
Problem sheet 2

Please submit the question marked * to your tutor.

E2.1

Use elementary calculus to prove that

and hence complete the proof of Corollary 2.2.

E2.2 *

Consider .

(a) Write down the linear polynomial  that interpolates .

(b) Use Corollary 2.2 to bound  over  where . Compare your bound with the actual error, which can be

found analytically in this case.

(c) Find the quadratic polynomial  that interpolates  at , , and the additional point .

(d) Next find the cubic polynomial  which interpolates  at  and the additional point . Comment on the relation

between  and .

E2.3

The following function interpolates a given function  between the two points  and  (input arguments  and ). p1 is a vector

containing all the values of the function  at 100 equally spaced points in .

Write code to plot  and  (in different colours) on one graph, and then the error  on another graph.

E2.4*

In this exercise, numerically investigate

for , where the maximum is taken over 100 equally spaced points in .

Run your program for the case  and draw up a table of  against , for . Investigate

the convergence rate as  experimentally, by making the conjecture  where  and  are constants and then finding

approximations to .

Note that as in lectures, computing  will give approximations to . This can be done either by editing the program or

using a calculator.

Repeat the exercise for . Explain your observations by appealing to the theory from lectures.

max
x∈[x0,x1]

(x − x0)(x1 − x) = (x0 − x1)21

4

f(x) = x3 + 2x + 3

p1 f

|e(x)| x ∈ [0, 1] e := f − p1

p2 f x0 x1 x2 = 2

p3 f x0, x1, x2 x3 = −1

f p3

f x0 x1 x0 x1

p1(x) [x0, x1]

In [1]: import numpy as np  
def f(x): 
    return np.sqrt(x) 
     
def linear_interp(x0,x1,mesh):    
    vecone = np.ones(100,) 
    p1 =  f(x0) + ((f(x1)  f(x0))/(x1x0))*(mesh  x0)     
    return p1 
 
mesh = np.linspace(0,1,100) 
p1 = linear_interp(0,1,mesh) 

p1(x) f(x) e(x) := f(x) − p1(x)

In [2]: import matplotlib.pyplot as plt 
# fill in 

eh := max
x∈[−h,h]

|f(x) − p1(x)|

h > 0 [−h, h]

f(x) = exp(x) eh h h = 1/8, 1/16, 1/32, ⋯ , 1/256

h → 0 eh = Chα C α

α

log2(e2h/eh) α

f(x) = sin x

In [3]: def f(x): 
    return np.exp(x) 
     
#takes as input h and returns the maximum error eh as defined above 
def max_err_linear_interp(h):    
    #fill in 
    return eh 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