Problem sheet 4

Please submit the question marked * to your tutor.

E4.1

Write a program to implement both the trapezoidal rule and Simpson's rule for an arbitrary function f on an interval [a, b].

def trapezium(a,b, f):
# fill in
# I = ...

return I
def simpson(a,b, f):

# fill in
# I = ...
return I

Test your program on the function f(ac) = x and make sure that both rules the trapezoidal rule and Simpson's rule produce the

b .
exact value for fa x dz for various a and b. Then test your program for f(x) = z3. What do you observe?

f = lambda x:x
print (trapezium(0,1,f),simpson (0,1, f))

f = lambda x:x**3
print (trapezium(0,1,f), simpson(0,1,f))

E4.2*

. . . . . . . b
Write a program to implement the composite trapezoidal rule on a uniform mesh for approximating fa f(m) dz. The program should

allow the user to input a, b, J and f.

Run your program for f(z) = exp(z),a =0, b=1,and J = 4, 8, 16, 32, 64. Find the exact value of the integral and compute the
error in your approximations. Determine experimentally the rate of convergence as J — oo.

Explain your results using the theory from lectures.
Repeat for f(x) = \/5 (the theory for the rate of convergence is significantly more difficult).

import numpy as np

def composite trapezium(a,b,J, f):
# fill in
# I = ...

return I

E4.3.

. . . . . . . b .
Write a function to implement the composite Simpson's rule for approximating fa f(:zz) dz on a uniform mesh. The program should

allow the user to passina, b, J and f.

Run your program for f(z) = exp(z),a = 0,b =1, for J = 8,16, 32, 64, 128. Find the exact value of the integral and compute the
error in your approximations. Determine experimentally the rate of convergence as J — oo.

Repeat for f(z) = 2 and f(x) = /. Explain your results in each case
using the theory from lectures.
def composite simpson(a,b,J, f):
# fill in

#I=...
return I

E4.4.

4
Consider the integral fl exp(%xz) dz. Use any method you like (e.g. you could try quad from scipy.integrate) to find the value of

this integral correct to 10-decimal places. Approximate this integral using the composite Simpson's rule on a uniform mesh with J
subintervals for J = 8,16, 32, 64, 128. Find the error for each J and estimate the rate of convergence as J increases.

from scipy.integrate import quad
f = lambda x: np.exp (x**2/2)
# look up how quad works ...

E4.5*

Let @1, s(f) be the composite trapezoidal rule applied over [0, 1] on the mesh y; = jh, j =0,...,J, where h =1/J and J € N.
This is used to approximate I(f) = fol f(z) dz as described in lectures.

We show in lectures that I(f) — Q1,7(f) = — 112 h%f"(¢), for some ¢ € [0, 1].

A more precise result, based on the Euler-Maclaurin formula, shows that, provided f is sufficiently smooth, there exist
Cs, C4, Cs, ..., independent of h, such that

I(f) = Q1,5(f) = Coh® + Cyh* + Ceh® + - --.

(a) Write down the corresponding expansion for I(f) — Q1 (2,5 (f)- \item By eliminating C; between the two expansions, find 6 € R
such that

I(f) = (0Qu, 5(f) + (1 = 0)Qy,2s(f)) = Cub* +---,
for some C~’4 € R, which you need not determine.
(b) Find coefficients a, b, ¢ € R such that

0Q15(f) + (1= 0)Qu20(f) = D h(af(yi1) + bf (w1 +17)/2) + cf(vs) -

J
Jj=1

What is this method? Could you use this idea to generate more accurate rules?
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