G_{2} Geometry

Problem sheet on classifying spaces

The following exercises take you through the computation of (most of) the cohomology of $B U(n)$, $B O(n)$ and $B S O(n)$. They rely on the following two results.
Leray-Hirsch theorem Let $\pi: E \rightarrow B$ be a fibre bundle, $i: F \rightarrow E$ the inclusion of a fibre. Let R be a ring, and suppose that $H^{k}(F ; R)$ is free and finitely generated (as an R-module) for each k. If for each k there are classes $a_{j} \in H^{k}(E ; R)$ such that $i^{*} a_{j}$ form a basis of $H^{k}(F ; R)$, then

$$
H^{*}(B ; R) \otimes_{R} H^{*}(F ; R) \rightarrow H^{*}(E ; R), b \otimes i^{*} a_{j} \mapsto \pi^{*} b \cup a_{j}
$$

is an isomorphism.
Thom isomorphism theorem Let $\pi: E \rightarrow B$ be a real vector bundle of rank n, and let \dot{E} be the complement of the graph of the zero section in the total space of E.
(i) There is a unique $u_{2}(E) \in H^{n}\left(E, \dot{E} ; \mathbb{Z}_{2}\right)$ such that the restriction of $u_{2}(E)$ to any fibre \mathbb{R}^{n} equals the generator of $H^{n}\left(\mathbb{R}, \mathbb{R} \backslash\{0\} ; \mathbb{Z}_{2}\right)$.

$$
H^{k}\left(B ; \mathbb{Z}_{2}\right) \rightarrow H^{k+n}\left(E, \dot{E} ; \mathbb{Z}_{2}\right), a \mapsto \pi^{*} a \cup u(E)
$$

is an isomorphism.
(ii) If E is oriented then there is a unique $u(E) \in H^{n}(E, \dot{E} ; \mathbb{Z})$ such that the restriction of $u(E)$ to any fibre \mathbb{R}^{n} equals the positive generator of $H^{n}(\mathbb{R}, \mathbb{R} \backslash\{0\} ; \mathbb{Z})$.

$$
H^{k}(B ; \mathbb{Z}) \rightarrow H^{k+n}(E, \dot{E} ; \mathbb{Z}), a \mapsto \pi^{*} a \cup u(E)
$$

is an isomorphism.

1. For an oriented real rank n vector bundle $\pi: E \rightarrow X$, let $u(E) \in H^{n}(E, \dot{E} ; \mathbb{Z})$ be the Thom class, and define the Euler class $e(E) \in H^{n}(X ; \mathbb{Z})$ by

$$
\pi^{*} e(E) \cup u(E)=u(E) \cup u(E) \in H^{2 n}(E, \dot{E} ; \mathbb{Z})
$$

Show that
(a) e is a characteristic class.
(b) If n is odd then $2 e=0 \in H^{n}(X ; \mathbb{Z})$.
(c) $e\left(E_{1} \oplus E_{2}\right)=e\left(E_{1}\right) e\left(E_{2}\right) \in H^{n_{1}+n_{2}}(X)$ for any oriented $E_{i} \rightarrow X$ of rank n_{i}.
(d) $e\left(\mathcal{O}_{\mathbb{C} P^{1}}\right) \in H^{2}\left(\mathbb{C} P^{1}\right)$ is the negative generator.
2. Line splitting principle for complex vector bundles
(a) Let $E \rightarrow X$ be a complex vector bundle of $\operatorname{rank} n$, and let $\pi: \mathbb{P}(E) \rightarrow X$ be the fibre bundle whose fibre over x is the projectivisation $\mathbb{P}\left(E_{x}\right)$. Let $e \in H^{2}(\mathbb{P}(E) ; \mathbb{Z})$ be the Euler class of the tautological bundle $\mathcal{O}_{E}(-1)$ over the total space of $\mathbb{P}(E)$. Show that $H^{*}(\mathbb{P}(E) ; \mathbb{Z})$ is isomorphic to the free $H^{*}(X ; \mathbb{Z})$ module generated by $1, e, \ldots, e^{n-1}$, and that there exists a rank $n-1$ complex vector bundle $E_{1} \rightarrow \mathbb{P}(E)$ such that $\pi^{*} E \cong \mathcal{O}_{E}(-1) \oplus E_{1}$.
(b) Pick an arbitrary hermitian metric on E. The "flag bundle" π : $\mathrm{Fl} E \rightarrow X$ is the bundle whose fibre over x is $\left\{\right.$ ordered set of orthogonal lines $\left.\ell_{1}, \ldots, \ell_{n} \subset E_{x}\right\}$. Show that $\pi^{*} E$ is isomorphic to a direct sum of n complex line bundles, and that $\pi^{*}: H^{*}(X ; \mathbb{Z}) \rightarrow$ $H^{*}(\mathrm{Fl} E ; \mathbb{Z})$ is injective.
3. Construction of Chern classes Let $E \rightarrow X$ be a complex vector bundle of rank n. Q2(a) implies that, with $e \in H^{2}(\mathbb{P}(E) ; \mathbb{Z})$ as before, there exist unique classes $c_{k}(E) \in H^{2 k}(X ; \mathbb{Z})$ such that

$$
e^{n}=-\sum_{k=1}^{n} e^{n-k} \pi^{*} c_{k}(E)
$$

Define the total Chern class by

$$
c(E):=\sum_{k=0}^{n} c_{k} \in H^{*}(X ; \mathbb{Z}) .
$$

(a) Let X be the product of n copies of $\mathbb{C} P^{\infty}$, let $E=L_{1} \oplus \cdots \oplus L_{n}$ be the direct sum of its n tautological line bundle, and $t_{i}=e\left(L_{i}\right) \in H^{2}(X ; \mathbb{Z})$. Introducing a formal variable t, define $f \in H^{*}(X ; \mathbb{Z})[t]$ by

$$
f(t)=\sum_{k=0}^{n} c_{k}(E) t^{n-k}
$$

Show that $f\left(t_{i}\right)=0 \in H^{2 k}(X ; \mathbb{Z})$ for each i, and deduce that the total Chern classes satisfy

$$
c(E)=c\left(L_{1}\right) \cdots c\left(L_{n}\right) \in H^{*}(X ; \mathbb{Z}) .
$$

(Hint: Define a section $s_{i}: X \rightarrow \mathbb{P}(E)$ such that $s_{i}^{*} e=t_{i}$. Use that $\mathbb{Z}\left[t_{1}, \ldots, t_{n}, t\right]$ is an integral domain.)
(b) Show that the total Chern class is exponential:

$$
c\left(E_{1} \oplus E_{2}\right)=c\left(E_{1}\right) c\left(E_{2}\right)
$$

for any complex vector bundles $E_{1}, E_{2} \rightarrow Y$.
(c) Suppose \hat{c}_{k} are a family of characteristic classes of complex vector bundles $E \rightarrow Y, \hat{c}_{k}(E) \in$ $H^{2 k}(Y ; \mathbb{Z})$, such that the total class $c(E)$ is exponential. Show that $\hat{c}=\lambda c$ for some constant $\lambda \in \mathbb{Z}$.
4. (a) Let $B U(n)=\operatorname{Gr}_{n}\left(\mathbb{C}^{\infty}\right)$, and $E U(n)=\left\{\left(v_{1}, \ldots, v_{n}\right): v_{i} \in \mathbb{C}^{\infty}\right.$ hermitian-orthonormal $\}$. Show that $E U(n) \rightarrow B U(n)$ is a contractible $U(n)$ bundle.
(b) Show that $H^{*}(\operatorname{Fl} E U(n) ; \mathbb{Z})=\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]$, where t_{i} are Euler classes of n tautological line bundles. (Hint: Apply Leray-Hirsch, or show that $\operatorname{Fl} E U(n)$ is homotopy equivalent to the product of n copies of $\mathbb{C} P^{\infty}$.)
(c) Let $c_{k}:=c_{k}(E U(n)) \in H^{2 k}(B U(n) ; \mathbb{Z})$. Show that $\pi^{*}: H^{*}(B U(n) ; \mathbb{Z}) \rightarrow H^{*}(\operatorname{Fl} E U(n) ; \mathbb{Z})$ defines an isomorphism $H^{*}(B U(n) ; \mathbb{Z}) \cong \mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]^{S_{n}}$, mapping c_{k} to the k th elementary symmetric polynomial $\sigma_{k}\left(t_{1}, \ldots, t_{n}\right)$.
5. Show that for any complex vector bundle $E \rightarrow X$
(a) $c_{1}(E)=c_{1}(\operatorname{det} E)$,
(b) $c_{n}(E)=e\left(E_{\mathbb{R}}\right)$.
6. Stiefel-Whitney classes
(a) Let $E \rightarrow X$ be a real vector bundle of rank n. Find a map $f: Y \rightarrow X$ such that $f^{*} E$ is isomorphic to a direct sum of n real line bundles, and $f^{*}: H^{*}\left(X ; \mathbb{Z}_{2}\right) \rightarrow H^{*}\left(Y ; \mathbb{Z}_{2}\right)$ is injective.
(b) Construct characteristic classes $w_{k}(E) \in H^{k}\left(X ; \mathbb{Z}_{2}\right)$ of real vector bundle $E \rightarrow X$ such that the total classes $w(E)$ is exponential, and show that they are the unique non-zero such classes.
(c) Show that $B O(n)=\operatorname{Gr}_{n}\left(\mathbb{R}^{\infty}\right)$. Letting $w_{k}:=w_{k}(E O(n)) \in H^{*}\left(B O(n) ; \mathbb{Z}_{2}\right)$, show that $H^{*}\left(B O(n) ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[w_{1}, \ldots, w_{n}\right]$.
(d) For a real vector bundle $E \rightarrow X$ of rank n, show that the image of $w_{n}(E) \in H^{n}\left(X ; \mathbb{Z}_{2}\right)$ under the Thom isomorphism $H^{n}\left(X ; \mathbb{Z}_{2}\right) \rightarrow H^{n}\left(E, \dot{E} ; \mathbb{Z}_{2}\right)$ is the square of the Thom class.
7. (a) Show that $B S O(n)=\widetilde{\operatorname{Gr}}\left(\mathbb{R}^{\infty}\right)$, the Grassmannian of oriented n-dimensional subspace in \mathbb{R}^{∞} (a double cover of $\mathrm{Gr}_{n}(\infty)$).
(b) For $k \geq 2$, write w_{k} also for $w_{k}(E S O(n)) \in H^{k}\left(B S O(n) ; \mathbb{Z}_{2}\right)$. Show that $H^{k}\left(B S O(n) ; \mathbb{Z}_{2}\right)=$ $\mathbb{Z}_{2}\left[w_{2}, \ldots, w_{n}\right]$. (Hint: Consider classifying maps $B S O(n) \rightarrow B O(n)$ for $E S O(n)$ as an unoriented real vector bundle, and $B O(n) \rightarrow B S O(n+1)$ of $E O(n) \oplus \operatorname{det}(E O(n))$.)
8. Real plane splitting principle
(a) Let $\widetilde{\mathrm{Gr}}_{2}\left(\mathbb{R}^{n}\right):=\left\{\right.$ oriented planes in $\left.\mathbb{R}^{n}\right\}$. Given $\Pi \in \widetilde{\mathrm{Gr}}_{2}\left(\mathbb{R}^{n}\right)$, pick an oriented orthonormal basis $v_{1}, v_{2} \in \Pi$ and set $f(\Pi):=\left[v_{1}+i v_{2}\right] \in \mathbb{C} P^{n-1}$. Show that $f: \widetilde{\operatorname{Gr}}_{2}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C} P^{n}$ is well-defined, and maps $\widetilde{\operatorname{Gr}}_{2}\left(\mathbb{R}^{n}\right)$ diffeomorphically onto $Q:=\left\{\left[z_{1}: \cdots: z_{n}\right] \in \mathbb{C} P^{n}\right.$: $\left.z_{1}^{2}+\cdots z_{n}^{2}=0\right\}$.
(b) Let $E \rightarrow X$ be a real vector bundle of rank ≥ 3. Pick a metric g on E, extend to a complex bilinear form on $E_{\mathbb{C}}$, and and let $Q(E):=\left\{[w] \in \mathbb{P}\left(E_{\mathbb{C}}\right): g(w, w)=0\right\}$, a fibre bundle $\pi: Q(E) \rightarrow X$ with typical fibre Q. Show that any element in the kernel of $\pi^{*}: H^{*}(X ; \mathbb{Z}) \rightarrow H^{*}(Q(E) ; \mathbb{Z})$ is 2 -torsion (i.e. $\pi^{*} x=0 \Rightarrow 2 x=0 \in H^{*}(X ; \mathbb{Z})$). Show that $\pi^{*} E$ is as a direct sum of an oriented bundle of rank 2 and a bundle of rank $n-2$. (Hint: Consider the composition of π^{*} with the Thom isomorphism of the normal bundle of Q in $\mathbb{P}\left(E_{\mathbb{C}}\right)$ and a map to $H^{*}\left(\mathbb{P}\left(E_{\mathbb{C}}\right) ; \mathbb{Z}\right)$.)
(c) Show that for any real vector bundle $E \rightarrow X$ there is a map $f: Y \rightarrow X$ such that $f^{*} E$ is a direct sum of oriented bundles of rank ≤ 2, which can all be taken to be oriented if E is, while all the kernel of $f: H^{*}(X ; \mathbb{Z}) \rightarrow H^{*}(Y ; \mathbb{Z})$ is 2-primary torsion $\left(f^{*} x=0 \Rightarrow 2^{m} x=0\right.$ for some m.)
9. For any real vector bundle $E \rightarrow X$ let $p_{k}(E):=c_{2 k}(E) \in H^{4 k}(X ; \mathbb{Z})$.
(a) Show that the space $\left\{\right.$ ordered set of orthogonal oriented 2-planes $\left.\Pi_{1}, \ldots, \Pi_{n} \subset \mathbb{R}^{\infty}\right\}$ is homotopy equivalent to the product of n copies of $\mathbb{C} P^{\infty}$.
(b) Show that the quotient of $H^{*}(B O(n) ; \mathbb{Z})$ by its 2-primary torsion is $\mathbb{Z}\left[p_{k}: 2 k \leq n\right]$.
(c) Show that the quotient of $H^{*}(B S O(2 n+1) ; \mathbb{Z})$ by its 2-primary torsion is $\mathbb{Z}\left[p_{1}, \ldots, p_{n}\right]$.
(d) Show that the quotient of $H^{*}(B S O(2 n) ; \mathbb{Z})$ by its 2-primary torsion is $\mathbb{Z}\left[p_{1}, \ldots, p_{n-1}, e\right]$.
10. Show that a characteristic class \hat{e} that assigns to an oriented rank n bundle $E \rightarrow X$ an element $\hat{e}(E) \in H^{n}(X ; \mathbb{Z})$, for all n, such that

$$
\hat{e}\left(E_{1} \oplus E_{2}\right)=\hat{e}\left(E_{1}\right) \hat{e}\left(E_{2}\right) \text { for any } E_{1}, E_{2} \rightarrow X
$$

must be a constant multiple of the Euler class.
11. Recall that $S q^{1}: H^{k}\left(X ; \mathbb{Z}_{2}\right) \rightarrow H^{k+1}\left(X ; \mathbb{Z}_{2}\right)$ is the snake map of the long exact sequence induced by the short exact sequence of coefficients $0 \rightarrow \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{2} \rightarrow 0$. Similarly, let $\beta_{2}: H^{k}\left(X ; \mathbb{Z}_{2}\right) \rightarrow H^{k+1}(X ; \mathbb{Z})$ and $\beta_{4}: H^{k}\left(X ; \mathbb{Z}_{4}\right) \rightarrow H^{k+1}(X ; \mathbb{Z})$ denote the snake maps induced by $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}_{2} \rightarrow 0$ and $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}_{4} \rightarrow 0$ respectively. The image of β_{n} is the n-torsion subgroup $T_{n} H^{k+1}(X ; \mathbb{Z})$.
(a) Show that $T_{4} H^{k}(X ; \mathbb{Z}) / T_{2} H^{k}(X ; \mathbb{Z})$ is isomorphic to the quotient of the kernel of $S q^{1}$: $H^{k-1}\left(X ; \mathbb{Z}_{2}\right) \rightarrow H^{k}\left(X ; \mathbb{Z}_{2}\right)$ by the image of $\rho_{2}: H^{k-1}(X ; \mathbb{Z}) \rightarrow H^{k-1}\left(X ; \mathbb{Z}_{2}\right)$.
(b) Show that

$$
\begin{aligned}
S q^{1} w_{2 k+1} & =w_{1} w_{2 k+1} \\
S q^{1} w_{2 k} & =w_{1} w_{2 k}+w_{2 k+1}
\end{aligned}
$$

(c) Show that the torsion subgroup of $H^{k}(B S O(n) ; \mathbb{Z})$ and $H^{k}(B O(n) ; \mathbb{Z})$ is always 2-torsion. (Hint: The image of ρ_{2} contains that of $S q^{1}$. For $B O(n)$ case, think of elements of ker $S q^{1}$ as polynomials in w_{1}, and consider the top coefficient.)
12. (a) Recall that for any fibre bundle $E \rightarrow B$ with fibre F, there is a long exact sequence of homotopy groups $\pi_{k} F \rightarrow \pi_{k} E \rightarrow \pi_{k} B \rightarrow \pi_{k-1} F \rightarrow \cdots$. Deduce that $\pi_{k} \operatorname{Spin}(n) \cong$ $\pi_{k} \operatorname{Spin}(n+1)$ for $k \leq n-1$, and $\pi_{k} S U(n) \cong \pi_{k} S U(n+1)$ for $k \leq 2 n$.
(b) For $m \geq 2 n$, consider the lift $i: S U(n) \hookrightarrow S p i n(m)$ of $S U(n) \hookrightarrow S O(2 n) \hookrightarrow S O(m)$. Show that $i_{*}: \pi_{k} S U(2) \hookrightarrow \pi_{k} \operatorname{Spin}(5)$ is an isomorphism for $k \leq 5$. (Hint: $\operatorname{Spin}(5)$ acts on its spin representation \mathbb{H}^{2} by quaternionic linear maps. The restriction of the spin representation of $\operatorname{Spin}(4)$ to $S U(2)$ is isomorphic to $\Lambda^{*} \mathbb{C}^{2}$ (complex rank 4).)
(c) For $m \geq 2 n$, let $f: B S U(n) \rightarrow B S p i n(m)$ be the classifying map for $E S U(n)$ considered as a $\operatorname{Spin}(m)$ bundle. By considering a commuting diagram

show that $f_{*}: \pi_{k} B S U(n) \rightarrow \pi_{k} B \operatorname{Spin}(m)$ is an isomorphism for $k \leq 4, m \geq 5, n \geq 2$.
(d) Let $g: B \operatorname{Spin}(m) \rightarrow B S O(m)$ be the classifying map for $E \operatorname{Spin}(m)$ considered as an $S O(m)$-bundle. Show that for $m \geq 5, H^{4}(B \operatorname{Spin}(m) ; \mathbb{Z}) \cong \mathbb{Z}$ has a generator q such that $2 q=g^{*} p_{1}$, and $f^{*} q=-c_{2}$.

Questions and corrections to j.nordstrom@bath.ac.uk.
November 3, 2014

