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Introduction
Consider the following It6 SDE on [0, T1:

dy; = W; dW;. (1)
Then, we know the solution is given by y; = fot We dWs = S ((Wr)?2 —t).
We can also approximate (1) using the Euler-Maruyama method:

Yk+1 = Yk + Wfk(WTk+1 - Wfk)7
YO =Y,

where t; :=kh andh = L for k € {0,1,--- ,K}. Itis then easy to show
1
E[(Yk—y(T))’] = 5AT,

which converges to zero as h — 0 (or, equivalently, as K — o0).
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Introduction

What if we make the step size adaptive?
(which is popular in ODEs numerics)
For example, given a fixed A\, we can consider a condition of the form:
| Wi, — Wy | <AV, (2)
to help reduce errors when W has large fluctuations. In [1], they define
Y+ Wi, (Wh,, — Wa,), if (2) holds,

Yi + Wfk(Wfk+% — Wtk) + Wfk+% (Wl‘k+1 — Wfk+ ), otherwise.

1
2

Surprisingly however, it was shown in [1, Section 4.1] that this adaptive
Euler method fails to converge to the It6 solution! (as h — 0).
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Introduction
Consider the following SDE:
dyf Wt th27 (3)
where W' and W? denote two independent Brownian motions.
We can approximate (3) using Euler-Maruyama or a “trapezium” rule:
Vipr =Y+ 5 (er + Wy, ) (Wi, — WE),
YO = Yo,
where k € {0,1,--- ,K}. By It0’s isometry, it is straightforward to show

IE[(YK _y(T))Q] _ $hT if Euler-Maruyama is used
$hT if the trapezium rule is used

where T = Kh. Hence, we see that the trapezium rule is more accurate.
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Introduction

However, consider the following (less natural) adaptive step size:
We choose either h (i.e. 1 step) or %h (i.e. 2 half-steps) to maximise Y.

1
Vier1 = max {Yk + o W+ W) (Wey, = W),

1
2 1 1 2
Vet (Wfk+Wf )Wfk,fk+%+§(Wfk+%+wfk+1)w }’

tk+%7tk+l
where Ws[,t := W} — WL, Then, it can be shown that for any h > 0,
E[Yy] = T

whereas E[yr| = 0. So, once again, Y does not converge to the SDE!

Do adaptive numerical methods for SDEs converge? If so, when?
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Lévy’s construction of Brownian motion

How can we generate Brownian motion after we halve the step sizes?

N u t

Using the notation W, , := W), — Wg, we can generate W, after W; as

11
We.t ~ N (0, (= S)Ig),  Weu| We ~N<§Ws,t, i s)Id).
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The Brownian tree

By recursively applying Lévy’s construction, we can construct a tree:

[

00000000000

(mesh size — 0)

\4

This is known as the Brownian tree (introduced in [1]) and also gives a
natural data structure when generating Brownian sample paths [3, 4].
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A “Brownian tree” condition

In our second counterexample, we could “ignore” information about
the Brownian path — as the following update is decided using Wtk-i,-l ;
2

Lo 1 2 2
Vg1 = Y+ i(Wtk + Wzkﬂ) (WtkH - Wtk)
but then does not use the value of Wfk+1 in the approximation itself.
2

Hence, this goes against the natural direction of the Brownian tree
(indicated by the downwards arrow).

First important condition
If information about the Brownian motion is generated, it must be used
“correctly” (to be explained in condition 2). Equivalently, the numerical
approximation uses all the information at the lowest level of the tree.
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Stochastic Taylor expansions

Consider the Stratonovich SDE (y; € R¢ and f, g; : R® — R® are smooth)

d
dyr = fyr)dt + ) &iye) o dWf 4)

=1

A very useful tool in SDE numerical analysis is the Taylor expansion:

Theorem (Stratonovich-Taylor expansion [5, Thm 5.6.1])
Fortimes 0 < s <t < T, the solution of the SDE (4) can be expanded as

d 4 d t ' ;
V= e+ 109+ Y BOWe+ D G080 [ Wiyodwl+R
S

i=1 ij=1

1
where h :=t — s and there exists C > 0 such that E[||R||3]2 < Ch2.
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Non-Gaussian integrals involving Brownian motion

The stochastic integrals {f; Wi, o dWﬁ}Ki j<q @re non-Gaussian and

an algorithm for exact simulation has only been found when d = 2 [6].

However, this does not have a “Lévy’s construction”, so cannot be used
adaptively. Therefore, we shall approximate these Brownian integrals.

ot ] )
E[/ We o dW,
S

Among the Ws ;-measurable estimators, this minimises the L2(P) error.

1 . .
Ws,t] = §WS’JWé,t. (5)

We can also approximate Lévy area using increments and integrals of W,

ot ] )
E[/ W, odW,
s

! Loi i i Tu-s j
WS.f WS,U 5 du — WS TWS t + WS t qu
) . ) 2 s R A h

t

- u-—s -

- Wg,t/ T dW,.
JS
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An “integral” condition

Second important condition

The numerical method for the Stratonovich SDE (4) should satisfy

d

d
1 o
Yirr = Ve +FV )R+ gi(ViWi + 5 > g M)g(YoW W, + R,
i=1 b1

where h =ty — ty, Wy := Wy, ., — Wy and R ~ o(h) almost surely.

More generally, if the numerical approximation uses certain Gaussian

integrals Wy generated over the interval [t, tx1 1], then we require:
d

Vigr = Vi +1VOh+ > g(Vw;
i=1

d Tepr .
+Y &/(yk)g,-(yk)lﬁ;u Wf’k’todW{’Wk} +o(h).
k

Lj=1
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Examples of methods satisfying the integral condition

Milstein’s method*

*using g + 1 integrals of Brownian motion (which are Gaussian [8, 9])
d

Vier = Yo+ f(V)h + Y &YW,
i=1

d
+ 2 g 0MEE| [ W o] | { i (5 fk)”?dW}

£ 0<m<q}'
[7121

Heun’s method (expanding will give 3/, er instead of f o dWh)
d
Virr = Y +f(YO R+ &YWy,

=1
d

1 - 1 - :
Yigr1 = Ye+ i(f(Yk) +f(Yig1)) P + 3 D (&) + &i(YVierr)) W -
i=1
Splitting Path Runge-Kutta (SPaRK is based on the “g = 1” estimator)
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Main convergence theorem

Theorem (Convergence of adaptive methods [2, Theorem 2.19])
Let {Y"} be a sequence of numerical solutions to (4) computed at times
Dh={0=tl<t'<---< tg, = T} so that Dpy (s determined by D, and

Wi = {/tlgkﬂ (l‘;nl‘k> de}

Suppose Dpi1 C Dy and mesh(D,) — 0 almost surely (condition 1) and

0<m<gq

1Y = Yigally ~ o(hie),
where hj! := t/?+1 -t} and
d

nﬂ._n+ﬂnhk+2ku@ ot (condition 2)
=1

~I—Zg, Y &(Ye) [/n Wf" OdWl’Wk}

Lj=1
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Main convergence theorem

Theorem (Convergence of adaptive methods [2], continued)

We assume Y = yo and f,{g;} are bounded twice differentiable vector
fields with a-Hélder continuous second derivatives for some o € (0,1).

More precisely, we assume that

HY£+1 B ?1?-4-1“2 = WU/?’ Z-/?-i-l)7

where
Kn —1

Z W(tl?7 tl?—l—l) — 0,
k=0

almost surely. Then the approximations {Y"} converge pathwise. That is

5w Y& = yirll, = O,

as n — oo almost surely.
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Ideas in the proof

Using the main results of [10, 11], we note that on the interval [t]!, t,fH],

/t;kﬂ (f;ﬁl‘k>mdmn :/t‘?l&l (l‘;,?tk> dw;,

for0 < m < g, where Wzn is the degree n + 1 polynomial defined as

—~n
Wi = E[W: [ {W }o<k<ko—1]-

—Brownian path —Brownian path

02 —— Piecewise linear approximation 02 —— Piecewise parabola approximation
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Ideas in the proof

Lemma
Define a sequence of a-algebras {Fn}n>o0, by Fo := o ({Wg'} U Do) and
Foi1 := o (Fa U{W} U Dy). By the assumptions in the theorem, {F,}
(s a filtration and wn = E[W| fn} (s a square-integrable martingale.

\/\/\/ ooooOOO0000

(mesh size — 0)

v
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Ideas in the proof

Using Doob’s martingale convergence theorem and maximal inequality,
we can show that

oo, (W, W) = 0,
as n — oo almost surely, where p € (2, 3) and
o W isthe piecewise polynomial “lifted” to a “p-rough path”
e W is “Stratonovich enhanced” Brownian motion ( p-rough path)

® dyvarjo,7(X, Y) is the p-variation between p-rough paths X and Y

. —~nNn .
It is not clear how to show “rough path” convergence for {W } without
using the martingale property coming from the nested property of {D,}.
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Ideas in the proof

By the well-known Universal Limit Theorem [12], it now follows that

dp—var;[O,T] (Fna y) — 07
as n — oo almost surely, where

e y" is the solution of the rough differential equation (RDE):
~ ~ ~ —~N
dy! = f(y)dt + g(¥') aw;
with g(y) == (g1(y),- - - , 84(y)) and initial condition yy € R€.
e yisthe solution of the rough differential equation (RDE):

dy, :f(yt)dt"_g(yt) dws,

with initial condition y € RE.
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Ideas in the proof
Finally, we need to compare the solution of the CDE
dyf = f(7)dt +g(77) AW

to our numerical method

d
Vier = Y0+ FYORE + D g Wi o (condition 2)
4 i=1
tkn+1 . :
+ 30 goDaopE| [ wh o dw ||
ij=1 JEg
and show the difference is o(h,). However, this is straightforward as
—~n
t%,tk+1 - Wtk“,tkH’
ti?+1 : i t¢?+1 —~n i —~n,
E|: " Wlél,todW?‘Wkn:| :/Z:H (WT;J)[Od(W[ )j.
k k
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Numerical example

We consider the SABR stochastic volatility model used in finance [13]:
dS: = /1 — p201(S)PdW} + por(Sr)PdW2, (6)
do; = aatdWTQ,

where (Sp,00) = (0,1) and (a, 5, p) = (1,0,0). For each method and
step size control, we estimate the L2(IP) error over [0, T] with T = 10.

— 5
sigma

151

101

0.5 J
0.0
T

James Foster (University of Bath) Adaptive approximations for SDEs 25 July 2024



Numerical example
Methods implemented in the JAX-based ODE/SDE library Diffrax [3, 4].

+ Euler constant: 0.44
m  Heun constant: 0.41
® SPaRK constant: 0.41

100 4

RMS error

v Heun previsible: 0.60
o Euler previsible: 0.63
% Heun Pl adaptive: 0.52
SPaRK previsible: 0.62
10-1{ A SPaRK Pl adaptive: 0.73

102 103 104
Average number of vector field evaluations

Code for reproducing these results can be found at
github.com/andyElking/Adaptive_SABR.
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Conclusion and future work

Conclusion

e Numerical methods that use adaptive step sizes are popular for
ODEs, but can experience convergence issues in the SDE setting.

e Using rough paths, we showed that convergence occurs for a large
class of adaptive methods (including Milstein and Heun schemes).

e The mainidea is that whenever information about W is generated,
it must be used (condition 1) in a “correct way” (condition 2).

Future work

e (Can we establish explicit convergence rates for adaptive methods?
e Does our convergence analysis extend to high order weak solvers?

e Applications? (e.g. adaptive SDE-based MCMC algorithms, see [4])
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Thank you
for your attention!

and the preprint can be found at:

J. Foster and A. JelinCic.
On the convergence of adaptive approximations for stochastic
differential equations, arxiv:2311.14201, 2024.

James Foster (University of Bath) Adaptive approximations for SDEs 25 July 2024


https://arxiv.org/abs/2311.14201

Outline

@ References



References I

[4 J.G.Gaines and T. J. Lyons. Variable Step Size Control in the
Numerical Solution of Stochastic Differential Equations. SIAM
Journal on Applied Mathematics, vol. 57, no. 5, 1997.

[4 J.Foster and A. Jelin¢i¢. On the convergence of adaptive
approximations for stochastic differential equations.
arxiv.org/abs/2311.14201, 2024.

[3 P.Kidger. On Neural Differential Equations. University of Oxford,
2022. Software available at github.com/patrick-kidger/diffrax.

(3 A.JelinCi¢, J. Foster and P. Kidger. Single-seed generation of
Brownian paths and integrals for adaptive and high order SDE
solvers. arxiv.org/abs/2405.06464, 2023.


https://arxiv.org/abs/2311.14201
https://github.com/patrick-kidger/diffrax
https://arxiv.org/abs/2405.06464

References II

[3 P.E.Kloeden and E. Platen. Numerical Solution of Stochastic
Differential Equations, Springer, 1992.

(4 J.G.Gaines and T. J. Lyons. Random Generation of Stochastic Area
Integrals. STAM Journal on Applied Mathematics, vol. 54, no. 4,
1994.

[4 A.Jelin¢ig, J. Tao, W. F. Turner, T. Cass, J. Foster and H. Ni.
Generative Modelling of Lévy Area for High Order SDE Simulation.
arxiv.org/abs/2308.02452, 2023.

% J. Foster and K. Habermann. Brownian bridge expansions for Lévy
area approximations and particular values of the Riemann zeta
function. Combinatorics, Probability and Computing, vol. 32, no. 3,
pp. 370-397, 2023.


https://arxiv.org/abs/2308.02452

References II1

B

B

J. Foster. Numerical approximations for stochastic differential
equations. University of Oxford, 2020.

J. Foster, T. Lyons and H. Oberhauser. An optimal polynomial
approximation of Brownian motion. SIAM Journal on Numerical
Analysis, vol. 58, no. 3, pp. 1393-1421, 2020.

K. Habermann. A semicircle law and decorrelation phenomena for
iterated Kolmogorov loops. Journal of the London Mathematical
Society, vol. 103, no. 2, pp. 558-586, 2021.

T.J. Lyons, M. Caruana, T. Lévy, and J. Picard. Differential Equations
Driven by Rough Paths. Ecole d’Eté de Probabilités de Saint-Flour.
vol. 34, 2004.

P.S. Hagan, D. Kumar, A. S. Kesniewski and D. E. Woodward.
Managing Smile Risk. Wilmott Magazine 1, pp. 84-108, 2002.



	Introduction
	Taylor expansions and non-Gaussian integrals
	Main convergence theorem
	Numerical example
	Conclusion and future work
	References

