MA20222

Problem Sheet 9

Do all questions and hand in your answers to the \star starred \star questions as instructed by your tutor.

- *E9.1. For the matrices T corresponding to the Jacobi and Gauss–Seidel iteration in E8.2, determine the spectral radius $\rho(T)$. Which of the iterations converge?
- *E9.2. Suppose that T is a $d \times d$ matrix with $||T||_{\text{op}} < 1$, for some operator norm $||T||_{\text{op}}$ with respect to a vector norm $||\boldsymbol{x}||$.
 - (a) Let I denote the $d \times d$ identity matrix. Given that the expansion of the inverse matrix $(I-T)^{-1} = I + T + T^2 + \cdots +$ converges, prove that

$$\|(I-T)^{-1}\|_{\text{op}} \le \frac{1}{1-\|T\|_{\text{op}}}$$

(b) For a vector $\boldsymbol{c} \in \mathbb{R}^n$, let $\boldsymbol{x} \in \mathbb{R}^n$ satisfy $\boldsymbol{x} = T\boldsymbol{x} + \boldsymbol{c}$ and consider the iteration $\boldsymbol{x}_{n+1} = T\boldsymbol{x}_n + \boldsymbol{c}$. Show that

$$\|\boldsymbol{x}_n - \boldsymbol{x}\| \le \frac{\|T\|_{\text{op}}^n}{1 - \|T\|_{\text{op}}} \|\boldsymbol{x}_1 - \boldsymbol{x}_0\|.$$
(*)

Hint: use the following estimate from class:

$$\|\boldsymbol{x}_n - \boldsymbol{x}\| \le \|T\|_{\text{op}}^n \|\boldsymbol{x}_0 - \boldsymbol{x}\|.$$
(†)

- (c) Why is (\star) more useful in applications that (\dagger) ?
- E9.3. Let A = D + L + U be split into diagonal and lower- and upper-triangular parts. Let $T_{\rm J}$ denote the Jacobi iteration matrix and $T_{\rm GS}$ the Gauss–Seidel iteration matrix.
 - (a) Show that λ is an eigenvalue of $T_{\rm J}$ if and only if det $|-\lambda D L U| = 0$.
 - (b) Show that λ is an eigenvalue of T_{GS} if and only if $\det |-\lambda(D+L) U| = 0$.
 - (c) Assume that, for $a, b \neq 0$,

$$\det|aD - L - U| = \det|aD - b^{-1}L - bU|. \tag{(*)}$$

Show that λ is an eigenvalue of T_{GS} if and only $\lambda^{1/2}$ is an eigenvalue of T_J .

E9.4. Formulate the Jacobi iteration as $x_{k+1} = Tx_k + c$ for the $d \times d$ finite-difference matrix

$$A = \begin{bmatrix} 2 & -1 & & \\ -1 & 2 & -1 & & \\ & -1 & \ddots & \ddots & \\ & & & & -1 \\ & & & -1 & 2 \end{bmatrix}$$

- (a) Show that $\boldsymbol{u}_k = (\sin k\pi h, \sin 2k\pi h, \dots, \sin dk\pi h)^{\mathsf{T}}$, for h = 1/(d+1) and $k = 1, \dots, d$, is an eigenvector of T. Use this to prove the Jacobi iteration converges for this class of matrices.
- (b) Show that (*) holds for the finite-difference matrix A.
- (c) Which of the iterations (Jacobi and Gauss-Seidel) would converge faster for this matrix?