G_{2} Geometry

Problem sheet 2 - Classifying spaces

1. Show that $S^{\infty}:=\cup_{n \geq 0} S^{n}$ (with weak topology) is contractible. (Hint: Consider the shift map $S^{\infty} \rightarrow S^{\infty}$ that maps $\left(x_{1}, \ldots, x_{n}\right) \in S^{n+1}$ to $\left(0, x_{1}, \ldots, x_{n}\right) \in S^{n+2}$.)
2. Find a pair of smooth manifolds M_{1}, M_{2} with a homotopy equivalence $f: M_{1} \rightarrow M_{2}$ such that $w_{k}\left(M_{1}\right) \neq f^{*} w_{k}\left(M_{2}\right)$ for some k.
3. Let M^{n} be a closed smooth manifold. For $i_{1}+\cdots+i_{k}=n$, the $\left(i_{1}, \ldots, i_{k}\right)$ Stiefel-Whitney number of M is

$$
\int_{M} w_{i_{1}}(M) \cdots w_{i_{k}}(M) \in \mathbb{Z}_{2} .
$$

Show that if $M=\partial X$ for some compact smooth X^{n+1} then all Stiefel-Whitney numbers of M vanish.
4. Compute the Stiefel-Whitney classes of $\mathbb{R} P^{n}$.
(a) For which n is $\mathbb{R} P^{n}$ orientable and spin?
(b) Show that $\mathbb{R} P^{n}$ is the boundary of some smooth compact $n+1$-manifold if and only if n is odd.
5. Deduce from the characterisation of the Chern and Stiefel-Whitney classes given in the lectures that if $E \rightarrow X$ is a complex vector bundle with underlying real bundle $E_{\mathbb{R}}$, then

$$
\begin{gathered}
w_{2 k}\left(E_{\mathbb{R}}\right)=c_{k}(E) \bmod 2 \in H^{2 k}\left(M ; \mathbb{Z}_{2}\right) \\
w_{2 k+1}\left(E_{\mathbb{R}}\right)=0 \in H^{2 k+1}\left(M ; \mathbb{Z}_{2}\right)
\end{gathered}
$$

6. (a) Let $U_{ \pm}:=S^{n} \backslash\{(\pm 1,0, \ldots, 0)\}$, and $\pi: U_{+} \cap U_{-} \rightarrow S^{n-1}$ the projection to the equator, $\pi\left(x_{1}, \ldots, x_{n}\right):=\frac{\left(x_{2}, \ldots, x_{n}\right)}{\left|\left(x_{2}, \ldots, x_{n}\right)\right|}$. Given $g: S^{n-1} \rightarrow G$, define a G-bundle $P \rightarrow S^{n}$ with "clutching function" g by requiring transition function $U_{+} \cap U_{-} \rightarrow G$ between trivialisations over $U_{ \pm}$to be $g \circ \pi$. Show that this induces a bijection

$$
\pi_{n-1} G \rightarrow\left\{\text { isomorphism classes of } G \text {-bundles over } S^{n}\right\} .
$$

(b) Deduce the existence of such a bijection from the existence of a universal bundle $E G$ instead.
7. (a) Show that there are exactly two isomorphism classes of $S O(3)$-bundles over S^{2}.
(b) Show that $\mathrm{Bl}_{p} \mathbb{C} P^{2}$ is diffeomorphic to the total space of an S^{2} fibre bundle over S^{2}.
(c) Show that $\mathrm{Bl}_{p} \mathbb{C} P^{2}$ is not homotopy equivalent to $S^{2} \times S^{2}$. (Hint: Compare the intersection forms.)
8. For any cochain complex C^{*} of free abelian groups, the short exact sequence $0 \rightarrow C^{*} \otimes \mathbb{Z}_{2} \rightarrow$ $C^{*} \otimes \mathbb{Z}_{4} \rightarrow C^{*} \otimes \mathbb{Z}_{2} \rightarrow 0$ induces a long exact sequence

$$
\cdots \rightarrow H^{i}\left(C ; \mathbb{Z}_{2}\right) \rightarrow H^{i}\left(C ; \mathbb{Z}_{4}\right) \rightarrow H^{i}\left(C ; \mathbb{Z}_{2}\right) \xrightarrow{\beta} H^{i+1}\left(C ; \mathbb{Z}_{2}\right) \rightarrow \cdots
$$

β is called the Bockstein map of $0 \rightarrow \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{2} \rightarrow 0$.
(a) If C^{*} has a graded ring structure that descends to $H^{*}(C)$, show that

$$
\beta(a b)=\beta(a) b+a \beta(b)
$$

for any $a, b \in H^{*}\left(C ; \mathbb{Z}_{2}\right)$.
(b) For a topological space X, the first Steenrod square $S q^{1}: H^{i}\left(X ; \mathbb{Z}_{2}\right) \rightarrow H^{i+1}\left(X ; \mathbb{Z}_{2}\right)$ is defined to equal the Bockstein map. Show that $S q^{1}$ is a cohomology operation, i.e. for any $f: X \rightarrow Y$ and $a \in H^{i}\left(Y ; \mathbb{Z}_{2}\right)$ we have

$$
S q^{1}\left(f^{*} a\right)=f^{*}\left(S q^{1} a\right) \in H^{i+1}\left(X ; \mathbb{Z}_{2}\right)
$$

(c) Show that

$$
S q^{1} a=a^{2} \in H^{2}\left(X ; \mathbb{Z}_{2}\right)
$$

for any $a \in H^{1}\left(X ; \mathbb{Z}_{2}\right)$.

Questions and corrections to j.nordstrom@bath.ac.uk.
November 3, 2014

