Problem sheet 3

Please submit the question marked * to your tutor.

E3.1*

In this exercise, you will write a function to compute the error of the piecewise linear interpolant. Your function takes as input arguments $a, b \in \mathbb{R}$ with $a<b$, a positive integer J, and a function f.

Your function should then calculate $h=(b-a) / J$, the points $y_{j}=a+j h, j=0, \ldots, J$, and evaluate

$$
e_{h}:=\max _{j=1, \ldots, J}\left|f\left(z_{j}\right)-p_{1, J}\left(z_{j}\right)\right|
$$

where $p_{1, J}$ is the piecewise-linear interpolant of f with respect to the mesh y_{j}, and z_{j} is the midpoint of the interval $\left[y_{j-1}, y_{j}\right]$.
For $a=0, b=1$ and each of $f(x)=\exp (x)$ and $f(x)=\sin x$, draw up a table of e_{h} against h for $h=1 / 8,1 / 16,1 / 32, \ldots$
Experimentally assess the rate of convergence as $h \rightarrow 0$. Explain the results (theoretically).
Repeat for $f(x)=|x-1 / 2|^{1 / 4}$ and $[a, b]=[0,1]$. Explain the results as well as you can also in this case.

```
import numpy as np
def error(a,b,J, f):
    #fill in
    return eh
```

```
#investigating for exp(x)
func = lambda x: np.exp (x)
for i in range(3,10):
    J = 2**i
    # Call error(0,1,J, func) and investigate the error
```

\#investigating for |x-1/2|^\{1/4\}

E3.2

Let $[a, b]=[0,1]$ and consider a general mesh $0=y_{0}<y_{1}<\cdots<y_{J}=1$
Let $p_{1, J}$ denote the piecewise-linear interpolant of f that coincides with f at the end-points of the subintervals. A measure of the error is

$$
e_{J}=\max _{j=1, \ldots, J}\left|\left(f-p_{1, J}\right)\left(z_{j}\right)\right|
$$

where z_{j} is the mid-point of $\left[y_{j-1}, y_{j}\right]$. I have changed the the notation from e_{h} to e_{J} because I want to focus on how the error decreases as J increases. J is a reasonable measure of the amount of computation needed to compute the interpolant.

Consider the function $f(x)=x^{1 / 4}$.
(a) For the uniform mesh $y_{j}=j / J$ with $j=0, \ldots, J$, draw up a table of e_{J} against J and show experimentally that the rate of convergence of e_{J} to 0 is about $\mathcal{O}\left(J^{-1 / 4}\right)$.
(b) Repeat this experiment with the same $f(x)$ but use instead the adapted mesh $y_{j}=(j / J)^{8}$. What rate of convergence do you now observe as J increases?

```
#Code
```


E3.3*

In this question, you will theoretically prove the convergence behaviour observed in E2.
(a) For the uniform mesh, explain the $\mathcal{O}\left(J^{-1 / 4}\right)$ convergence by proving an estimate for e_{J}.

Hint: when estimating the error on the first subinterval, use the triangle inequality to get $\left\|f-p_{1, J}\right\|_{\infty,\left[y_{0}, y_{1}\right]} \leq\|f\|_{\infty,\left[y_{0}, y_{1}\right]}+\left\|p_{1, J}\right\|_{\infty,\left[y_{0}, y_{1}\right]} \leq 2 y_{1}^{1 / 4}$. For all other subintervals, use error estimates from lectures.
(b) For the adapted mesh in the previous question, explain your calculations by proving an estimate for e_{J} that explains the $\mathcal{O}\left(J^{-2}\right)$ convergence.

