MA20222

Problem Sheet 9

Do all questions and hand in your answers to the \star starred \star questions as instructed by your tutor.
\star E9.1. For the matrices T corresponding to the Jacobi and Gauss-Seidel iteration in E8.2, determine the spectral radius $\rho(T)$. Which of the iterations converge?
\star E9.2. Suppose that T is a $d \times d$ matrix with $\|T\|_{\text {op }}<1$, for some operator norm $\|T\|_{\text {op }}$ with respect to a vector norm $\|\boldsymbol{x}\|$.
(a) Let I denote the $d \times d$ identity matrix. Given that the expansion of the inverse matrix $(I-T)^{-1}=I+T+T^{2}+\cdots+$ converges, prove that

$$
\left\|(I-T)^{-1}\right\|_{\mathrm{op}} \leq \frac{1}{1-\|T\|_{\mathrm{op}}}
$$

(b) For a vector $\boldsymbol{c} \in \mathbb{R}^{n}$, let $\boldsymbol{x} \in \mathbb{R}^{n}$ satisfy $\boldsymbol{x}=T \boldsymbol{x}+\boldsymbol{c}$ and consider the iteration $\boldsymbol{x}_{n+1}=T \boldsymbol{x}_{n}+\boldsymbol{c}$. Show that

$$
\left\|x_{n}-x\right\| \leq \frac{\|T\|_{\mathrm{op}}^{n}}{1-\|T\|_{\mathrm{op}}}\left\|x_{1}-\boldsymbol{x}_{0}\right\| .
$$

Hint: use the following estimate from class:

$$
\left\|\boldsymbol{x}_{n}-\boldsymbol{x}\right\| \leq\|T\|_{\mathrm{op}}^{n}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}\right\| .
$$

(c) Why is (\star) more useful in applications that (\dagger) ?

E9.3. Let $A=D+L+U$ be split into diagonal and lower- and upper-triangular parts. Let T_{J} denote the Jacobi iteration matrix and T_{GS} the Gauss-Seidel iteration matrix.
(a) Show that λ is an eigenvalue of T_{J} if and only if $\operatorname{det}|-\lambda D-L-U|=0$.
(b) Show that λ is an eigenvalue of T_{GS} if and only if $\operatorname{det}|-\lambda(D+L)-U|=0$.
(c) Assume that, for $a, b \neq 0$,

$$
\begin{equation*}
\operatorname{det}|a D-L-U|=\operatorname{det}\left|a D-b^{-1} L-b U\right| . \tag{*}
\end{equation*}
$$

Show that λ is an eigenvalue of $T_{\mathrm{G} S}$ if and only $\lambda^{1 / 2}$ is an eigenvalue of T_{J}.
E9.4. Formulate the Jacobi iteration as $\boldsymbol{x}_{k+1}=T \boldsymbol{x}_{k}+\boldsymbol{c}$ for the $d \times d$ finite-difference matrix

$$
A=\left[\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& -1 & \ddots & \ddots & \\
& & & & -1 \\
& & & -1 & 2
\end{array}\right]
$$

(a) Show that $\boldsymbol{u}_{k}=(\sin k \pi h, \sin 2 k \pi h, \ldots, \sin d k \pi h)^{\top}$, for $h=1 /(d+1)$ and $k=1, \ldots, d$, is an eigenvector of T. Use this to prove the Jacobi iteration converges for this class of matrices.
(b) Show that (*) holds for the finite-difference matrix A.
(c) Which of the iterations (Jacobi and Gauss-Seidel) would converge faster for this matrix?

