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Introduction

Consider the following Itô SDE on [0, T]:

dyt = Wt dWt . (1)

Then, we know the solution is given by yt =
∫ t
0 Ws dWs =

1
2

(
(Wt)

2 − t
)
.

We can also approximate (1) using the Euler-Maruyama method:

Yk+1 := Yk +Wtk
(
Wtk+1

−Wtk
)
,

Y0 := y0 ,

where tk := kh and h = T
K for k ∈ {0, 1, · · · ,K}. It is then easy to show

E
[(
YK − y(T )

)2]
=

1

2
hT,

which converges to zero as h → 0 (or, equivalently, as K → ∞).
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Introduction

What if we make the step size adaptive?
(which is popular in ODEs numerics)

For example, given a fixed λ, we can consider a condition of the form:∣∣Wtk+1
−Wtk

∣∣ ≤ λ
√
h, (2)

to help reduce errors whenW has large fluctuations. In [1], they define

Yk+1 :=

Yk +Wtk
(
Wtk+1

−Wtk
)
, if (2) holds,

Yk +Wtk
(
Wtk+1

2

−Wtk
)
+Wtk+1

2

(
Wtk+1

−Wtk+1
2

)
, otherwise.

Surprisingly however, it was shown in [1, Section 4.1] that this adaptive
Euler method fails to converge to the Itô solution! (as h → 0).
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Introduction
Consider the following SDE:

dyt = W1
t dW2

t , (3)

whereW1 andW2 denote two independent Brownian motions.

We can approximate (3) using Euler-Maruyama or a “trapezium” rule:

Yk+1 := Yk +
1

2

(
W1
tk +W1

tk+1

)(
W2
tk+1

−W2
tk
)
,

Y0 := y0 ,

where k ∈ {0, 1, · · · ,K}. By Itô’s isometry, it is straightforward to show

E
[(
YK − y(T )

)2]
=

{
1
2hT if Euler-Maruyama is used
1
4hT if the trapezium rule is used

,

where T = Kh. Hence, we see that the trapezium rule is more accurate.
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Introduction
However, consider the following (less natural) adaptive step size:

We choose either h (i.e. 1 step) or 1
2h (i.e. 2 half-steps) to maximise Y.

Yk+1 = max
{
Yk +

1

2

(
W1
tk +W1

tk+1

)(
W2
tk+1

−W2
tk
)
,

Yk +
1

2

(
W1
tk +W1

tk+1
2

)
W2
tk, tk+1

2

+
1

2

(
W1
tk+1

2

+W1
tk+1

)
W2
tk+1

2
, tk+1

}
,

whereW i
s, t := W i

t −W i
s . Then, it can be shown that for any h > 0,

E
[
YK

]
=

1

8
T,

whereas E
[
yT
]
= 0. So, once again, Y does not converge to the SDE!

Question
Do adaptive numerical methods for SDEs converge? If so, when?
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Lévy’s construction of Brownian motion

How can we generate Brownian motion after we halve the step sizes?

𝑢 𝑠 𝑡 

𝑊𝑠 

𝑊𝑢 

𝑊𝑡 

 

 

 

 

Using the notationWa, b := Wb −Wa, we can generateWu afterWt as

Ws, t ∼ N
(
0, (t− s)Id

)
, Ws, u |Ws, t ∼ N

(1
2
Ws, t,

1

4
(t− s)Id

)
.
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The Brownian tree

By recursively applying Lévy’s construction, we can construct a tree:

(mesh size → 0) 

 

1 

This is known as the Brownian tree (introduced in [1]) and also gives a
natural data structure when generating Brownian sample paths [3, 4].
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A “Brownian tree” condition

In our second counterexample, we could “ignore” information about
the Brownian path – as the following update is decided usingWtk+1

2

:

Yk+1 = Yk +
1

2

(
W1
tk +W1

tk+1

)(
W2
tk+1

−W2
tk
)

but then does not use the value ofWtk+1
2

in the approximation itself.

Hence, this goes against the natural direction of the Brownian tree
(indicated by the downwards arrow).

First important condition
If information about the Brownian motion is generated, it must be used
“correctly” (to be explained in condition 2). Equivalently, the numerical
approximation uses all the information at the lowest level of the tree.
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Stochastic Taylor expansions

Consider the Stratonovich SDE (yt ∈ Re and f, gi : Re → Re are smooth)

dyt = f(yt)dt+
d∑
i=1

gi(yt) ◦ dW i
t , (4)

A very useful tool in SDE numerical analysis is the Taylor expansion:

Theorem (Stratonovich-Taylor expansion [5, Thm 5.6.1])
For times 0 ≤ s ≤ t ≤ T, the solution of the SDE (4) can be expanded as

yt = ys + f(ys)h+

d∑
i=1

gi(ys)W i
s,t +

d∑
i, j=1

g ′
j (ys)gi(ys)

∫ t

s
W i
s,u ◦ dW

j
u + R,

where h := t− s and there exists C > 0 such that E
[
∥R∥22

] 1
2 ≤ Ch

3
2 .
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Non-Gaussian integrals involving Brownian motion
The stochastic integrals

{∫ t
s W

i
s,u ◦ dW

j
u
}
1≤ i, j≤d are non-Gaussian and

an algorithm for exact simulation has only been found when d = 2 [6].

However, this does not have a “Lévy’s construction”, so cannot be used
adaptively. Therefore, we shall approximate these Brownian integrals.

E
[ ∫ t

s
W i
s,u ◦ dW

j
u

∣∣∣Ws,t

]
=

1

2
W i
s,tW

j
s,t . (5)

Among theWs,t-measurable estimators, this minimises the L2(P) error.

We can also approximate Lévy area using increments and integrals ofW,

E
[ ∫ t

s
W i
s,u ◦ dW

j
u

∣∣∣Ws,t

∫ t

s
Ws,u ,du

]
=

1

2
W i
s,tW

j
s,t + W i

s,t

∫ t

s

u− s
h

dW j
u

− W j
s,t

∫ t

s

u− s
h

dW i
u .
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An “integral” condition

Second important condition
The numerical method for the Stratonovich SDE (4) should satisfy

Yk+1 = Yk + f(Yk)h+

d∑
i=1

gi(Yk)W i
k +

1

2

d∑
i, j=1

g ′
j (Yk)gi(Yk)W

i
kW

j
k + R,

where h := tk+1 − tk , Wk := Wtk+1
−Wtk and R ∼ o(h) almost surely.

More generally, if the numerical approximation uses certain Gaussian
integrals Wk generated over the interval [tk , tk+1], then we require:

Yk+1 = Yk + f(Yk)h+

d∑
i=1

gi(Yk)W i
k

+

d∑
i, j=1

g ′
j (Yk)gi(Yk)E

[ ∫ tk+1

tk
W i
tk ,t ◦ dW

j
t

∣∣∣Wk

]
+ o(h).
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Examples of methods satisfying the integral condition

Milstein’s method*
*using q+ 1 integrals of Brownian motion (which are Gaussian [8, 9])

Yk+1 := Yk + f(Yk)h +

d∑
i=1

gi(Yk)W i
k

+
d∑

i, j=1

g ′
j (Yk)gi(Yk)E

[∫ tk+1

tk W i
tk ,t ◦ dW

j
t
∣∣ {∫ tk+1

tk ( t−tkh )mdWt

}
0≤m≤ q

]
.

Heun’s method (expanding will give 1
2W

i
s,tW

j
s,t instead of

∫ t
s W

i
s,u ◦ dW

j
u )

Ỹk+1 = Yk + f(Yk)h+

d∑
i=1

gi(Yk)W i
k ,

Yk+1 = Yk +
1

2

(
f(Yk) + f(Ỹk+1)

)
h+

1

2

d∑
i=1

(
gi(Yk) + gi(Ỹk+1)

)
W i
k .

Splitting Path Runge-Kutta (SPaRK is based on the “q = 1” estimator)
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Main convergence theorem

Theorem (Convergence of adaptive methods [2, Theorem 2.19])
Let {Y n} be a sequence of numerical solutions to (4) computed at times
Dn = {0 = t n0 < t n1 < · · ·< t nKn = T} so that Dn+1 is determined by Dn and

W n
k :=

{∫ t nk+1

t nk

( t− t nk
h nk

)m
dWt

}
0≤m≤ q

.

Suppose Dn+1 ⊆ Dn and mesh(Dn) → 0 almost surely (condition 1) and∥∥Y nk+1 − Ỹ nk+1

∥∥
2
∼ o(h nk ),

where h nk := t nk+1 − t nk and

Ỹk+1 := Y nk + f(Y nk )h
n
k +

d∑
i=1

gi(Y nk )W
i
t nk ,t

n
k+1

(condition 2)

+

d∑
i, j=1

g ′
j (Y

n
k )gi(Y

n
k )E

[ ∫ t nk+1

t nk
W i
t nk ,t

◦ dW j
t

∣∣∣W n
k

]
.
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Main convergence theorem

Theorem (Convergence of adaptive methods [2], continued)
We assume Y n0 = y0 and f, {gi} are bounded twice differentiable vector
fields with α-Hölder continuous second derivatives for some α ∈ (0, 1).

More precisely, we assume that∥∥Y nk+1 − Ỹ nk+1

∥∥
2
≤ w(t nk , t

n
k+1),

where
Kn−1∑
k=0

w(t nk , t
n
k+1) → 0,

almost surely. Then the approximations {Y n} converge pathwise. That is

sup
0≤k≤Kn

∥∥Y nk − yt nk
∥∥
2
→ 0,

as n → ∞ almost surely.
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Ideas in the proof
Using the main results of [10, 11], we note that on the interval [t nk , t

n
k+1 ],∫ t nk+1

t nk

( t− t nk
h nk

)m
dW̃t

n
=

∫ t nk+1

t nk

( t− t nk
h nk

)m
dWt ,

for 0 ≤ m ≤ q, where W̃t
n
is the degree n+ 1 polynomial defined as

W̃t
n
:= E

[
Wt | {W n

k }0≤k≤Kn−1

]
.
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Ideas in the proof

Lemma
Define a sequence of σ-algebras {Fn}n≥0 , by F0 := σ

(
{W n

0 } ∪ D0

)
and

Fn+1 := σ
(
Fn ∪ {W n

k } ∪ Dn
)
. By the assumptions in the theorem, {Fn}

is a filtration and W̃ n = E
[
W | Fn

]
is a square-integrable martingale.

(mesh size → 0) 

 

1 
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Ideas in the proof

Using Doob’s martingale convergence theorem and maximal inequality,
we can show that

dp-var;[0,T ]
(
W̃.

n
,W

)
→ 0,

as n → ∞ almost surely, where p ∈ (2, 3) and

• W̃.
n
is the piecewise polynomial “lifted” to a “p-rough path”

• W is “Stratonovich enhanced” Brownian motion (p-rough path)
• dp-var;[0,T ](X,Y) is the p-variation between p-rough paths X and Y

It is not clear how to show “rough path” convergence for
{
W̃.

n}
without

using the martingale property coming from the nested property of {Dn}.
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Ideas in the proof

By the well-known Universal Limit Theorem [12], it now follows that

dp-var;[0,T ]
(
ỹ n, y

)
→ 0,

as n → ∞ almost surely, where

• ỹ n is the solution of the rough differential equation (RDE):

dỹ nt = f
(
ỹ nt

)
dt+ g

(
ỹ nt

)
dW̃t

n
,

with g(y) := (g1(y), · · · , gd(y)) and initial condition y0 ∈ Re .

• y is the solution of the rough differential equation (RDE):

dyt = f
(
yt
)
dt+ g

(
yt
)
dWt ,

with initial condition y0 ∈ Re .
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Ideas in the proof
Finally, we need to compare the solution of the CDE

d ỹ nt = f
(
ỹ nt

)
dt+ g

(
ỹ nt

)
dW̃t

n
,

to our numerical method

Ỹk+1 := Y nk + f(Y nk )h
n
k +

d∑
i=1

gi(Y nk )W
i
t nk ,t

n
k+1

(condition 2)

+
d∑

i, j=1

g ′
j (Y

n
k )gi(Y

n
k )E

[ ∫ t nk+1

t nk
W i
t nk ,t

◦ dW j
t

∣∣∣W n
k

]
,

and show the difference is o(hn). However, this is straightforward as

W n
t nk ,tk+1

= W̃.
n
t nk ,tk+1

,

E
[ ∫ t nk+1

t nk
W i
t nk ,t

◦ dW j
t

∣∣∣W n
k

]
=

∫ t nk+1

t nk

(
W̃.

n
t nk ,t

) i ◦ d(W̃t
n) j

.

James Foster (University of Bath) Adaptive approximations for SDEs 25 July 2024 18 / 22



Outline

1 Introduction

2 Taylor expansions and non-Gaussian integrals

3 Main convergence theorem

4 Numerical example

5 Conclusion and future work

6 References



Numerical example
We consider the SABR stochastic volatility model used in finance [13]:

dSt =
√

1− ρ2σt(St)βdW1
t + ρσt(St)βdW2

t , (6)
dσt = ασtdW2

t ,

where (S0 , σ0) = (0, 1) and (α, β, ρ) = (1, 0, 0). For each method and
step size control, we estimate the L2(P) error over [0, T ] with T = 10.

Drawing of a single sample path

Strong order using PID controller
The parameters  and  were chosen based on recommendations from the Diffrax
documentation and from Ilie et al. (2015):

@article{ilie2015adaptive, author={Ilie, Silvana and Jackson, Kenneth R. and Enright, Wayne H.}, title=
{{A}daptive {T}ime-{S}tepping for the {S}trong {N}umerical {S}olution of {S}tochastic {D}ifferential {E}quations},
year={2015}, publisher={Springer-Verlag}, address={Berlin, Heidelberg}, volume={68}, number={4}, doi=
{https://doi.org/10.1007/s11075-014-9872-6}, journal={Numer. Algorithms}, pages={791–-812}, }

In [2]: bm_key = jr.key(8) 
terms_sabr = get_terms(sabr_sde.get_bm(bm_key, SpaceTimeLevyArea, 2**-6)) 
sol = diffeqsolve(terms_sabr, SPaRK(), t0, t1, 2**-5, y0, saveat=SaveAt(steps=True)) 
plt.plot(sol.ts, sol.ys[:, 0], label="S") 
plt.plot(sol.ts, jnp.exp(sol.ys[:, 1]), label="sigma") 
plt.xlabel("t") 
plt.legend() 
plt.show() 

KP = 0.1 KI = 0.3

In [3]: def pid_strong_order(keys, sde, solver, levels, bm_tol=2**-13): 
    save_ts_pid = jnp.linspace(sde.t0, sde.t1, 65, endpoint=True) 
 
    def get_pid(level): 
        return None, PIDController( 
            pcoeff=0.1, 
            icoeff=0.3, 
            rtol=0, 
            atol=2**-level, 
            step_ts=save_ts_pid, 
            dtmin=2**-10, 
            force_dtmin=True, 
        ) 
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Numerical example

Methods implemented in the JAX-based ODE/SDE library Diffrax [3, 4].

 

 

Code for reproducing these results can be found at
github.com/andyElking/Adaptive_SABR.
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Conclusion and future work

Conclusion

• Numerical methods that use adaptive step sizes are popular for
ODEs, but can experience convergence issues in the SDE setting.

• Using rough paths, we showed that convergence occurs for a large
class of adaptive methods (including Milstein and Heun schemes).

• The main idea is that whenever information about W is generated,
it must be used (condition 1) in a “correct way” (condition 2).

Future work

• Can we establish explicit convergence rates for adaptive methods?

• Does our convergence analysis extend to high order weak solvers?

• Applications? (e.g. adaptive SDE-based MCMC algorithms, see [4])
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Thank you
for your attention!

and the preprint can be found at:

J. Foster and A. Jelinčič.
On the convergence of adaptive approximations for stochastic
differential equations, arxiv:2311.14201, 2024.
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