G_{2} Geometry

Problem sheet on Chern-Weil theory

1. Let E, E^{\prime} be complex vector bundles on M. Deduce from the Chern-Weil definition that
(a) $c_{k}(E)$ are real cohomology classes,
(b) $c_{1}\left(E \otimes E^{\prime}\right)=c_{1}(E)+c_{1}\left(E^{\prime}\right)$,
(c) $c_{1}(\operatorname{det} E)=c_{1}(E)$.
2. The action of $S U(2)$ on \mathbb{C}^{2} induces an action by bundle isomorphisms on the tautological line bundle $\mathcal{O}(-1)$ over $\mathbb{C} P^{1}$. Show that there is a unique $S U(2)$-invariant connection on $\mathcal{O}(-1)$, and that its curvature equals $\frac{i}{2}$ of the volume form of the standard round metric $\left(\frac{4|d z|^{2}}{\left(1+|z|^{2}\right)^{2}}\right.$ in the stereographic chart $\left.z \mapsto(1: z) \in \mathbb{C} P^{1}\right)$. Deduce that

$$
\int_{\mathbb{C} P^{1}} c_{1}(\mathcal{O}(-1))=-1
$$

3. Recall that $R\left[\lambda_{1}, \ldots, \lambda_{n}\right]^{S_{n}}$, the ring of symmetric polynomials in n variable with coefficients in a ring R, equals the free polynomial algebra $R\left[\sigma_{1}, \ldots, \sigma_{n}\right]$, where the elementatry symmetric polynomials σ_{k} are defined by

$$
\left(t-\lambda_{1}\right) \cdots\left(t-\lambda_{n}\right)=t^{n}-t^{n-1} \sigma_{1}+\cdots+(-1)^{n} \sigma_{n}
$$

Let $\mathcal{P}_{\mathrm{GL}(n)}$ denote the ring of $\mathrm{GL}(n)$-invariant polynomials $\operatorname{Mat}_{n \times n}(\mathbb{C}) \rightarrow \mathbb{C}$, and

$$
\operatorname{det}(t-m)=t^{n}-t^{n-1} \Sigma_{1}(m)+\cdots+(-1)^{n} \Sigma_{n}(m)
$$

for $m \in \operatorname{Mat}_{n \times n}(\mathbb{C})$. Show that

$$
\begin{aligned}
r: & \mathcal{P}_{\mathrm{GL}(n)} \rightarrow \mathbb{C}\left[\lambda_{1}, \ldots, \lambda_{n}\right], \\
& P \mapsto P\left(\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right)
\end{aligned}
$$

is injective, with $r\left(\Sigma_{k}\right)=\sigma_{k}$. Deduce that $\mathcal{P}_{\mathrm{GL}(n)} \cong \mathbb{C}\left[\Sigma_{1}, \ldots, \Sigma_{n}\right]$.
4. Show that the direct sum of $T \mathbb{C} P^{n}$ with a trivial line bundle on $\mathbb{C} P^{n}$ is isomorphic to the direct sum of $n+1$ copies of $\mathcal{O}(-1)$. Compute the Chern classes of $C P^{n}$.
5. Let E, E^{\prime} be real vector bundles over M
(a) Show that $c_{2 k+1}\left(E_{\mathbb{C}}\right)=0$ for all k.
(b) Show that $p_{k}\left(E \oplus E^{\prime}\right)=\sum_{i=0}^{k} p_{i}(E) p_{k-i}\left(E^{\prime}\right)$.
6. For $m \in \operatorname{Skew}_{2 n} \mathbb{R}$, let $\omega(m)=\sum_{i<j} m_{i j} e^{i} \wedge e^{j} \in \Lambda^{2}\left(\mathbb{R}^{2 n}\right)^{*}$. Let Pf $: \operatorname{Skew}_{2 n} \mathbb{R} \rightarrow \mathbb{R}$ be the homogeneous degree n polynomial such that

$$
\omega(m)^{n}=\operatorname{Pf}(m) e^{1} \wedge \cdots \wedge e^{2 n} \in \Lambda^{2 n}\left(\mathbb{R}^{2 n}\right)^{*}
$$

Show that
(a) $\operatorname{Pf}\left(g^{T} m g\right)=\operatorname{det}(g) \operatorname{Pf}(m)$ for any $g \in G L(2 n, \mathbb{R})$.
(b) $\operatorname{Pf}(m)^{2}=\operatorname{det}(m)$.
7. (a) For $a_{1}, \ldots, a_{n} \in \mathbb{R}$, let $\operatorname{Block}\left(a_{1}, \ldots, a_{n}\right) \in \operatorname{Skew}_{2 n} \mathbb{R}$ be the matrix with blocks $\left(\begin{array}{cc}0 & a_{k} \\ -a_{k} & 0\end{array}\right)$ along the diagonal. Show that

$$
\begin{aligned}
r: & \mathcal{P}_{O(2 n)} \rightarrow \mathbb{R}\left[a_{1}, \ldots, a_{n}\right], \\
& P \mapsto P\left(\operatorname{Block}\left(a_{1}, \ldots, a_{n}\right)\right)
\end{aligned}
$$

is injective, with image $\mathbb{R}\left[a_{1}^{2}, \ldots, a_{n}^{2}\right]^{S_{n}}$. Deduce that $\mathcal{P}_{O(2 n)}=\mathbb{R}\left[\Sigma_{2}, \Sigma_{4}, \ldots, \Sigma_{2 n}\right]$.
(b) Show that $\mathcal{P}_{S O(2 n)}=\mathbb{R}\left[\Sigma_{2}, \Sigma_{4}, \ldots, \Sigma_{2 n-2}, \operatorname{Pf}\right]$.
(c) Show that $\mathcal{P}_{O(2 n+1)}=\mathcal{P}_{S O(2 n+1)}=\mathbb{R}\left[\Sigma_{2}, \Sigma_{4}, \ldots, \Sigma_{2 n}\right]$.
8. Let E be a complex vector bundle of rank n, and $E_{\mathbb{R}}$ the underlying real vector bundle of rank $2 n$.
(a) Express $p_{k}\left(E_{\mathbb{R}}\right)$ in terms of the Chern classes of E.
(b) Show that $e\left(E_{\mathbb{R}}\right)=c_{n}(E)$.
9. (a) Let E be a real vector bundle over M, and $s \in \Gamma(E)$ a transverse section, i.e. if s vanishes at $p \in M$ then the composition $D_{p} s: T_{p} M \rightarrow T_{p} E \cong T_{p} M \oplus E_{p} \rightarrow E_{p}$ is surjective. Then $X:=s^{-1}(0)$ is a smooth submanifold. Show that the normal bundle of X in M is isomorphic to the restriction $E_{\mid X}$.
(b) Let s be a transverse holomorphic section of a holomorphic vector bundle E over a complex manifold M. Then $X:=s^{-1}(0)$ is a complex submanifold of M. Show that the normal bundle of X in M is isomorphic (as a complex vector bundle) to $E_{\mid X}$.
(c) Let M be a complex manifold and $X \subset M$ a complex submanifold. Let U_{i} be an open cover of M with holomorphic functions $f_{i}: U_{i} \rightarrow \mathbb{C}$ such that $X \cap U_{i}=f_{i}^{-1}(0)$, and f_{i} vanishes to order 1 along X. Let $[X]$ be the holomorphic line bundle with trivialisations over U_{i} such that the transition function from U_{i} to U_{j} is multiplication by $\frac{f_{j}}{f_{i}}$. Explain why this is well-defined, and show that $[X]$ has a global holomorphic section vanishing to order 1 along X. (Then $c_{1}([X])=e([X])=($ Poincaré dual to $\left.X) \in H^{2}(M)\right)$.
10. Let $p: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ be a homogeneous polynomial such that $D_{z} p \neq 0$ for all $z \in \mathbb{C}^{n}$ where $p(z)=0$. Describe the Chern classes of $X:=\{p=0\} \subset \mathbb{C} P^{n}$, and calculate the Euler characteristic $\chi(X)$.
11. (a) For an open set $U \subset \mathbb{C}^{n}$ containing 0 , let $\mathrm{Bl}_{0} U:=\left\{(z, p) \in \mathbb{C}^{n} \times \mathbb{C} P^{n-1}: z \in p\right\}$. For a complex manifold M of dimension n and $x \in M$, show that there is a manifold $\mathrm{Bl}_{x} M$ with a holomorphic map $\pi: \mathrm{Bl}_{x} M \rightarrow M$ such that $E:=\pi^{-1}(x) \cong \mathbb{C} P^{-1}, \pi_{\mid \mathrm{Bl}_{x} M \backslash E}$ is a biholomorphism $\mathrm{Bl}_{x} M \backslash E \rightarrow M \backslash\{x\}$, and E has a neighbourhood biholomorphic to $\mathrm{Bl}_{0} \Delta^{n}$.
(b) Show that $\mathrm{Bl}_{p} M$ is diffeomorphic to $M \#\left(-\mathbb{C} P^{n}\right)$, the connected sum of M and $\mathbb{C} P^{n}$ with its orientation reversed.
(c) Show that $H^{*}\left(\mathrm{Bl}_{p} M\right)$ is a direct sum of $\pi^{*} H^{*}(M)$ and the subspace generated by $c_{1}([E])$, $\ldots, c_{1}([E])^{n-1}$.
(d) The canonical line bundle of M is the holomorphic line bundle $K_{M}:=\Lambda^{n} T^{*} M$. Show that $K_{\mathrm{Bl}_{p} M} \cong \pi^{*} K_{M} \otimes[E]^{\otimes(n-1)}$.

Questions and corrections to j.nordstrom@bath.ac.uk.
November 3, 2014

