Problem sheet 2

Please submit the question marked * to your tutor.

E2.1

Use elementary calculus to prove that

$$
\max _{x \in\left[x_{0}, x_{1}\right]}\left(x-x_{0}\right)\left(x_{1}-x\right)=\frac{1}{4}\left(x_{0}-x_{1}\right)^{2}
$$

and hence complete the proof of Corollary 2.2.

E2.2 *

Consider $f(x)=x^{3}+2 x+3$.
(a) Write down the linear polynomial p_{1} that interpolates f.
(b) Use Corollary 2.2 to bound $|e(x)|$ over $x \in[0,1]$ where $e:=f-p_{1}$. Compare your bound with the actual error, which can be found analytically in this case.
(c) Find the quadratic polynomial p_{2} that interpolates f at x_{0}, x_{1}, and the additional point $x_{2}=2$.
(d) Next find the cubic polynomial p_{3} which interpolates f at x_{0}, x_{1}, x_{2} and the additional point $x_{3}=-1$. Comment on the relation between f and p_{3}.

E2.3

The following function interpolates a given function f between the two points x_{0} and x_{1} (input arguments x_{0} and x_{1}). p1 is a vector containing all the values of the function $p_{1}(x)$ at 100 equally spaced points in $\left[x_{0}, x_{1}\right]$.

```
import numpy as np
def f(x):
    return np.sqrt(x)
def linear_interp(x0,x1,mesh):
    vecone = np.ones(100,)
    p1 = f(x0) + ((f(x1) - f(x0))/(x1-x0))*(mesh - x0)
    return p1
mesh = np.linspace(0,1,100)
p1 = linear_interp(0,1,mesh)
```

Write code to plot $p_{1}(x)$ and $f(x)$ (in different colours) on one graph, and then the error $e(x):=f(x)-p_{1}(x)$ on another graph.

```
import matplotlib.pyplot as plt
# fill in
```


E2.4*

In this exercise, numerically investigate

$$
e_{h}:=\max _{x \in[-h, h]}\left|f(x)-p_{1}(x)\right|
$$

for $h>0$, where the maximum is taken over 100 equally spaced points in $[-h, h]$.
Run your program for the case $f(x)=\exp (x)$ and draw up a table of e_{h} against h, for $h=1 / 8,1 / 16,1 / 32, \cdots, 1 / 256$. Investigate the convergence rate as $h \rightarrow 0$ experimentally, by making the conjecture $e_{h}=C h^{\alpha}$ where C and α are constants and then finding approximations to α.

Note that as in lectures, computing $\log _{2}\left(e_{2 h} / e_{h}\right)$ will give approximations to α. This can be done either by editing the program or using a calculator.

Repeat the exercise for $f(x)=\sin x$. Explain your observations by appealing to the theory from lectures.

```
def f(x):
    return np.exp(x)
#takes as input h and returns the maximum error eh as defined above
def max_err_linear_interp(h):
    #fill in
    return eh
```

