
Problem sheet 2

Please submit the question marked * to your tutor.

E2.1

Use elementary calculus to prove that

and hence complete the proof of Corollary 2.2.

E2.2 *

Consider .

(a) Write down the linear polynomial that interpolates .

(b) Use Corollary 2.2 to bound over where . Compare your bound with the actual error, which can be

found analytically in this case.

(c) Find the quadratic polynomial that interpolates at , , and the additional point .

(d) Next find the cubic polynomial which interpolates at and the additional point . Comment on the relation

between and .

E2.3

The following function interpolates a given function between the two points and (input arguments and). p1 is a vector

containing all the values of the function at 100 equally spaced points in .

Write code to plot and (in different colours) on one graph, and then the error on another graph.

E2.4*

In this exercise, numerically investigate

for , where the maximum is taken over 100 equally spaced points in .

Run your program for the case and draw up a table of against , for . Investigate

the convergence rate as experimentally, by making the conjecture where and are constants and then finding

approximations to .

Note that as in lectures, computing will give approximations to . This can be done either by editing the program or

using a calculator.

Repeat the exercise for . Explain your observations by appealing to the theory from lectures.

max
x∈[x0,x1]

(x − x0)(x1 − x) = (x0 − x1)21

4

f(x) = x3 + 2x + 3

p1 f

|e(x)| x ∈ [0, 1] e := f − p1

p2 f x0 x1 x2 = 2

p3 f x0, x1, x2 x3 = −1

f p3

f x0 x1 x0 x1

p1(x) [x0, x1]

In [1]: import numpy as np  
def f(x): 
    return np.sqrt(x) 
     
def linear_interp(x0,x1,mesh):    
    vecone = np.ones(100,) 
    p1 =  f(x0) + ((f(x1)  f(x0))/(x1x0))*(mesh  x0)     
    return p1 
 
mesh = np.linspace(0,1,100) 
p1 = linear_interp(0,1,mesh) 

p1(x) f(x) e(x) := f(x) − p1(x)

In [2]: import matplotlib.pyplot as plt 
# fill in 

eh := max
x∈[−h,h]

|f(x) − p1(x)|

h > 0 [−h, h]

f(x) = exp(x) eh h h = 1/8, 1/16, 1/32, ⋯ , 1/256

h → 0 eh = Chα C α

α

log2(e2h/eh) α

f(x) = sin x

In [3]: def f(x): 
    return np.exp(x) 
     
#takes as input h and returns the maximum error eh as defined above 
def max_err_linear_interp(h):    
    #fill in 
    return eh 

	Problem sheet 2
	∙ E2.1
	∙ E2.2 *
	∙ E2.3
	∙ E2.4*

{
 "cells": [
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Problem sheet 2\n",
 "\n",
 "Please submit the question marked * to your tutor. "
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "## E2.1\n",
 "Use elementary calculus to prove that\n",
 "$$\n",
 "\\max_{x\\in [x_0,x_1]} (x-x_0)(x_1-x) = \\frac14 (x_0-x_1)^2\n",
 "$$\n",
 "and hence complete the proof of Corollary 2.2."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "## E2.2 *\n",
 "\n",
 "Consider $f(x) = x^3+2x+3$.\n",
 "\n",
 "(a) Write down the linear polynomial p_1 that interpolates f.\n",
 "\n",
 "(b) Use Corollary 2.2 to bound $|e(x)|$ over $x\\in [0,1]$ where $e:= f-p_1$.\n",
 "Compare your bound\n",
 "with the actual error, which can be found analytically in this case.\n",
 "\n",
 "(c) Find the quadratic polynomial p_2 that interpolates f at x_0, x_1, and the additional point\n",
 "$x_2 = 2$.\n",
 "\n",
 "(d) Next find the cubic polynomial p_3 which interpolates f at x_0, x_1, x_2 and the additional point\n",
 "$x_3 = −1$. Comment on the relation between f and p_3."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "## E2.3\n",
 "The following function\n",
 "interpolates a given function $f $ between the two points x_0 and x_1 (input arguments x_0 and x_1). p1 is a vector containing all the values of the function $p_1(x)$ at 100 equally spaced points in $[x_0,x_1]$."
]
 },
 {
 "cell_type": "code",
 "execution_count": 1,
 "metadata": {},
 "outputs": [],
 "source": [
 "import numpy as np \n",
 "def f(x):\n",
 " return np.sqrt(x)\n",
 " \n",
 "def linear_interp(x0,x1,mesh): \n",
 " vecone = np.ones(100,)\n",
 " p1 = f(x0) + ((f(x1) - f(x0))/(x1-x0))*(mesh - x0) \n",
 " return p1\n",
 "\n",
 "mesh = np.linspace(0,1,100)\n",
 "p1 = linear_interp(0,1,mesh)"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Write code to plot $p_1(x)$ and $f(x)$ (in different colours) on one graph, and then the error $e(x) := f(x) − p_1(x)$ on another graph."
]
 },
 {
 "cell_type": "code",
 "execution_count": 2,
 "metadata": {},
 "outputs": [],
 "source": [
 "import matplotlib.pyplot as plt\n",
 "# fill in"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "## E2.4*\n",
 "\n",
 "In this exercise, numerically investigate\n",
 "$$\n",
 "e_h:= \\max_{x\\in [-h,h]} |f(x) - p_1(x)|\n",
 "$$\n",
 "for $h>0$, where the maximum is taken over 100 equally spaced points in $[-h,h]$.\n",
 "\n",
 "Run your program for the case $f(x) = \\exp(x)$ and draw up a table of e_h against h, for $h = 1/8, 1/16, 1/32, \\cdots, 1/256$. Investigate the convergence rate as $h\\to 0$ experimentally, by making the conjecture $e_h = C h^\\alpha$ where C and $\\alpha$ are constants and then finding approximations to $\\alpha$. \n",
 "\n",
 "Note that as in lectures, computing $\\log_2(e_{2h}/e_h)$ will give approximations to $\\alpha$. This can be done either by editing the program or using a calculator.\n",
 "\n",
 "\n",
 "Repeat the exercise for $f(x) = \\sin x$. Explain your observations by appealing to the theory from lectures."
]
 },
 {
 "cell_type": "code",
 "execution_count": 3,
 "metadata": {},
 "outputs": [],
 "source": [
 "def f(x):\n",
 " return np.exp(x)\n",
 " \n",
 "#takes as input h and returns the maximum error eh as defined above\n",
 "def max_err_linear_interp(h): \n",
 " #fill in\n",
 " return eh"
]
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.8.5"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}

