
Problem sheet 4

Please submit the question marked * to your tutor.

E4.1

Write a program to implement both the trapezoidal rule and Simpson's rule for an arbitrary function on an interval .

Test your program on the function and make sure that both rules the trapezoidal rule and Simpson's rule produce the

exact value for for various and . Then test your program for . What do you observe?

E4.2 *

Write a program to implement the composite trapezoidal rule on a uniform mesh for approximating . The program should

allow the user to input , , and .

Run your program for , , and . Find the exact value of the integral and compute the

error in your approximations. Determine experimentally the rate of convergence as .

Explain your results using the theory from lectures.

Repeat for (the theory for the rate of convergence is significantly more difficult).

E4.3.

Write a function to implement the composite Simpson's rule for approximating on a uniform mesh. The program should

allow the user to pass in , , and .

Run your program for , , , for . Find the exact value of the integral and compute the

error in your approximations. Determine experimentally the rate of convergence as .

Repeat for and . Explain your results in each case

using the theory from lectures.

E4.4.

Consider the integral . Use any method you like (e.g. you could try quad from scipy.integrate) to find the value of

this integral correct to 10‑decimal places. Approximate this integral using the composite Simpson's rule on a uniform mesh with

subintervals for . Find the error for each and estimate the rate of convergence as increases.

E4.5 *

Let be the composite trapezoidal rule applied over on the mesh , , where and .

This is used to approximate as described in lectures.

We show in lectures that , for some .

A more precise result, based on the Euler‑Maclaurin formula, shows that, provided is sufficiently smooth, there exist

, independent of , such that

(a) Write down the corresponding expansion for . \item By eliminating between the two expansions, find

such that

for some which you need not determine.

(b) Find coefficients such that

What is this method? Could you use this idea to generate more accurate rules?

f [a, b]

In [1]: def trapezium(a,b,f): 
    # fill in  
    # I = ... 
    return I 
 
def simpson(a,b,f): 
    # fill in  
    # I = ... 
    return I 

f(x) = x

∫ b

a
x dx a b f(x) = x3

In [ ]: f = lambda x:x 
print(trapezium(0,1,f),simpson(0,1,f)) 
 
f = lambda x:x**3 
print(trapezium(0,1,f), simpson(0,1,f)) 

∫
b

a
f(x) dx

a b J f

f(x) = exp(x) a = 0, b = 1 J = 4, 8, 16, 32, 64

J → ∞

f(x) = √x

In [31]: import numpy as np 
def composite_trapezium(a,b,J,f): 
    # fill in  
    # I = ... 
    return I 

∫
b

a
f(x) dx

a b J f

f(x) = exp(x) a = 0 b = 1 J = 8, 16, 32, 64, 128

J → ∞

f(x) = x3 f(x) = √x

In [1]: def composite_simpson(a,b,J,f): 
    # fill in  
    # I = ... 
    return I 

∫
4

1 exp(x2) dx1
2

J

J = 8, 16, 32, 64, 128 J J

In [3]: from scipy.integrate import quad 
f = lambda x: np.exp(x**2/2) 
# look up how quad works ... 

Q1, J(f) [0, 1] yj = jh j = 0, … , J h = 1/J J ∈ N

I(f) = ∫ 1
0 f(x) dx

I(f) − Q1, J(f) = − h2f ′′(ζ)1
12

ζ ∈ [0, 1]

f

C2, C4, C6, … h

I(f) − Q1, J(f) = C2h
2 + C4h

4 + C6h
6 + ⋯ .

I(f) − Q1, (2J)(f) C2 θ ∈ R

I(f) − (θQ1, J(f) + (1 − θ)Q1, 2J(f)) =
~
C4h

4 + ⋯ ,

~
C4 ∈ R,

a, b, c ∈ R

θQ1, J(f) + (1 − θ)Q1, 2J(f) =
J

∑
j=1

h (af(yj−1) + bf((yj−1 + yj)/2) + cf(yj)) .

In [ ]:   

	Problem sheet 4
	∙ E4.1
	∙ E4.2 *
	∙ E4.3.
	∙ E4.4.
	∙ E4.5 *

{
 "cells": [
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Problem sheet 4 \n",
 "\n",
 "Please submit the question marked * to your tutor. "
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 " ## E4.1\n",
 "Write a program to implement both the trapezoidal rule and\n",
 "Simpson's rule for an arbitrary\n",
 "function f on an interval $[a,b]$. "
]
 },
 {
 "cell_type": "code",
 "execution_count": 1,
 "metadata": {},
 "outputs": [],
 "source": [
 "def trapezium(a,b,f):\n",
 " # fill in \n",
 " # I = ...\n",
 " return I\n",
 "\n",
 "def simpson(a,b,f):\n",
 " # fill in \n",
 " # I = ...\n",
 " return I"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Test your program on the function $f(x) = x$ and make sure that both rules\n",
 "the trapezoidal rule and Simpson's rule \n",
 "produce the exact value\n",
 "for $\\int_a^b x \\, dx$ for various a and b. Then test your program\n",
 "for $f(x) = x^3$. What do you observe?"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "f = lambda x:x\n",
 "print(trapezium(0,1,f),simpson(0,1,f))\n",
 "\n",
 "f = lambda x:x**3\n",
 "print(trapezium(0,1,f), simpson(0,1,f))"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "## E4.2 *\n",
 "Write a program to implement the composite trapezoidal rule on \n",
 "a uniform mesh for approximating $\\int_a^b f(x) \\,dx$. The program\n",
 " should allow the user to input a, b, J and f. \n",
 "\n",
 "Run your program for $f(x) = \\exp(x)$, $a = 0, \\; b\n",
 "= 1$, and $J = 4,8,16,32,64 $. Find the exact value of the integral\n",
 "and compute the error in your approximations. \n",
 "Determine experimentally the\n",
 "rate of convergence as $J \\rightarrow \\infty$. \n",
 "\n",
 "Explain your\n",
 "results using the theory from lectures.\n",
 "\n",
 "Repeat for $f(x) = \\sqrt{x}$ (the theory for the rate of\n",
 "convergence is significantly more difficult)."
]
 },
 {
 "cell_type": "code",
 "execution_count": 31,
 "metadata": {},
 "outputs": [],
 "source": [
 "import numpy as np\n",
 "def composite_trapezium(a,b,J,f):\n",
 " # fill in \n",
 " # I = ...\n",
 " return I"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "## E4.3. \n",
 "\n",
 "Write a function to implement the composite \n",
 "Simpson's rule for approximating $\\int_a^b f(x) \\,dx$ on a uniform mesh.\n",
 "The program should allow the user to pass in a, b, J and f.\n",
 "\n",
 "Run your program for $f(x) = \\exp(x)$, $a = 0$, $ b\n",
 "= 1$, for $J = 8,16,32,64,128 $. \n",
 "Find the exact value of the integral\n",
 "and compute the error in your approximations. \n",
 "Determine experimentally the\n",
 "rate of convergence as $J \\to \\infty$. \n",
 "\n",
 "\n",
 "Repeat for $f(x) = x^3$ and \n",
 "$f(x) = \\sqrt{x}$. Explain your results in each case \n",
 "using the theory from lectures. "
]
 },
 {
 "cell_type": "code",
 "execution_count": 1,
 "metadata": {},
 "outputs": [],
 "source": [
 "def composite_simpson(a,b,J,f):\n",
 " # fill in \n",
 " # I = ...\n",
 " return I\n"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "## E4.4.\n",
 "\n",
 "Consider the integral $\\int_1^4 \\exp(\\frac 12 x^2) \\,dx$. Use any\n",
 "method you like (e.g. you could try quad from scipy.integrate) to find the value of this integral correct to 10-decimal places. Approximate this integral using the composite \n",
 "Simpson's rule on a uniform mesh with J subintervals for $J = 8, 16, 32,64,128$. Find the error for each J and estimate the rate of\n",
 "convergence as J increases. "
]
 },
 {
 "cell_type": "code",
 "execution_count": 3,
 "metadata": {},
 "outputs": [],
 "source": [
 "from scipy.integrate import quad\n",
 "f = lambda x: np.exp(x**2/2)\n",
 "# look up how quad works ..."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "## E4.5 *\n",
 "\n",
 "Let $Q_{1,\\,J}(f)$ be the composite trapezoidal\n",
 "rule applied over $[0,1]$ on the mesh $y_j = jh$, $j = 0,\n",
 "\\ldots , J$, where $h=1/J$ and $J\\in \\mathbb{N}$. This is\n",
 "used to approximate $I(f)=\\int_{0}^{1}f(x)\\,dx$ as described\n",
 "in lectures.\n",
 "\n",
 "We show in lectures that $I(f)-Q_{1,\\,J}(f)=-\\frac 1{12}h^{2} f''(\\zeta)$,\n",
 " for some $\\zeta\\in [0,\\,1]$.\n",
 "\n",
 " A more precise result, based on the *Euler-Maclaurin*\n",
 " formula, shows that, provided f is sufficiently smooth,\n",
 " there exist $C_{2},\\,C_{4},\\,C_{6},\\,\\ldots$, **independent**\n",
 " of h, such that\n",
 "$$\n",
 "I(f)-Q_{1,\\,J}(f)=C_{2}h^{2}+C_{4}h^{4}+C_{6}h^{6}+\\cdots.\n",
 "$$\n",
 "\n",
 "(a)\n",
 " Write down the corresponding expansion for $I(f)-Q_{1,\\,(2J)}(f)$.\n",
 "\\item By eliminating C_{2} between the two expansions, find $\\theta\\in\\mathbb{R}$ such that \n",
 "$$\n",
 "I(f)-\\left(\\theta Q_{1,\\,J}(f)+(1-\\theta)Q_{1,\\,2J}(f)\\right)\n",
 "=\\tilde{C}_{4}h^{4}+\\cdots,\n",
 "$$\n",
 "for some $\\tilde{C}_{4} \\in \\mathbb{R},$ which you need not determine.\n",
 "\n",
 "\n",
 "(b) Find coefficients $a,\\,b,\\,c\\in \\mathbb{R}$ such that\n",
 "$$\n",
 "\\theta Q_{1,\\,J}(f)+(1-\\theta)Q_{1,\\,2J}(f)\n",
 "=\\sum_{j = 1}^{J}h\\left(af(y_{j-1})+bf((y_{j-1} +\n",
 " y_j)/2)+cf(y_j)\\right).\n",
 "$$\n",
 "What is this method? Could you use this idea to generate more\n",
 "accurate rules? "
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": []
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.8.5"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}

