Problem sheet 4

Please submit the question marked * to your tutor.

E4.1

Write a program to implement both the trapezoidal rule and Simpson's rule for an arbitrary function f on an interval [a, b].

def trapezium(a,b, f):
fill in
I = ...

return I
def simpson(a,b, f):

fill in
I = ...
return I

Test your program on the function f(ac) = x and make sure that both rules the trapezoidal rule and Simpson's rule produce the

b .
exact value for fa x dz for various a and b. Then test your program for f(x) = z3. What do you observe?

f = lambda x:x
print (trapezium(0,1,f),simpson (0,1, f))

f = lambda x:x**3
print (trapezium(0,1,f), simpson(0,1,f))

E4.2*

. b
Write a program to implement the composite trapezoidal rule on a uniform mesh for approximating fa f(m) dz. The program should

allow the user to input a, b, J and f.

Run your program for f(z) = exp(z),a =0, b=1,and J = 4, 8, 16, 32, 64. Find the exact value of the integral and compute the
error in your approximations. Determine experimentally the rate of convergence as J — oo.

Explain your results using the theory from lectures.
Repeat for f(x) = \/5 (the theory for the rate of convergence is significantly more difficult).

import numpy as np

def composite trapezium(a,b,J, f):
fill in
I = ...

return I

E4.3.

. b .
Write a function to implement the composite Simpson's rule for approximating fa f(:zz) dz on a uniform mesh. The program should

allow the user to passina, b, J and f.

Run your program for f(z) = exp(z),a = 0,b =1, for J = 8,16, 32, 64, 128. Find the exact value of the integral and compute the
error in your approximations. Determine experimentally the rate of convergence as J — oo.

Repeat for f(z) = 2 and f(x) = /. Explain your results in each case
using the theory from lectures.
def composite simpson(a,b,J, f):
fill in

#I=...
return I

E4.4.

4
Consider the integral fl exp(%xz) dz. Use any method you like (e.g. you could try quad from scipy.integrate) to find the value of

this integral correct to 10-decimal places. Approximate this integral using the composite Simpson's rule on a uniform mesh with J
subintervals for J = 8,16, 32, 64, 128. Find the error for each J and estimate the rate of convergence as J increases.

from scipy.integrate import quad
f = lambda x: np.exp (x**2/2)
look up how quad works ...

E4.5*

Let @1, s(f) be the composite trapezoidal rule applied over [0, 1] on the mesh y; = jh, j =0,...,J, where h =1/J and J € N.
This is used to approximate I(f) = fol f(z) dz as described in lectures.

We show in lectures that I(f) — Q1,7(f) = — 112 h%f"(¢), for some ¢ € [0, 1].

A more precise result, based on the Euler-Maclaurin formula, shows that, provided f is sufficiently smooth, there exist
Cs, C4, Cs, ..., independent of h, such that

I(f) = Q1,5(f) = Coh® + Cyh* + Ceh® + - --.

(a) Write down the corresponding expansion for I(f) — Q1 (2,5 (f)- \item By eliminating C; between the two expansions, find 6 € R
such that

I(f) = (0Qu, 5(f) + (1 = 0)Qy,2s(f)) = Cub* +---,
for some C~’4 € R, which you need not determine.
(b) Find coefficients a, b, ¢ € R such that

0Q15(f) + (1= 0)Qu20(f) = D h(af(yi1) + bf (w1 +17)/2) + cf(vs) -

J
Jj=1

What is this method? Could you use this idea to generate more accurate rules?

	Problem sheet 4
	∙ E4.1
	∙ E4.2 *
	∙ E4.3.
	∙ E4.4.
	∙ E4.5 *

{
 "cells": [
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Problem sheet 4 \n",
 "\n",
 "Please submit the question marked * to your tutor. "
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 " ## E4.1\n",
 "Write a program to implement both the trapezoidal rule and\n",
 "Simpson's rule for an arbitrary\n",
 "function f on an interval $[a,b]$. "
]
 },
 {
 "cell_type": "code",
 "execution_count": 1,
 "metadata": {},
 "outputs": [],
 "source": [
 "def trapezium(a,b,f):\n",
 " # fill in \n",
 " # I = ...\n",
 " return I\n",
 "\n",
 "def simpson(a,b,f):\n",
 " # fill in \n",
 " # I = ...\n",
 " return I"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Test your program on the function $f(x) = x$ and make sure that both rules\n",
 "the trapezoidal rule and Simpson's rule \n",
 "produce the exact value\n",
 "for $\\int_a^b x \\, dx$ for various a and b. Then test your program\n",
 "for $f(x) = x^3$. What do you observe?"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "f = lambda x:x\n",
 "print(trapezium(0,1,f),simpson(0,1,f))\n",
 "\n",
 "f = lambda x:x**3\n",
 "print(trapezium(0,1,f), simpson(0,1,f))"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "## E4.2 *\n",
 "Write a program to implement the composite trapezoidal rule on \n",
 "a uniform mesh for approximating $\\int_a^b f(x) \\,dx$. The program\n",
 " should allow the user to input a, b, J and f. \n",
 "\n",
 "Run your program for $f(x) = \\exp(x)$, $a = 0, \\; b\n",
 "= 1$, and $J = 4,8,16,32,64 $. Find the exact value of the integral\n",
 "and compute the error in your approximations. \n",
 "Determine experimentally the\n",
 "rate of convergence as $J \\rightarrow \\infty$. \n",
 "\n",
 "Explain your\n",
 "results using the theory from lectures.\n",
 "\n",
 "Repeat for $f(x) = \\sqrt{x}$ (the theory for the rate of\n",
 "convergence is significantly more difficult)."
]
 },
 {
 "cell_type": "code",
 "execution_count": 31,
 "metadata": {},
 "outputs": [],
 "source": [
 "import numpy as np\n",
 "def composite_trapezium(a,b,J,f):\n",
 " # fill in \n",
 " # I = ...\n",
 " return I"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "## E4.3. \n",
 "\n",
 "Write a function to implement the composite \n",
 "Simpson's rule for approximating $\\int_a^b f(x) \\,dx$ on a uniform mesh.\n",
 "The program should allow the user to pass in a, b, J and f.\n",
 "\n",
 "Run your program for $f(x) = \\exp(x)$, $a = 0$, $ b\n",
 "= 1$, for $J = 8,16,32,64,128 $. \n",
 "Find the exact value of the integral\n",
 "and compute the error in your approximations. \n",
 "Determine experimentally the\n",
 "rate of convergence as $J \\to \\infty$. \n",
 "\n",
 "\n",
 "Repeat for $f(x) = x^3$ and \n",
 "$f(x) = \\sqrt{x}$. Explain your results in each case \n",
 "using the theory from lectures. "
]
 },
 {
 "cell_type": "code",
 "execution_count": 1,
 "metadata": {},
 "outputs": [],
 "source": [
 "def composite_simpson(a,b,J,f):\n",
 " # fill in \n",
 " # I = ...\n",
 " return I\n"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "## E4.4.\n",
 "\n",
 "Consider the integral $\\int_1^4 \\exp(\\frac 12 x^2) \\,dx$. Use any\n",
 "method you like (e.g. you could try quad from scipy.integrate) to find the value of this integral correct to 10-decimal places. Approximate this integral using the composite \n",
 "Simpson's rule on a uniform mesh with J subintervals for $J = 8, 16, 32,64,128$. Find the error for each J and estimate the rate of\n",
 "convergence as J increases. "
]
 },
 {
 "cell_type": "code",
 "execution_count": 3,
 "metadata": {},
 "outputs": [],
 "source": [
 "from scipy.integrate import quad\n",
 "f = lambda x: np.exp(x**2/2)\n",
 "# look up how quad works ..."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "## E4.5 *\n",
 "\n",
 "Let $Q_{1,\\,J}(f)$ be the composite trapezoidal\n",
 "rule applied over $[0,1]$ on the mesh $y_j = jh$, $j = 0,\n",
 "\\ldots , J$, where $h=1/J$ and $J\\in \\mathbb{N}$. This is\n",
 "used to approximate $I(f)=\\int_{0}^{1}f(x)\\,dx$ as described\n",
 "in lectures.\n",
 "\n",
 "We show in lectures that $I(f)-Q_{1,\\,J}(f)=-\\frac 1{12}h^{2} f''(\\zeta)$,\n",
 " for some $\\zeta\\in [0,\\,1]$.\n",
 "\n",
 " A more precise result, based on the *Euler-Maclaurin*\n",
 " formula, shows that, provided f is sufficiently smooth,\n",
 " there exist $C_{2},\\,C_{4},\\,C_{6},\\,\\ldots$, **independent**\n",
 " of h, such that\n",
 "$$\n",
 "I(f)-Q_{1,\\,J}(f)=C_{2}h^{2}+C_{4}h^{4}+C_{6}h^{6}+\\cdots.\n",
 "$$\n",
 "\n",
 "(a)\n",
 " Write down the corresponding expansion for $I(f)-Q_{1,\\,(2J)}(f)$.\n",
 "\\item By eliminating C_{2} between the two expansions, find $\\theta\\in\\mathbb{R}$ such that \n",
 "$$\n",
 "I(f)-\\left(\\theta Q_{1,\\,J}(f)+(1-\\theta)Q_{1,\\,2J}(f)\\right)\n",
 "=\\tilde{C}_{4}h^{4}+\\cdots,\n",
 "$$\n",
 "for some $\\tilde{C}_{4} \\in \\mathbb{R},$ which you need not determine.\n",
 "\n",
 "\n",
 "(b) Find coefficients $a,\\,b,\\,c\\in \\mathbb{R}$ such that\n",
 "$$\n",
 "\\theta Q_{1,\\,J}(f)+(1-\\theta)Q_{1,\\,2J}(f)\n",
 "=\\sum_{j = 1}^{J}h\\left(af(y_{j-1})+bf((y_{j-1} +\n",
 " y_j)/2)+cf(y_j)\\right).\n",
 "$$\n",
 "What is this method? Could you use this idea to generate more\n",
 "accurate rules? "
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": []
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.8.5"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}

