is
not possible to immediately rearrange the energy expression (B.5aB.5a) to find Fn, as there
will be particular components of the solution containing this divergent eigenvalue.

B.1.1 Additional components of the late-term solution

We will demonstrate that in addition to the naive divergent solution, q(naive)n , deter-
mined in chapter 44, there are three other components required to satisfy periodicity
and the energetic condition. These are homogeneous solutions with χ′ = 0, denoted
by q(χ

′=0)
n and two particular solutions.The first particular solution, denoted by q(Fn)

n , is
forced by the divergence ofFn, and the second, q(H)

n , is forced by the Hilbert transform
of the naive solution, q(naive)n , which was previously neglected in the late-term analysis.
Combined, these yield

qn = q(naive)n + q(χ
′=0)

n + q(Fn)
n + q(H)

n . (B.6)

In equation (6.1a) of Shelton and TrinhShelton and Trinh (20222022) in chapter 44, we posited the
factorial-over-power ansatz for the divergence of qn, given by

qn(f) ∼ Qa(f)
Γ(n+ γ)

[χa(f)]n+γ
, (B.7)

and subsequently found the singulant equation to be

χ′
a(χ

′
a − aiF 2

0 q0) = 0. (B.8)

Solving for the nontrivial solution, χ′
a = aiF 2

0 q0, yields

q(naive)n (ϕ) =
2|Λ1|q20Γ(n+ γ)

|χ1|n+γ
cos
[
arg[Λ1]− (n+ γ)arg[χ1]

+

∫ ϕ

0

(cos (θ0)
F 2
0 q

3
0

− F 2
0 q1 − 2F0F1q0

)
dt
]
.

(B.9)

Here, we have used the solution for Qa from equation (6.7) of Shelton and TrinhShelton and Trinh
(20222022) in chapter 44, and written Λa = |Λ1|eaiarg[Λ1] and χa(ϕ) = |χ1(ϕ)|eaiarg[χ1(ϕ)];
this holds as Λ1 and Λ−1, as well as χ1 and χ−1, are the complex conjugate of one
another. These complex conjugate relations hold only along the free surface for which
ϕ is real. Solution (B.9B.9) is one of the required components of the overall solution (B.6B.6).
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B.1.2 The divergent solution with χ′
a = 0

Thepreviously neglected singulant solution,χ′
a = 0, yields constant values ofχa. Since

differentiation of the factorial-over-power ansatz (B.7B.7) no longer increases the order
in n if χ takes constant values, the leading order terms of theO(Bn) equations change,
and are found to be

F 2
0 q

2
0q

′
n + 2F 2

0 q0q
′
0qn + cos (θ0)θn = −2F0Fnq

2
0q

′
0, (B.10a)

qn + aiq0θn = q0Ĥ[θn]. (B.10b)
In this section, we consider the homogeneous contributions for which the late-terms of
the eigenvalue, Fn, are ignored. We consider the divergence of Fn, and the associated
particular solution of equation (B.10aB.10a), in sectionB.1.3B.1.3. For this homogeneous solution
with χ′

a = 0, we consider ansatzes of the form

qn(f) ∼ Ra(f)
Γ(n+ γ1)

∆n+γ1
a

and θn(f) ∼ T (f)
Γ(n+ γ1)

∆n+γ1
a

, (B.11)

where γ1 and ∆a are constants. Substitution of (B.11B.11) into the homogeneous form of
equation (B.10B.10) yields

aiF 2
0 q

3
0T

′ +
[
3aiq20q′0 − cos (θ0)

]
T − 3F 2

0 q
2
0q

′
0Ĥ[T ]− F 2

0 q
3
0Ĥ[T ′] = 0, (B.12a)

R = q0Ĥ[T ′]− aiq0T. (B.12b)
The first of these equations (B.12aB.12a) is an integro-differential equation for T , which
once known yields R via equation (B.12bB.12b).

B.1.3 Particular solutions of the O(Bn) equation

In addition to the homogeneous solution (with χ′=0) of theO(ϵn) equation considered
in §B.1.2B.1.2, there are two particular solutions. These were introduced in equation (B.6B.6),
and are that from including the divergent Froude number, Fn, and the previously
neglected Hilbert transform of the χ′ = aiF 2

0 q0 divergent solution. The first of these,
for which Fn is retained in the O(ϵn) equation results in a modification of equation
(B.12aB.12a), for which an additional forcing term appears. However, this equation is also
unable to be solved explicitly.

The second particular solution, forced by the previously neglected Hilbert trans-
form of the χ′ 6= 0 divergence, will be discussed in more detail. We evaluate Ĥ [θn] by
substituting for θn ∼ −aiq0qn, and using the periodic form of the Hilbert transform.
This yields

Ĥ[θn](ϕ) ∼ −ai−
∫ 1/2

−1/2
cot[π(ϕ′ − ϕ)]q0(ϕ

′)qn(ϕ
′) dϕ′,

∼ −aiΓ(n+ γ)−
∫ 1/2

−1/2
cot[π(ϕ′ − ϕ)]q0(ϕ

′)Q(ϕ′)e−(n+γ) log [χ(ϕ′]) dϕ′.

(B.13)

The integration contour may now be deformed onto the paths of steepest descent. This
procedure is performed in detail in the next section for the integral of qn appearing in
the energy equation. Note that this same procedure is only applicable to (B.13B.13) when
the pole, ϕ = ϕ′, lies away from the endpoints of the deformed path of integration.
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B.1.4 Evaluation of q(naive)n in the energy integral

Wewrite this integral (considering only one component of q(naive)n = qn|a=1+qn|a=−1)
in canonical steepest decent form as

Γ(n+ γ)

∫ 1/2

−1/2
J(ϕ)enρ(ϕ)dϕ, (B.14)

where
J(ϕ) =

Qa(ϕ)

χγ
a(ϕ)

and ρ(ϕ) = − log (χa(ϕ)). (B.15)

Recall that here, Qa is the amplitude function and χa is the singulant associated with
the naive component of the late-term solution. Since Re[ρ(ϕ)] = − log|χa(ϕ)| takes
the same value at the endpoints −1/2 and 1/2, there is a constant phase path (along
which Re[ρ] is constant) connecting these points, denoted by C ′. For a = 1, this is a
curve in the lower-half plane, and for a = −1, C ′ is a curve in the upper-half plane.
Thus, we may deform the path of integration in (B.14B.14) (originally specified for real ϕ)
to imaginary values of f over C ′, yielding

Γ(n+ γ)

|χa|n

∫
C′
J(f)einIm[ρ(f)]df. (B.16)

This form may now be studied by the method of stationary phase. As Im[ρ]′ 6=
0 along C ′, the dominant contribution of this integral is from the endpoints. This
contribution may be found by integration by parts, giving

Γ(n+ γ)

|χa(1/2)|n

[
Qa(f)

χa(f)γ
einIm[ρ(f)]

inIm[ρ(f)]′

]1/2
−1/2

= O

(
Γ(n+ γ − 1)

|χa(1/2)|n+γ−1

)
. (B.17)

The particular solutions must be of the same order as qn ∼ Γ(n+γ)/χn+γ at ϕ = 1/2

and ϕ = −1/2 in order to satisfy the periodicity conditions. Since these particular
solutions have a constant value of χ, their integration in the energy expression does
not change the order in n. Thus, (B.17B.17) will be subdominant to the evaluation of the
particular solutions in the O(ϵn) energy expression.
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GENERALISED SOLITARY WAVES OF AN INTERNAL
THREE-LAYER FLOW C
In the introduction of chapter 22 we considered a model equation for generalised
solitary waves to introduce the exponential asymptotics theory used within this thesis.
Generalised solitary waves contain far-field oscillations as x → ∞ or x → −∞, and
these solutions occur in many different problems across fluid dynamics. In some of
these areas, embedded solitary waves are also found; these solutions have no oscillations
in the far field and decay to zero as x→ ±∞. In this chapter, we study the asymptotic
properties of these far-field ripples for the steadily travelling waves in a three-layer fluid
model. It is found that these ripples are not exponentially small, but appear in theO(ϵ)

solution, where the small parameter, ϵ, is the distance in the bifurcation diagram from
an embedded branch of solutions.

We consider the three-layer Euler flow depicted in figure C.1C.1. These three fluids
are assumed to be inviscid, and incompressible, and each has a constant density. Here,

ρ1

ρ2

ρ3

H1

H2

H3

η1(x)

−η2(x)

h1(x)

h2(x)

h3(x)

Fluid 1

Fluid 2

Fluid 3

Figure C.1: Our nondimensional three-layer formulation is shown. Each fluid has density ρi, and height hi(x). The interface

displacements are denoted by η1(x) and η2(x)

these fluids of different densities are confined to lie between a flat bed at y = 0 and
a rigid lid at y = 1. While the horizontal domain of this analytical formulation is
−∞ < x < ∞, we will numerically consider periodic solutions −λ < x < λ, for
which λ is large. To ensure that these travelling solutions are stable, we require that
ρ3 > ρ2 > ρ1. Since this problem has already been nondimensionalised, we have that
the sum of the three constant depths equals unity, H1 +H2 +H3 = 1. The interface
heights are defined by η1(x) and η2(x), yielding

h1(x) = H1 − η1(x),

h2(x) = H2 + η1(x)− η2(x),

h3(x) = H3 + ηb(x).

 (C.1)

The full Euler equations for this system, considered numerically by Doak et al.Doak et al.
(20222022) for instance, are difficult to approach analytically. These are a set of coupled
integro-differential equations, much like the boundary integral relationship for our
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single fluid system on infinite depth in chapter 33. Therefore, in this section we consider
the 3-layer MCC equations, a generalisation of the Miyata–Choi–Camassa (MCC)
equations for two layers by MiyataMiyata (19881988) and Choi and CamassaChoi and Camassa (1999b1999b), derived
by Barros et al.Barros et al. (20202020). These equations preserve nonlinearity and are given by the
following two coupled nonlinear differential equations

2

(
H2

1

h1
+
H2

2

h2

)
η′′1 +

H2
2

h2
η′′2 +

(
H2

1

h21
− H2

2

h22

)(
(η′1)

2 − 3

)
+ 2

H2
2

h22

(
η′2η

′
1 + (η′2)

2
)
+

6η1
F 2
1

= 0,

(C.2a)

2

(
H2

2

h2
+
H2

3

h3

)
η′′2 +

H2
2

h2
η′′1 +

(
H2

2

h22
− H2

3

h23

)(
(η′2)

2 − 3

)
− 2

H2
2

h22

(
η′1η

′
2 + (η′1)

2

)
+

6η2
F 2
2

= 0,

(C.2b)

for the solutions η1 and η2. Here, we have defined the two constants F1 and F2 by

F1 =
c√
g∆1

and F2 =
c√
g∆2

, (C.3)

where c is the speed of the travelling waves, and ∆1 and ∆2 are the positive density
differences defined by ∆1 = ρ2 − ρ1 and ∆2 = ρ3 − ρ2.

SinceH1+H2+H3 = 1, we treatH2 as a known constant. System (C.2C.2) therefore
is two coupled equations for the unknowns η1 and η2, with four unknown constants
F1, F2,H1, andH3. Two of these may be turned into eigenvalues with the imposition
of individual amplitude parameters for the two nonlinear interfaces. This parameter
space was explored extensively by Doak et al.Doak et al. (20222022), who found that whilst most of
these parameter values yielded generalised solitary waves (with far-field ripples), for
certain values of these constants, embedded solitary waves emerged (with no far field
ripples). These embedded solutions were associated with: branches of solutions in a
two-dimensional bifurcation diagram; sheets in a 3-dimensional bifurcation diagram;
and a three-dimensional space of embedded solutions when all four unknown constants
were considered. To simplify our analytical approach, two of these constants will be
fixed in the next section.

C.1 The symmetric state for embedded solutions

Under the choice of
H1 = H3 and ∆1 = ∆2, (C.4)

the solutions to the two coupled MCC-3 equations are symmetric about y = 1/2,
yielding η1(x) = −η2(x). Since there is now a streamline at y = 1/2, this may be
considered to be a rigid boundary, and the formulation reduces down to a two-layer
model with a single unknown interface. No oscillatory tails appear in the interface of
this two-layer formulation, which does not permit generalised solitary waves. Thus,
if we break the symmetry of equation (C.4C.4) by a small perturbation, ϵ, we anticipate
that oscillatory tails will emerge. The purpose of this section is to study the asymptotic
behaviour of these ripples as ϵ → 0, and we will find their amplitude to be of O(ϵ) as
ϵ→ 0.
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C.2 Breaking symmetry with a small perturbation

In breaking the symmetry of section C.1C.1 by defining

H1 = H3 + ϵ and ∆1 = ∆2, (C.5)

we find the constants Hi and depths hi(x) to be given by

H1 = H3 + ϵ,

H2 = 1− 2H3 − ϵ,

H3 = H3,

h1(x) = H3 + ϵ− η1(x),

h2(x) = 1− 2H3 − ϵ+ η1(x)− η2(x),

h3(x) = H3 + η2(x).

 (C.6)

Thus, the governing equations are given by (C.2C.2) for η1(x) and η2(x), and the unknown
constantsH3 and ϵ. We begin in section C.2.1C.2.1 by solving these equations numerically
for specified values of H3 and ϵ. In section C.2.2C.2.2, we then consider an asymptotic
expansion for these solutions as ϵ→ 0, for which the leading order solution is the ϵ = 0

symmetric state of section C.1C.1. Comparison between these numerical and asymptotic
results are performed in section C.2.3C.2.3.

C.2.1 Numerical solutions

We begin by numerically solving equations (C.2C.2), with components Hi and hi(x)

defined in (C.6C.6). In imposing the amplitude condition

A =

∫ λ

−λ
η1(x)dx, (C.7)

we will determineF as an eigenvalue (where sinceF1 = F2 due to the choice∆1 = ∆2,
we have relabelled these to F ).

The numerical procedure is now detailed for a fixed value of the wave period, 2λ.
(i) First, an initial guess is chosen. This is either a previously computed numerical

solution with different values of A, H3, and ϵ, or the initial guess

η1(x) ≈ δ sech (x) and η2(x) ≈ −δ sech (x), (C.8)

for small δ, where we take A = δ
∫ λ
−λ sech (x)dx.

(ii) Next, we evaluate each component of the coupled equations. In discretising
the domain withN points, we have xj = λ[−1+2(j−1)/N ], where 1 ≤ j ≤
N . Derivatives are then computed spectrally through properties of the Fourier
transform, η′ = F−1

[
(iπk/λ)F [η]

]
, where k is the wavenumber. These are

evaluated numerically with the fast Fourier transform (FFT) algorithm.
(iii) Lastly, Newton iteration is applied to this system. We have 2N +1 equations,

N from each interface equation, and another from the amplitude condition
(C.8C.8). This is closed by 2N +1 unknowns,N from each of the interfaces, and
a final unknown, the eigenvalue F .

An example solution for η1, with λ = 20, H3 = 0.4, ϵ = 0.005, and A = 0.75 is
shown in figure C.2C.2. It is seen that this yields a generalised solitary wave.
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0

0.1

x

η0 η0

Figure C.2: A numerical solution of the nonlinear equations (C.2C.2) is shown. This profile has an amplitude A = 0.75, half-

period λ = 20, H3 = 0.4, and ϵ = 0.005.

C.2.2 Asymptotic solutions

We now consider asymptotic solutions for these generalised solitary waves. In expand-
ing

η1(x) = ζ0(x) + ϵζ1(x) + · · · ,
η2(x) = ϑ0(x) + ϵϑ1(x) + · · · ,

F = F0 + ϵF1 + · · · ,
(C.9)

we find at leading order the following nonlinear differential equation for ζ0(x),(
2H2

3

(H3 − ζ0)
+

(1− 2H3)
2

(1− 2H3 + 2ζ0)

)
ζ ′′0

+

(
H2

3

(H3 − ζ0)2
− (1− 2H3)

2

(1− 2H3 + 2ζ0)2

)((
ζ ′0
)2 − 3

)
+

6ζ0
F 2

= 0,

(C.10a)

for which we determine the remaining interface by the condition ϑ0(x) = −ζ0(x).
Note that since F1 = F2 due to the choice ∆1 = ∆2, we have relabelled this constant
to F . Here, H3 is a free constant, and F will be determined as an eigenvalue through
the imposition of the leading order amplitude condition,

A =

∫ λ

−λ
ζ0(x)dx. (C.10b)

These equations are solved numerically by Newton iteration analogously to the method
detailed in section C.2.1C.2.1. Example numerical solutions for ζ0 are shown in figure C.3C.3
for H3 = 0.4, A = (0.2, 0.4, 0.6, 0.8, 1), and λ = 20. Note that as the amplitude A
of these solutions increases, the profiles predominantly broaden instead of increase in
height.

At O(ϵ) in system (C.2C.2), we find two coupled equations for the solutions η1(x)
and ζ1(x). To prevent this thesis from being split into two volumes, these equations
are not provided here, and are easiest derived with a symbolic programming language.
Assuming that H3, ζ0, and ϑ0 are known from the leading order problem, these
coupled O(ϵ) equations may be solved numerically by Newton iteration, subject to
the O(ϵ) amplitude condition ∫ λ

−λ
ζ1(x)dx = 0. (C.11)
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Figure C.3: Solutions of the leading order equation (C.10aC.10a) are shown for the five amplitude values of A =

(0.2, 0.4, 0.6, 0.8, 1). We also have H3 = 0.4 and λ = 20. As the amplitude increases, the central core of the solitary

waves widens.

-20 0 20
-5

0

3

x

ζ1 ζ1

Figure C.4: Three solutions of the O(ϵ) equations, with λ = 20 and H3 = 0.4 are shown. The dashed profile has A = 1,

the solid profile has A = 0.6, and the dotted profile has A = 0.2.

Three solutions are shown in figure C.4C.4 for the values of A = (0.2, 0.6, 1) used for
the leading order solutions shown in figure C.3C.3.

C.2.3 Comparison and conclusions

We now compare the fully nonlinear results of section C.2.1C.2.1 with the asymptotic
solutions from section C.2.2C.2.2. Both of these are computed numerically. In figure C.5C.5,
we compare the asymptotic prediction for theO(ϵ) solution, ζ1, with the fully nonlinear
prediction η1. To facilitate comparison, we subtract out the leading order profile, ζ0,
from this fully nonlinear solution, and divide by ϵ. We find that (η1 − ζ0)/ϵ = O(1).
Excellent agreement is seen between these for A = 1, and H3 = 0.4. The nonlinear
solution used a value of ϵ = 0.0001.

To conclude, embedded solitary waves (with no far-field ripples) are found for
certain parameter values of this 3-layer formulation. Changing the values of these
parameters can yield generalised solitary waves, with far-field ripples. The amplitude
of these ripples is seen to be algebraic with respect to the distance (in the bifurcation
space) away from the embedded solution. We demonstrated this for the special case
of an embedded solution for which H1 = H3 and ∆1 = ∆2.
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Figure C.5: The asymptotic solution of the O(ϵ) equations (shown dotted) is compared with the prediction from the fully

nonlinear numerical solution (line). Here, H3 = 0.4, A = 1, λ = 20, and ϵ = 0.0001.
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