Problem sheet 4

Please submit the question marked * to your tutor

E4.1

Write a program to implement both the trapezoidal rule and Simpson's rule for an arbitrary function f on an interval $[a, b]$

```
def trapezium(a,b,f):
    # fill in
    # I = ..
    return I
def simpson(a,b,f):
    # fill in
    # I = ..
    return I
```

Test your program on the function $f(x)=x$ and make sure that both rules the trapezoidal rule and Simpson's rule produce the exact value for $\int_{a}^{b} x d x$ for various a and b. Then test your program for $f(x)=x^{3}$. What do you observe?

```
f = lambda x:x
print(trapezium(0,1,f),simpson(0,1,f))
f = lambda x:x**3
print(trapezium(0,1,f), simpson(0,1,f))
```


E4.2 *

Write a program to implement the composite trapezoidal rule on a uniform mesh for approximating $\int_{a}^{b} f(x) d x$. The program should allow the user to input a, b, J and f.

Run your program for $f(x)=\exp (x), a=0, b=1$, and $J=4,8,16,32,64$. Find the exact value of the integral and compute the error in your approximations. Determine experimentally the rate of convergence as $J \rightarrow \infty$.

Explain your results using the theory from lectures.
Repeat for $f(x)=\sqrt{x}$ (the theory for the rate of convergence is significantly more difficult).

```
import numpy as np
def composite_trapezium(a,b,J,f):
    # fill in
    return I
```


E4.3.

Write a function to implement the composite Simpson's rule for approximating $\int_{a}^{b} f(x) d x$ on a uniform mesh. The program should allow the user to pass in a, b, J and f.

Run your program for $f(x)=\exp (x), a=0, b=1$, for $J=8,16,32,64,128$. Find the exact value of the integral and compute the error in your approximations. Determine experimentally the rate of convergence as $J \rightarrow \infty$.

Repeat for $f(x)=x^{3}$ and $f(x)=\sqrt{x}$. Explain your results in each case
using the theory from lectures

```
def composite_simpson(a,b,J,f)
    # fill in
    # I = ..
    return I
```


E4.4.

Consider the integral $\int_{1}^{4} \exp \left(\frac{1}{2} x^{2}\right) d x$. Use any method you like (e.g. you could try quad from scipy.integrate) to find the value of this integral correct to 10-decimal places. Approximate this integral using the composite Simpson's rule on a uniform mesh with J subintervals for $J=8,16,32,64,128$. Find the error for each J and estimate the rate of convergence as J increases.

```
from scipy.integrate import quad
    f = lambda x: np.exp(x**2/2)
```

 \# look up how quad works

E4.5 *

Let $Q_{1, J}(f)$ be the composite trapezoidal rule applied over $[0,1]$ on the mesh $y_{j}=j h, j=0, \ldots, J$, where $h=1 / J$ and $J \in \mathbb{N}$. This is used to approximate $I(f)=\int_{0}^{1} f(x) d x$ as described in lectures.

We show in lectures that $I(f)-Q_{1, J}(f)=-\frac{1}{12} h^{2} f^{\prime \prime}(\zeta)$, for some $\zeta \in[0,1]$.
A more precise result, based on the Euler-Maclaurin formula, shows that, provided f is sufficiently smooth, there exist $C_{2}, C_{4}, C_{6}, \ldots$, independent of h, such that

$$
I(f)-Q_{1, J}(f)=C_{2} h^{2}+C_{4} h^{4}+C_{6} h^{6}+\cdots
$$

(a) Write down the corresponding expansion for $I(f)-Q_{1,(2 J)}(f)$. - By eliminating \(C_{2}\) between the two expansions, find \(\theta \in \mathbb{R}\) such that

$$
I(f)-\left(\theta Q_{1, J}(f)+(1-\theta) Q_{1,2 J}(f)\right)=\tilde{C}_{4} h^{4}+\cdots
$$

for some $\tilde{C}_{4} \in \mathbb{R}$, which you need not determine.
(b) Find coefficients $a, b, c \in \mathbb{R}$ such that

$$
\theta Q_{1, J}(f)+(1-\theta) Q_{1,2 J}(f)=\sum_{j=1}^{J} h\left(a f\left(y_{j-1}\right)+b f\left(\left(y_{j-1}+y_{j}\right) / 2\right)+c f\left(y_{j}\right)\right)
$$

What is this method? Could you use this idea to generate more accurate rules?

