G_2 Geometry Problem sheet 2 – Classifying spaces

- 1. Show that $S^{\infty} := \bigcup_{n \ge 0} S^n$ (with weak topology) is contractible. (*Hint:* Consider the shift map $S^{\infty} \to S^{\infty}$ that maps $(x_1, \ldots, x_n) \in S^{n+1}$ to $(0, x_1, \ldots, x_n) \in S^{n+2}$.)
- 2. Find a pair of smooth manifolds M_1 , M_2 with a homotopy equivalence $f: M_1 \to M_2$ such that $w_k(M_1) \neq f^* w_k(M_2)$ for some k.
- 3. Let M^n be a closed smooth manifold. For $i_1 + \cdots + i_k = n$, the (i_1, \ldots, i_k) Stiefel-Whitney number of M is

$$\int_M w_{i_1}(M) \cdots w_{i_k}(M) \in \mathbb{Z}_2.$$

Show that if $M = \partial X$ for some compact smooth X^{n+1} then all Stiefel-Whitney numbers of M vanish.

- 4. Compute the Stiefel-Whitney classes of $\mathbb{R}P^n$.
 - (a) For which n is $\mathbb{R}P^n$ orientable and spin?
 - (b) Show that $\mathbb{R}P^n$ is the boundary of some smooth compact n + 1-manifold if and only if n is odd.
- 5. Deduce from the characterisation of the Chern and Stiefel-Whitney classes given in the lectures that if $E \to X$ is a complex vector bundle with underlying real bundle $E_{\mathbb{R}}$, then

$$w_{2k}(E_{\mathbb{R}}) = c_k(E) \mod 2 \in H^{2k}(M; \mathbb{Z}_2),$$

 $w_{2k+1}(E_{\mathbb{R}}) = 0 \in H^{2k+1}(M; \mathbb{Z}_2)$

6. (a) Let $U_{\pm} := S^n \setminus \{(\pm 1, 0, \dots, 0)\}$, and $\pi : U_+ \cap U_- \to S^{n-1}$ the projection to the equator, $\pi(x_1, \dots, x_n) := \frac{(x_2, \dots, x_n)}{|(x_2, \dots, x_n)|}$. Given $g : S^{n-1} \to G$, define a *G*-bundle $P \to S^n$ with "clutching function" g by requiring transition function $U_+ \cap U_- \to G$ between trivialisations over U_{\pm} to be $g \circ \pi$. Show that this induces a bijection

 $\pi_{n-1}G \rightarrow \{\text{isomorphism classes of } G\text{-bundles over } S^n\}.$

- (b) Deduce the existence of such a bijection from the existence of a universal bundle EG instead.
- 7. (a) Show that there are exactly two isomorphism classes of SO(3)-bundles over S^2 .
 - (b) Show that $\operatorname{Bl}_p \mathbb{C}P^2$ is diffeomorphic to the total space of an S^2 fibre bundle over S^2 .
 - (c) Show that $\operatorname{Bl}_p \mathbb{C}P^2$ is not homotopy equivalent to $S^2 \times S^2$. (*Hint:* Compare the intersection forms.)
- 8. For any cochain complex C^* of free abelian groups, the short exact sequence $0 \to C^* \otimes \mathbb{Z}_2 \to C^* \otimes \mathbb{Z}_4 \to C^* \otimes \mathbb{Z}_2 \to 0$ induces a long exact sequence

$$\cdots \to H^i(C; \mathbb{Z}_2) \to H^i(C; \mathbb{Z}_4) \to H^i(C; \mathbb{Z}_2) \xrightarrow{\beta} H^{i+1}(C; \mathbb{Z}_2) \to \cdots$$

 β is called the *Bockstein map* of $0 \to \mathbb{Z}_2 \to \mathbb{Z}_4 \to \mathbb{Z}_2 \to 0$.

(a) If C^* has a graded ring structure that descends to $H^*(C)$, show that

$$\beta(ab) = \beta(a)b + a\beta(b)$$

for any $a, b \in H^*(C; \mathbb{Z}_2)$.

(b) For a topological space X, the first Steenrod square $Sq^1 : H^i(X; \mathbb{Z}_2) \to H^{i+1}(X; \mathbb{Z}_2)$ is defined to equal the Bockstein map. Show that Sq^1 is a cohomology operation, *i.e.* for any $f: X \to Y$ and $a \in H^i(Y; \mathbb{Z}_2)$ we have

$$Sq^{1}(f^{*}a) = f^{*}(Sq^{1}a) \in H^{i+1}(X; \mathbb{Z}_{2}).$$

(c) Show that

$$Sq^1a = a^2 \in H^2(X; \mathbb{Z}_2)$$

for any $a \in H^1(X; \mathbb{Z}_2)$.

Questions and corrections to j.nordstrom@bath.ac.uk. November 3, 2014