MA20222

Problem Sheet 8

Do all questions and hand in your answers to the \star starred \star questions as instructed by your tutor.

E8.1. Let U be a non-singular upper triangular $d \times d$ matrix such that $U_{i j}=0$ for $i>j$ and $U_{i i} \neq 0$. Consider the work involved in solving the system of d linear equations $U \boldsymbol{x}=\boldsymbol{b}$ by backward substitution, where $\boldsymbol{b} \in \mathbb{R}^{d}$ is given and $\boldsymbol{x} \in \mathbb{R}^{d}$ is to be found. That is, we evaluate

$$
x_{d}=\frac{b_{d}}{U_{d d}} \quad \text { and } \quad x_{i}=\left(b_{i}-\sum_{j=i+1}^{d} U_{i j} x_{j}\right) \frac{1}{U_{i i}}, \quad i=d-1, d-2, \ldots, 1
$$

(a) Assuming that each addition, subtraction, multiplication or division counts as one (arithmetic) operation, count how many operations are required to compute x_{i}, for each i.
(b) Hence establish how many operations are required in total to find \boldsymbol{x} and thus establish the complexity of the backward-substitution algorithm.
\star E8.2. Consider the linear system

$$
\begin{aligned}
2 x_{1}-x_{2}+x_{3} & =1 \\
2 x_{1}+2 x_{2}+2 x_{3} & =4 \\
-x_{1}-x_{2}+2 x_{3} & =-5 .
\end{aligned}
$$

Formulate the Jacobi and Gauss-Seidel iterations for this system. Perform one step of each iteration with the initial guess $\boldsymbol{x}_{0}=[0,1,0]^{\top}$.

E8.3. Write down the definitions of the norms $\|\cdot\|_{\infty},\|\cdot\|_{1}$, and $\|\cdot\|_{2}$ for a vector $\boldsymbol{x} \in \mathbb{R}^{n}$.
Compute $\|\boldsymbol{x}\|_{\infty},\|\boldsymbol{x}\|_{1}$, and $\|\boldsymbol{x}\|_{2}$ for $\boldsymbol{x}=[1,-2]^{\top}$ and $\boldsymbol{x}=[-1,2,-3]^{\top}$.
\star E8.4. a) Show that $\|\boldsymbol{x}\|:=\max _{i=1, \ldots, d} x_{i}$ is not a vector norm on \mathbb{R}^{d}.
b) Show that $\|\boldsymbol{x}\|=\left(\sum_{i=1}^{d} \sqrt{\left|x_{i}\right|}\right)^{2}$ is not a vector norm on \mathbb{R}^{d}.
\star E8.5. For $d \times d$ matrices A and B, show conditions (a-d) for operator matrix norms by using properties of vector norms. Thus completing the proof of Theorem 5.1.

E8.6. Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right], \quad B=A^{\top} .
$$

Compute $\|\cdot\|_{1}$ and $\|\cdot\|_{\infty}$ for A and B.
E8.7. From the definition

$$
\|A\|_{1}=\max _{\|x\|_{1}=1}\|A x\|_{1}
$$

show that $\|A\|_{1} \leq \max _{1 \leq j \leq d} \sum_{i=1}^{d}\left|a_{i j}\right|$.
Now choose the vector $\boldsymbol{x}=(0, \ldots, 1,0, \ldots, 0)^{\top}$, with a 1 in the k th position where

$$
\sum_{i=1}^{d}\left|a_{i k}\right|=\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right|
$$

to deduce that $\|A\|_{1}=\max _{1 \leq j \leq d} \sum_{i=1}^{d}\left|a_{i j}\right|$.

