Problem sheet 3

Please submit the question marked * to your tutor.

E3.1*

In this exercise, you will write a function to compute the error of the piecewise linear interpolant. Your function takes as input
arguments a, b € R with a < b, a positive integer J, and a function f.

Your function should then calculate h = (b — a)/J, the points y; = a + jh, 7 =0, ..., J, and evaluate
en = max |f(z) — p1s(2)l-
j=1,...,J

where p1,7 is the piecewise-linear interpolant of f with respect to the mesh y;, and z; is the midpoint of the interval [yjfl, yj].
Fora = 0,b = 1and each of f(x) = exp(x) and f(z) = sinx, draw up a table of e;, against h for h = 1/8,1/16,1/32, . ...
Experimentally assess the rate of convergence as h — 0. Explain the results (theoretically).

Repeat for f(z) = |z — 1/2|"* and [a, b] = [0, 1]. Explain the results as well as you can also in this case.

import numpy as np
def error(a,b,J, f):
#fill in
return eh

#investigating for exp (x)
func = lambda x: np.exp (x)
for i in range(3,10):
J = 2%%]
# Call error(0,1,Jd, func) and investigate the error

#investigating for |x-1/2|"{1/4}

E3.2

Let [a,b] = [0, 1] and consider a generalmesh0 =yp < y1 < --- < yy=1

Let p1,7 denote the piecewise-linear interpolant of f that coincides with f at the end-points of the subintervals. A measure of the
error is

e;j = max |(f—p1s)(2)l,
j=1,...,J

where z; is the mid-point of [y;_1, y;]. | have changed the the notation from ey, to e because | want to focus on how the error

decreases as J increases. J is a reasonable measure of the amount of computation needed to compute the interpolant.
Consider the function f(z) = z'/4.

(a) For the uniform mesh y; = j/J with 5 =0, ..., J, draw up a table of ey against J and show experimentally that the rate of
convergence of e to 0 is about O(J ~1/4).

(b) Repeat this experiment with the same f(:z;) but use instead the adapted mesh y; = (j/J)S. What rate of convergence do you

now observe as J increases?

#Code

E3.3*

In this question, you will theoretically prove the convergence behaviour observed in E2.
(a) For the uniform mesh, explain the O(J_1/4) convergence by proving an estimate for e ;.

Hint: when estimating the error on the first subinterval, use the triangle inequality to get

||f - Pl,J||oo,[y0,y1] < ||f||oo,[yo,y1} + ||p1,J||oo,[y0,y1] < 2yi/4. For all other subintervals, use error estimates from lectures.

(b) For the adapted mesh in the previous question, explain your calculations by proving an estimate for e that explains the (’)(sz)
convergence.
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