MA20222

Problem Sheet 10

Do all questions and hand in your answers to the ***starred*** questions as instructed by your tutor.

E10.1. (a) Compute $\text{Cond}_1(A)$ and $\text{Cond}_{\infty}(A)$, the 1- and ∞ -norm condition numbers of

$$A = \begin{bmatrix} 0.01 & 2\\ 0 & 1 \end{bmatrix}.$$

(b) Compute $||A||_2$, where

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

- (c) Let A be a diagonal matrix with entries d_1, d_2, \ldots, d_n . Give an expression for $\text{Cond}_2(A)$.
- E10.2. (a) A scalar λ is an eigenvalue of a $d \times d$ matrix A if there exists a vector $\boldsymbol{u} \neq \boldsymbol{0}$ such that $A\boldsymbol{u} = \lambda \boldsymbol{u}$. Show that $|\lambda| \leq ||A||_{\text{op}}$ for any operator norm and any eigenvalue λ of A.
 - (b) Show that $\text{Cond}(A) \ge 1$, where $\text{Cond}(\cdot)$ is the condition number relative to an operator norm $\|\cdot\|_{\text{op}}$.
 - (c) An orthogonal matrix Q is a transformation that leaves the Euclidean distance constant, in other words $||Q\boldsymbol{x}||_2 = ||\boldsymbol{x}||_2$ for each vector \boldsymbol{x} . Show that $||Q||_2 = 1$ for orthogonal Q and that $\text{Cond}_2(Q) = 1$. (Orthogonal matrices are perfectly conditioned.)
- *E10.3. Consider vectors \boldsymbol{x} , $\boldsymbol{\Delta x}$, \boldsymbol{b} , and $\boldsymbol{\Delta b}$ such that

$$A\boldsymbol{x} = \boldsymbol{b}, \qquad A\Delta \boldsymbol{x} = \Delta \boldsymbol{b}.$$

(a) By using $||A\boldsymbol{x}|| \leq ||A||_{\text{op}} ||\boldsymbol{x}||$, show that

$$\frac{\|\boldsymbol{\Delta}\boldsymbol{x}\|}{\|\boldsymbol{x}\|} \leq \operatorname{Cond}(A) \frac{\|\boldsymbol{\Delta}\boldsymbol{b}\|}{\|\boldsymbol{b}\|}.$$

(b) By using the above, estimate $\operatorname{Cond}(A)$ with respect to $\|\cdot\|_{\infty}$ in the case

$$A = \begin{bmatrix} 1 & 1/2 \\ 1/2 & 1/3 \end{bmatrix}, \qquad \mathbf{\Delta} \mathbf{x} = \begin{bmatrix} 0.4 \\ -0.9 \end{bmatrix}, \qquad \mathbf{x} = \begin{bmatrix} -0.9 \\ -5 \end{bmatrix}.$$