MA20222

Problem Sheet 6

Do all questions and hand in your answers to the \star starred \star questions as instructed by your tutor.
\star E6.1. Show that the iteration

$$
x_{n+1}=\frac{1+9 x_{n}-x_{n}^{3}}{8}
$$

has a fixed point in the interval [1,2], and that this fixed-point iteration is convergent.
E6.2. By verifying the conditions in the fixed-point theorem, show that the iteration

$$
x_{n+1}=g\left(x_{n}\right), \quad g(x):=\frac{x+1}{x+2}
$$

converges to a fixed point in the interval $[0,1]$ for any initial condition $x_{0} \in[0,1]$.
\star E6.3. By considering a suitable equation of the form $f(x)=0$, write down Newton's method for computing the cube root of a given number a. Use this technique to find an approximation of $25^{1 / 3}$ correct to four-significant figures. How many iterations do you require?

E6.4. Determine a numerical value (correct to 12 decimal places) of $1 / 3$ without division by use of Newton's method applied to $f(x)=1 / x-a$ with $a=3, x_{0}=0.3$. Examine closely the notion of quadratic converge. (Before computer hardware was fully developed, this was the standard way of performing division on early computers).

