MA20222

Problem Sheet 5

Do all questions and hand in your answers to the \star starred \star questions as instructed by your tutor.
E5.1. i) Consider the following quadrature rule for approximating $\int_{-1}^{1} f(x) \mathrm{d} x$:

$$
Q(f)=w_{0} f(-1)+w_{1} f(1)+w_{2} f^{\prime}(-1)+w_{3} f^{\prime}(1) .
$$

Here, the quadrature nodes are $-1,1$ and Q evaluates f and also its derivative f^{\prime} at these nodes. Determine the weights w_{i} so that Q has degree of precision 3 .
ii) By applying a change of variable, write this quadrature rule over the general interval $[a, b]$.
\star E5.2. Consider the 3 -point Gauss quadrature rule:

$$
Q_{\text {Gauss }, 2}^{[-1,1]}(f)=\frac{5}{9} f\left(-\sqrt{\frac{3}{5}}\right)+\frac{8}{9} f(0)+\frac{5}{9} f\left(\sqrt{\frac{3}{5}}\right) .
$$

Integrate the polynomial

$$
\int_{-1}^{1} 2 x^{5}+16 x^{4}-3 x^{2}+9 x-2 d x
$$

analytically, and subsequently, show that $Q_{\text {Gauss }, 2}^{[-1,1]}$ integrates this exactly.
Compute $E^{[-1,1]}\left(x^{6}\right)$ and the degree of precision for this rule.
\star E5.3. When deriving the Gauss quadrature rules in Section $\S 3.3$, we have full freedom of the weights and nodes. Suppose we are required to choose the end points i.e. $x_{0}=-1$, and $x_{N}=1$.
What is the maximum degree of precision achievable using this quadrature rule with $N+1$ points?
Consider the quadrature rule

$$
Q_{\mathrm{R}, 3}^{[-1,1]}(f)=w_{0} f(-1)+w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)+w_{3} f(1)
$$

Write down equations which must be satisfied for the unknowns and solve them. HINT: Use symmetry as in Section §3.3.

