
G2 Geometry
Problem sheet on classifying spaces

The following exercises take you through the computation of (most of) the cohomology of BU(n),
BO(n) and BSO(n). They rely on the following two results.
Leray-Hirsch theorem Let π : E → B be a fibre bundle, i : F → E the inclusion of a fibre. Let R
be a ring, and suppose that Hk(F ;R) is free and finitely generated (as an R-module) for each k.
If for each k there are classes aj ∈ Hk(E;R) such that i∗aj form a basis of Hk(F ;R), then

H∗(B;R)⊗R H∗(F ;R)→ H∗(E;R), b⊗ i∗aj 7→ π∗b ∪ aj

is an isomorphism.
Thom isomorphism theorem Let π : E → B be a real vector bundle of rank n, and let Ė be the
complement of the graph of the zero section in the total space of E.

(i) There is a unique u2(E) ∈ Hn(E, Ė; Z2) such that the restriction of u2(E) to any fibre Rn

equals the generator of Hn(R,R \ {0}; Z2).

Hk(B; Z2)→ Hk+n(E, Ė; Z2), a 7→ π∗a ∪ u(E)

is an isomorphism.

(ii) If E is oriented then there is a unique u(E) ∈ Hn(E, Ė; Z) such that the restriction of u(E)
to any fibre Rn equals the positive generator of Hn(R,R \ {0}; Z).

Hk(B; Z)→ Hk+n(E, Ė; Z), a 7→ π∗a ∪ u(E)

is an isomorphism.

1. For an oriented real rank n vector bundle π : E → X, let u(E) ∈ Hn(E, Ė; Z) be the Thom
class, and define the Euler class e(E) ∈ Hn(X; Z) by

π∗e(E) ∪ u(E) = u(E) ∪ u(E) ∈ H2n(E, Ė; Z).

Show that

(a) e is a characteristic class.

(b) If n is odd then 2e = 0 ∈ Hn(X; Z).

(c) e(E1 ⊕ E2) = e(E1)e(E2) ∈ Hn1+n2(X) for any oriented Ei → X of rank ni.

(d) e(OCP 1) ∈ H2(CP 1) is the negative generator.

2. Line splitting principle for complex vector bundles

(a) Let E → X be a complex vector bundle of rank n, and let π : P(E)→ X be the fibre bundle
whose fibre over x is the projectivisation P(Ex). Let e ∈ H2(P(E); Z) be the Euler class
of the tautological bundle OE(−1) over the total space of P(E). Show that H∗(P(E); Z) is
isomorphic to the free H∗(X; Z) module generated by 1, e, . . . , en−1, and that there exists
a rank n−1 complex vector bundle E1 → P(E) such that π∗E ∼= OE(−1)⊕ E1.

(b) Pick an arbitrary hermitian metric on E. The “flag bundle” π : FlE → X is the bundle
whose fibre over x is {ordered set of orthogonal lines `1, . . . , `n ⊂ Ex}. Show that π∗E
is isomorphic to a direct sum of n complex line bundles, and that π∗ : H∗(X; Z) →
H∗(FlE; Z) is injective.
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3. Construction of Chern classes Let E → X be a complex vector bundle of rank n. Q2(a) implies
that, with e ∈ H2(P(E); Z) as before, there exist unique classes ck(E) ∈ H2k(X; Z) such that

en = −
n∑

k=1

en−kπ∗ck(E).

Define the total Chern class by

c(E) :=
n∑

k=0

ck ∈ H∗(X; Z).

(a) Let X be the product of n copies of CP∞, let E = L1 ⊕ · · · ⊕ Ln be the direct sum of
its n tautological line bundle, and ti = e(Li) ∈ H2(X; Z). Introducing a formal variable t,
define f ∈ H∗(X; Z)[t] by

f(t) =
n∑

k=0

ck(E)tn−k.

Show that f(ti) = 0 ∈ H2k(X; Z) for each i, and deduce that the total Chern classes
satisfy

c(E) = c(L1) · · · c(Ln) ∈ H∗(X; Z).

(Hint: Define a section si : X → P(E) such that s∗i e = ti. Use that Z[t1, . . . , tn, t] is an
integral domain.)

(b) Show that the total Chern class is exponential:

c(E1 ⊕ E2) = c(E1)c(E2)

for any complex vector bundles E1, E2 → Y .

(c) Suppose ĉk are a family of characteristic classes of complex vector bundles E → Y , ĉk(E) ∈
H2k(Y ; Z), such that the total class c(E) is exponential. Show that ĉ = λc for some
constant λ ∈ Z.

4. (a) Let BU(n) = Grn(C∞), and EU(n) = {(v1, . . . , vn) : vi ∈ C∞ hermitian-orthonormal}.
Show that EU(n)→ BU(n) is a contractible U(n) bundle.

(b) Show that H∗(FlEU(n); Z) = Z[t1, . . . , tn], where ti are Euler classes of n tautological
line bundles. (Hint: Apply Leray-Hirsch, or show that FlEU(n) is homotopy equivalent
to the product of n copies of CP∞.)

(c) Let ck := ck(EU(n)) ∈ H2k(BU(n); Z). Show that π∗ : H∗(BU(n); Z)→ H∗(FlEU(n); Z)
defines an isomorphism H∗(BU(n); Z) ∼= Z[t1, . . . , tn]Sn , mapping ck to the kth elementary
symmetric polynomial σk(t1, . . . , tn).

5. Show that for any complex vector bundle E → X

(a) c1(E) = c1(detE),

(b) cn(E) = e(ER).
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6. Stiefel-Whitney classes

(a) Let E → X be a real vector bundle of rank n. Find a map f : Y → X such that f∗E
is isomorphic to a direct sum of n real line bundles, and f∗ : H∗(X; Z2) → H∗(Y ; Z2) is
injective.

(b) Construct characteristic classes wk(E) ∈ Hk(X; Z2) of real vector bundle E → X such
that the total classes w(E) is exponential, and show that they are the unique non-zero
such classes.

(c) Show that BO(n) = Grn(R∞). Letting wk := wk(EO(n)) ∈ H∗(BO(n); Z2), show that
H∗(BO(n); Z2) = Z2[w1, . . . , wn].

(d) For a real vector bundle E → X of rank n, show that the image of wn(E) ∈ Hn(X; Z2)
under the Thom isomorphism Hn(X; Z2)→ Hn(E, Ė; Z2) is the square of the Thom class.

7. (a) Show that BSO(n) = G̃r(R∞), the Grassmannian of oriented n-dimensional subspace in
R∞ (a double cover of Grn(∞)).

(b) For k ≥ 2, write wk also for wk(ESO(n)) ∈ Hk(BSO(n); Z2). Show thatHk(BSO(n); Z2) =
Z2[w2, . . . , wn]. (Hint: Consider classifying maps BSO(n)→ BO(n) for ESO(n) as an un-
oriented real vector bundle, and BO(n)→ BSO(n+1) of EO(n)⊕ det(EO(n)).)

8. Real plane splitting principle

(a) Let G̃r2(Rn) := {oriented planes in Rn}. Given Π ∈ G̃r2(Rn), pick an oriented orthonor-
mal basis v1, v2 ∈ Π and set f(Π) := [v1 + iv2] ∈ CPn−1. Show that f : G̃r2(Rn) → CPn

is well-defined, and maps G̃r2(Rn) diffeomorphically onto Q := {[z1 : · · · : zn] ∈ CPn :
z2
1 + · · · z2

n = 0}.
(b) Let E → X be a real vector bundle of rank ≥ 3. Pick a metric g on E, extend to a

complex bilinear form on EC, and and let Q(E) := {[w] ∈ P(EC) : g(w,w) = 0}, a fibre
bundle π : Q(E) → X with typical fibre Q. Show that any element in the kernel of
π∗ : H∗(X; Z) → H∗(Q(E); Z) is 2-torsion (i.e. π∗x = 0 ⇒ 2x = 0 ∈ H∗(X; Z)). Show
that π∗E is as a direct sum of an oriented bundle of rank 2 and a bundle of rank n − 2.
(Hint: Consider the composition of π∗ with the Thom isomorphism of the normal bundle
of Q in P(EC) and a map to H∗(P(EC); Z).)

(c) Show that for any real vector bundle E → X there is a map f : Y → X such that f∗E is
a direct sum of oriented bundles of rank ≤ 2, which can all be taken to be oriented if E is,
while all the kernel of f : H∗(X; Z)→ H∗(Y ; Z) is 2-primary torsion (f∗x = 0⇒ 2mx = 0
for some m.)

9. For any real vector bundle E → X let pk(E) := c2k(E) ∈ H4k(X; Z).

(a) Show that the space {ordered set of orthogonal oriented 2-planes Π1, . . . ,Πn ⊂ R∞} is
homotopy equivalent to the product of n copies of CP∞.

(b) Show that the quotient of H∗(BO(n); Z) by its 2-primary torsion is Z[pk : 2k ≤ n].

(c) Show that the quotient of H∗(BSO(2n+1); Z) by its 2-primary torsion is Z[p1, . . . , pn].

(d) Show that the quotient of H∗(BSO(2n); Z) by its 2-primary torsion is Z[p1, . . . , pn−1, e].

10. Show that a characteristic class ê that assigns to an oriented rank n bundle E → X an element
ê(E) ∈ Hn(X; Z), for all n, such that

ê(E1 ⊕ E2) = ê(E1)ê(E2) for any E1, E2 → X

must be a constant multiple of the Euler class.
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11. Recall that Sq1 : Hk(X; Z2) → Hk+1(X; Z2) is the snake map of the long exact sequence
induced by the short exact sequence of coefficients 0 → Z2 → Z4 → Z2 → 0. Similarly, let
β2 : Hk(X; Z2) → Hk+1(X; Z) and β4 : Hk(X; Z4) → Hk+1(X; Z) denote the snake maps
induced by 0→ Z→ Z→ Z2 → 0 and 0→ Z→ Z→ Z4 → 0 respectively. The image of βn is
the n-torsion subgroup TnH

k+1(X; Z).

(a) Show that T4H
k(X; Z)/T2H

k(X; Z) is isomorphic to the quotient of the kernel of Sq1 :
Hk−1(X; Z2)→ Hk(X; Z2) by the image of ρ2 : Hk−1(X; Z)→ Hk−1(X; Z2).

(b) Show that

Sq1w2k+1 = w1w2k+1

Sq1w2k = w1w2k + w2k+1

(c) Show that the torsion subgroup of Hk(BSO(n); Z) and Hk(BO(n); Z) is always 2-torsion.
(Hint: The image of ρ2 contains that of Sq1. For BO(n) case, think of elements of kerSq1

as polynomials in w1, and consider the top coefficient.)

12. (a) Recall that for any fibre bundle E → B with fibre F , there is a long exact sequence
of homotopy groups πkF → πkE → πkB → πk−1F → · · · . Deduce that πkSpin(n) ∼=
πkSpin(n+ 1) for k ≤ n− 1, and πkSU(n) ∼= πkSU(n+ 1) for k ≤ 2n.

(b) For m ≥ 2n, consider the lift i : SU(n) ↪→ Spin(m) of SU(n) ↪→ SO(2n) ↪→ SO(m).
Show that i∗ : πkSU(2) ↪→ πkSpin(5) is an isomorphism for k ≤ 5. (Hint: Spin(5) acts
on its spin representation H2 by quaternionic linear maps. The restriction of the spin
representation of Spin(4) to SU(2) is isomorphic to Λ∗C2 (complex rank 4).)

(c) For m ≥ 2n, let f : BSU(n)→ BSpin(m) be the classifying map for ESU(n) considered
as a Spin(m) bundle. By considering a commuting diagram

SU(n)

i

��

// ESU(n)

��

// BSU(n)

f

��
Spin(m) // ESpin(m) // BSpin(m)

show that f∗ : πkBSU(n)→ πkBSpin(m) is an isomorphism for k ≤ 4, m ≥ 5, n ≥ 2.

(d) Let g : BSpin(m) → BSO(m) be the classifying map for ESpin(m) considered as an
SO(m)-bundle. Show that for m ≥ 5, H4(BSpin(m); Z) ∼= Z has a generator q such that
2q = g∗p1, and f∗q = −c2.

Questions and corrections to j.nordstrom@bath.ac.uk.
November 3, 2014
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