Problem sheet 4

Please submit the question marked * to your tutor.

E4.1

Write a program to implement both the trapezoidal rule and Simpson's rule for an arbitrary function f on an interval [a, b].

```
In [1]: def trapezium(a,b,f):
    # fill in
    # I = ...
    return I

def simpson(a,b,f):
    # fill in
    # I = ...
    return I
```

Test your program on the function f(x) = x and make sure that both rules the trapezoidal rule and Simpson's rule produce the exact value for $\int_a^b x \, dx$ for various a and b. Then test your program for $f(x) = x^3$. What do you observe?

```
In []: f = lambda x:x
print(trapezium(0,1,f), simpson(0,1,f))
f = lambda x:x**3
print(trapezium(0,1,f), simpson(0,1,f))
```

E4.2 *

Write a program to implement the composite trapezoidal rule on a uniform mesh for approximating $\int_a^b f(x) dx$. The program should allow the user to input a, b, J and f.

Run your program for $f(x) = \exp(x)$, a = 0, b = 1, and J = 4, 8, 16, 32, 64. Find the exact value of the integral and compute the error in your approximations. Determine experimentally the rate of convergence as $J \to \infty$.

Explain your results using the theory from lectures.

Repeat for $f(x) = \sqrt{x}$ (the theory for the rate of convergence is significantly more difficult).

```
In [31]: import numpy as np
def composite_trapezium(a,b,J,f):
    # fill in
    # I = ...
return I
```

E4.3.

Write a function to implement the composite Simpson's rule for approximating $\int_a^b f(x) dx$ on a uniform mesh. The program should allow the user to pass in a, b, J and f.

Run your program for $f(x) = \exp(x)$, a = 0, b = 1, for J = 8, 16, 32, 64, 128. Find the exact value of the integral and compute the error in your approximations. Determine experimentally the rate of convergence as $J \to \infty$.

Repeat for $f(x) = x^3$ and $f(x) = \sqrt{x}$. Explain your results in each case using the theory from lectures.

```
In [1]: def composite_simpson(a,b,J,f):
    # fill in
    # I = ...
return I
```

E4.4.

Consider the integral $\int_{1}^{4} \exp(\frac{1}{2}x^2) dx$. Use any method you like (e.g. you could try quad from scipy.integrate) to find the value of this integral correct to 10-decimal places. Approximate this integral using the composite Simpson's rule on a uniform mesh with J subintervals for J = 8, 16, 32, 64, 128. Find the error for each J and estimate the rate of convergence as J increases.

```
In [3]: from scipy.integrate import quad
f = lambda x: np.exp(x**2/2)
# look up how quad works ...
```

E4.5 *

Let $Q_{1,J}(f)$ be the composite trapezoidal rule applied over [0,1] on the mesh $y_j = jh$, j = 0, ..., J, where h = 1/J and $J \in \mathbb{N}$. This is used to approximate $I(f) = \int_0^1 f(x) dx$ as described in lectures.

We show in lectures that $I(f)-Q_{1,\,J}(f)=-rac{1}{12}h^2f''(\zeta)$, for some $\zeta\in[0,\,1].$

A more precise result, based on the *Euler-Maclaurin* formula, shows that, provided f is sufficiently smooth, there exist C_2, C_4, C_6, \ldots , **independent** of h, such that

$$I(f) - Q_{1,\,J}(f) = C_2 h^2 + C_4 h^4 + C_6 h^6 + \cdots$$

(a) Write down the corresponding expansion for $I(f) - Q_{1, (2J)}(f)$. \item By eliminating C_2 between the two expansions, find $\theta \in \mathbb{R}$ such that

$$I(f) - (heta Q_{1,\,J}(f) + (1- heta) Q_{1,\,2J}(f)) = ilde{C}_4 h^4 + \cdots,$$

for some $ilde{C}_4 \in \mathbb{R},$ which you need not determine.

(b) Find coefficients $a,\,b,\,c\in\mathbb{R}$ such that

$$heta Q_{1,\,J}(f) + (1- heta) Q_{1,\,2J}(f) = \sum_{j=1}^J h\left(af(y_{j-1}) + bf((y_{j-1}+y_j)/2) + cf(y_j)
ight).$$

What is this method? Could you use this idea to generate more accurate rules?