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• Besse, Einstein Manifolds [2] (Ch 10)

Lecture one

Calibrations. The notion of a calibration was introduced in 1982 by Harvey and Lawson [5].

Linear version. Let α ∈ Λk(Rn)∗. If V ⊂ R
n is subspace of dimension k, then the restriction

α|V ∈ ΛkV ∗ ∼= R.

Given an orientation on V , the wedge product of the elements of an orthonormal basis of V ∗ with
respect to the Euclidean metric defines a volume form

volV = η1 ∧ · · · ηk ∈ ΛkV ∗.

volV spans ΛkV ∗, so α = λ volV for some λ ∈ R. Interpret

α|V ≤ volV (1)

to mean that λ ≤ 1. We say that α is a calibration if (1) holds for all oriented k-planes V ⊂ R
n.

Then V is called calibrated by α if equality holds in (1).

Manifold version. Let (M, g) be a Riemannian manifold. Say that α ∈ Ωk(M) is a calibration on
M if

• dα = 0, and
• α|V ≤ volV for all oriented k-planes V ⊂ TpM and all p ∈ M .

A k-dimensional submanifold N ⊂ M is calibrated by α if TpN ⊂ TpM is a calibrated subspace
for each p ∈ N .

The fundamental property of calibrated submanifolds is that they minimise volume.

Proposition 2. Let N ⊂ M be a closed submanifold calibrated by α, and N ′ ⊂ M another closed
submanifold in the same homology class, i.e. N − N ′ = ∂X for some k+1-submanifold X ⊂ M .
Then

vol(N) ≤ vol(N ′).

Proof.
∫

N ′

volN ′ ≥

∫

N ′

α =

∫

N

α =

∫

N

volN ,

where the middle step follows from the first property in the definition of a calibration as
∫

N

α −

∫

N ′

α =

∫

X

dα = 0,

first and last step follow from the second property in the definition. ¤
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Example 3. Let zk = xk + iyk be complex coordinates on C
n. The Euclidean metric g0 is the real

part of the hermitian metric dz1dz̄1 + · · · dzndz̄n. The imaginary part ω0 is the Kähler form of the
metric. g0 is orthogonal with respect to the complex structure J0 (the endomorphism of C

n given
by multiplication by i), i.e. g0(Ju, Jv) = g0(u, v), and the Kähler form can be recovered from g0

by ω0(u, v) = ω(Ju, v). ω0 is a real antisymmetric bilinear form.
ωk

0

k! ∈ Λ2k
R

C
n is a calibration, and

the calibrated 2k-planes are precisely the complex subspaces (of complex dimension k); this is a
classical fact known as Wirtinger’s inequality.

For any hermitian metric on a complex manifold (M,J) there is an associated ω ∈ Ω2(M). The
metric is Kähler if J is parallel with respect to the Levi-Civita connection, or equivalently dω = 0.

It follows that ωk

k! ∈ Ω2k(M) is a calibration, and the calibrated submanifolds are precisely the
complex submanifolds of M .

Some of the motivations for studying calibrated geometry are:

• To find examples of volume-minimising submanifolds.
• That it can be viewed as a generalisation of Kähler geometry.
• That regularity theory of volume-minimisers together with the topological constraint on the

volume of a calibrated submanifold make compactifications of the moduli space of calibrated
submanifolds plausible, and one can hope to use this to gain understanding of the ambient
manifold (cf. Gromov-Witten theory of symplectic manifolds, Donaldson invariants in gauge
theory of 4-manifolds).

For (M, g, α) to have a rich calibrated geometry, we need “enough” calibrated k-planes at each
p ∈ M that we can at least find some calibrated submanifolds in neighbourhoods of points. Note
that for any α0 ∈ Λk(Rn)∗, there is a µ such that να0 is a calibration if and only ν ≤ µ (because
the Grassmannian of k-planes in R

n is compact). If ν < µ, then there are no k-planes calibrated
by να0; when ν = µ, there might be just a single calibrated k-plane. So for any closed k-form α
on (M, g), we can always multiply it by a constant to make it a calibration, but it might leave it
with just a single calibrated plane at a single point. If we want to find a calibration on a given
Riemannian manifold, with symmetries to force there to be a large number of calibrated planes,
then it helps if the given Riemannian metric has special holonomy. (Another way to search for
calibrations would be to start with a closed form, and then look for a Riemannian metric that
makes it a calibration.)

Riemannian holonomy. Let (Mn, g) be a connected Riemannian manifold, and ∇ the Levi-
Civita connection. For a (piecewise smooth) path γ : [0, 1] → M from p = γ(0) to q = γ(1),
let

Pγ : TpM → TqM

be the linear map defined by parallel transport of ∇ along γ.

Definition 4. For p ∈ M , the holonomy group is the subgroup

Holp(g) = {Pγ : γ is a path from p to itself} ⊆ GL(TpM).

The restricted holonomy group is the subgroup

Hol0p(g) = {Pγ : γ is null-homotopic} ⊆ Holp(g).

If M is simply-connected, then Hol0p(g) = Holp(g). Since ∇ preserves g, Pγ is an isometry for

each γ, and Holp(g) ⊆ O(TpM). Since it is connected, Hol0p(g) ⊆ SO(TpM).
Choosing a frame for TpM identifies Holp(g) with a subgroup of O(n). If γ is any path from p

to q, then
Holq(g) = Pγ ◦ Holp(g) ◦ P−1

γ .

Since M is connected, Hol(g) ⊆ O(n) is well-defined up to conjugation, independently of the choice
of p (and of the frame). In other words, there is a representation of Hol(g) on R

n, well-defined up
to isomorphism. If the choice of metric g is implicit, we will call this simply the holonomy group
Hol(M) of M .
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Example 5. Let M = S2 with the round metric.
Pγ ∈ O(2) is a rotation by an angle θ, which by
the Gauss-Bonnet formula is equal to the area
enclosed by γ. So Hol(S2) = SO(2).

v

Pγ(v) γ

More generally, if γ bounds a region D in a Riemannian surface Σ, then Pγ is rotation by
θ =

∫

D
κ dA, where κ is the Gauss curvature. Therefore

Hol0(Σ) =

{

1 if Σ is flat

SO(2) otherwise.

This is a simple example of the close relationship between holonomy and curvature.
The holonomy group controls the existence of parallel tensor fields.

Proposition 6. Let M be a connected Riemannian manifold, E = TMa⊗T ∗M b, p ∈ M , sp ∈ Ep.
There exists a parallel section s of E with s(p) = sp if and only if sp is invariant under Holp(M).

Proof. If s exists, then for any loop γ based at p the parallel transport of sp is simply the restriction
of s to γ, so Pγsp = sp. Conversely, if sp is invariant under Holp(M) then setting s(q) = Pγsp for
any path γ from p to q gives a well-defined parallel section s. ¤

Example 7.

• Mn oriented ⇔ ∃ parallel n-form ⇔ Hol(M) ⊆ SO(n)
• M2m Kähler manifold ⇔ ∃ parallel complex structure ⇔ Hol(M) ⊆ U(m)

Now let α0 ∈ Λk(Rn)∗ be a calibration on R
n, with stabiliser G ⊆ O(n). If Hol(M) ⊆ G, then

there is a calibration α ∈ Ωk(M) pointwise equivalent to α0 (∇α = 0 ⇒ dα = 0). If G is not
too small then G-invariance of the set of calibrated k-planes in R

n implies that there are enough
calibrated planes at each p ∈ M for a rich geometry.

Lecture two

Berger’s list. The possible holonomy groups of Riemannian manifolds were classified in 1955 by
Berger [1]. Each case corresponds to a certain kind of special geometry.

Theorem 8. Let (M, g) be a simply-connected, complete, irreducible, non-symmetric Riemannian
manifold. Then (dim M,Hol(M)) is one of the following:

• (m,SO(m)) Generic
• (2m,U(m)) Kähler
• (2m,SU(m)) Calabi-Yau (Ricci-flat Kähler)
• (4m,Sp(m)) Hyper-Kähler (Ricci-flat, several different complex structures)
• (4m,Sp(m)Sp(1)) Quaternionic Kähler (Einstein, not Kähler)
• (7, G2) Exceptional (Ricci-flat)
• (8, Spin(7) Exceptional (Ricci-flat)

On any manifold Mn, a generic metric has holonomy SO(n) or O(n) (depending on orient-
ability). The other groups on the list are the special holonomy groups. They come in 4 infinite
families, plus two exceptional cases. G2 is the automorphism group of the octonions O, an 8-
dimensional normed algebra, and has a natural 7-dimensional representation on the imaginary
part of O (more on this later). Spin(7) is the double cover of SO(7), and has a unique real
8-dimensional spin representation.

Explanation of hypotheses. The hypotheses in Berger’s theorem exclude various trivial possibilities
from the list.

• If π1(M) 6= 1, then the universal cover M̃ has Hol(M̃) = Hol0(M) = id component of
Hol(M). So Hol(M) is just a finite extension of a group on the list.
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• If M is a product M1 ×M2, then Hol(M) = Hol(M1)×Hol(M2). Conversely, it is a theorem
of de Rham that if M is complete and simply-connected and the representation of Hol(M)
on R

n is reducible, then M is a product manifold.
• M is symmetric if for each p ∈ M , there is an isometric involution σp : M → M with p as an

isolated fixed point. Then the group G generated by products σpσq acts transitively on M ,
so M ∼= G/H, where H ⊂ G is the stabiliser of a point. Symmetric spaces were classified
by Cartan. If M is a symmetric space G/H, then Hol(M) ∼= H (with adjoint representation
on g/h).

Existence. All the groups on the list do appear as holonomy groups of complete Riemannian
manifolds, but this was not proved by Berger, he only excluded the groups not on the list (except
(16, Spin(9)), which Alekseevski later showed can occur as the holonomy only of spaces locally
isometric to the octonionic projective plane, which is symmetric). For the exceptional cases, even
existence of local metrics was not proved until 1985 by Bryant [3]. Compact examples are yet
harder to find. Significantly, Yau proved a general existence result for compact holonomy SU(n)
metrics in 1977 [12] (see theorem 9). The first compact manifolds with exceptional holonomy were
constructed by Joyce in 1995 [6, 7].

Interesting calibrated submanifolds.

• Special Lagrangian m-folds in Calabi-Yau manifolds of (complex) dimension m.
• Associative 3-folds and coassociative 4-folds in G2-manifolds.
• Cayley 4-folds in Spin(7)-manifolds.

We will discuss the calibrations on Calabi-Yau and G2-manifolds in more detail.

Idea of Berger’s proof. As explained, the hypotheses that M is simply-connected, complete and
irreducible imply that G is connected and acts irreducibly on R

n.
If Hol(M) ⊆ G then the Riemannian curvature tensor R takes values in S2g ⊆ S2so(n) ∼=

S2(Λ2T ∗M). In fact, R must then lie in a further subspace RG ⊆ S2g of tensors satisfying the
Bianchi identity. In some cases RG is trivial; then any metric with holonomy contained in G is
actually flat, so has trivial holonomy, and G therefore cannot be a holonomy group. More generally,
g is in a certain sense generated by the values of R, so to exclude G as a possible holonomy group
it is enough that RG is small.

For groups that do pass this test, one can then consider ∇R. For all groups except those on the
list, the second Bianchi identity now forces ∇R = 0, which implies that M is locally isometric to
a symmetric space.

Calabi-Yau manifolds. Let M be a Riemannian manifold of dimension 2n. Hol(M) ⊆ SU(n)
implies:

M is Kähler, since SU(n) ⊂ U(n).
The complex determinant Ω0 = dz1 ∧ · · · ∧ dzn on C

n is invariant under SU(n). Therefore M
has a parallel complex n-form Ω.
∇Ω = 0 implies that Ω is non-vanishing, and that Ω is holomorphic (because M is Kähler, the
Chern connection coincides with the Levi-Civita connection); we say that “Ω is a holomorphic
volume form”.
In particular, the canonical bundle KM = ΛnT ∗

C
M is holomorphically trivial. By definition,

the fact that it is trivial as a complex line bundle implies that the first Chern class c1(M) ∈
H2(M ; Z) vanishes.
Also, the connection on KM is flat. There is a linear relation between the Ricci curvature of a
Kähler metric and the curvature of the induced connection on KM ; therefore M is Ricci-flat.

Conversely, if M is Ricci-flat Kähler, then KM flat implies Hol0(M) ⊆ SU(n), and that c1(M) =
0 ∈ H2(M ; R). If M is simply-connected then Hol(M) ⊆ SU(n) and KM is trivial, but otherwise
this does not have to be the case.

Yau’s proof of the Calabi conjecture makes it possible to construct millions of manifolds with
holonomy SU(n) using algebraic geometry.
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Theorem 9. Let M be a compact Kähler manifold with c1(M) = 0 ∈ H2(M ; R). Then every
Kähler class on M ( i.e. a class in H2(M ; R) that can be represented by the Kähler form of some
Kähler metric) contains a unique Ricci-flat Kähler metric.

Example 10. Let M be a smooth quintic 3-fold (so real dimension 6) in CP 4, e.g.

{X5
0 + X5

1 + X5
2 + X5

3 + X5
4 = 0} ⊂ CP 4.

By the adjunction formula, M has trivial canonical bundle.

The special Lagrangian calibration.

Linear version. Let zk = xk + iyk be complex coordinates on C
n. SU(n) preserves

• the Kähler form ω0 = dx1 ∧ dy1 + · · · + dxn ∧ dyn ∈ Λ2
R
C

n, and
• the complex determinant Ω0 = dz1 ∧ · · · dzn ∈ Λn

C
C

n.

Definition 11. The special Lagrangian calibration on C
n is Re Ω0 ∈ Λn

R
C

n.

By definition, ωn
0 6= 0 means that ω0 is a symplectic form. Let V ⊂ C

n be a subspace of real
dimension n. V is Lagrangian if ω0|V = 0. If V is oriented, then the metric defines a volume form
volV ∈ ΛnV ∗, and Ω0|V = z volV for some z ∈ C.

Fact: |z| ≤ 1, with equality if and only if V is Lagrangian. Then we can write z = eiθ, and θ
is called the Lagrangian angle of V (defined modulo 2πZ; reversing the orientation of V shifts θ
by π). So

V SLag ⇔ V Lagrangian and θ = 0 ⇔ ω0|V = ImΩ0|V = 0 (and V correctly oriented). (12)

An alternative interpretation of the SLag condition is to consider R
n = {y1 = · · · = yn = 0} ⊂ C

n.
It is easy to check that this is SLag. The Lagrangian n-planes in C

n are precisely the U(n)-orbit
of R

n, while the SLag n-planes are the SU(n)-orbit.

Lecture three

Special Lagrangian submanifolds of Calabi-Yau manifolds. Let M2n be a Riemannian manifold
with Hol(M) ⊆ SU(n). Then M is a Kähler manifold. Let ω be the Kähler form, and choose a
parallel complex n-form Ω. We normalise it so that (TpM,ω,Ω) ∼= (Cn, ω0,Ω0) for each p ∈ M
(this fixes Ω up to phase, i.e. multiplication by eiθ).

Definition 13. The SLag calibration on M is ReΩ ∈ Ωn(M).

ωn 6= 0 and dω = 0 means that ω is a symplectic form. Let L ⊂ M be a submanifold of
dimension n. Then from (12),

L SLag (for some choice of orientation) ⇔ ω|L = Im Ω|L = 0. (14)

If L is Lagrangian (i.e. ω|L = 0) then there is a Lagrangian angle function θ : L → R/2πZ.

dθ ∈ Ω1(L) is well-defined and, up to choice of phase of Ω,

L Slag ⇔ dθ = 0.

We know that calibrated implies volume-minimising. In particular, Slag implies minimal, i.e. mean
curvature H = 0.

Fact: If L is Lagrangian (in a Calabi-Yau manifold), then H = J∇θ (where J ∈ End(TM) is
the complex structure on TM). Thus (modulo phase)

SLag ⇔ minimal Lagrangian.

Lagrangian mean curvature flow. If a submanifold N of a Riemannian manifold M is not minimal,
its volume is decreased fastest by pushing it along its mean curvature vector field H. So one can
attempt attempt to find minimal submanifolds as limits of “mean curvature flow”. The problem
is that singularities can form during the flow. This is an area of current research.

MCF on a symplectic manifold preserves the Lagrangian condition. Therefore, if MCF of a
Lagrangian L in a Calabi-Yau manifold converges then the limit is SLag. The Lagrangian angle
evolves by dθ

dt
= ∆θ.
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Deformations of SLag submanifolds. Let L be a (smooth) closed SLag submanifold of a
Calabi-Yau manifold M . The moduli space of L is the space ML of (smooth) deformations of L
that are SLag.

Theorem 15 (McLean [10]). ML is a smooth manifold of dimension b1(L).

For any Lagrangian submanifold L in a symplectic manifold, the Lagrangian neighbourhood
theorem implies that Lagrangian deformations correspond to closed 1-forms on L. In order to
prove theorem 15 we show that the SLag deformations essentially correspond to the subspace of
1-forms that are also coclosed, i.e. the harmonic ones.

Proof. It suffices to find a chart for a neighbourhood of L in ML.

{small deformations of L} ↔ {normal vector fields to L with small norm}

via the exponential map (L itself corresponds to the zero normal field). For any Lagrangian L,

NL → T ∗L

u 7→ uyω

is an isomorphism (where the contraction is defined by (uyω)(v) = ω(u, v)). Let α 7→ uα be the
inverse. So for any α ∈ Ω1(L) there is a corresponding deformation Lα, which is the image of an
embedding fα = exp uα : L → M . By (14), the failure of Lα to be Slag is measured by

F (α) = (f∗
αω, f∗

α Im Ω).

So the problem is to identify the zeros of

F : Ω1(L) → Ω2(L) × Ωn(L)

in a neighbourhood of 0 ∈ Ω1(L) (F is only defined near 0). Because fα is homotopic to the
inclusion L →֒ M , F actually takes values in the subspace of exact forms, i.e.

F : Ω1(L) → dΩ1(L) × dΩn−1(L).

To apply the Implicit Function Theorem, we need the derivative at the origin

D0F : Ω1(L) → dΩ1(L) × dΩn−1(L)

to be surjective. (D0F is the “deformation operator”, and its cokernel is the “obstruction space”;
we want to show that the latter is trivial, so that the deformation problem is unobstructed.)
Differentiating exp gives a Lie derivative, so

D0F (β) = (Luβ
ω|L, Luβ

Im Ω|L)

Using Cartan’s formula for the Lie derivative of a form gives

Luβ
ω = uβydω + d(uβyω) = dβ,

since dω = 0 and uβyω = β by definition. Similarly

Luβ
Im Ω = uβy(d Im Ω) + d(uβy Im Ω) = d∗Lβ,

where ∗L : ω1(L) → Ωn−1(L) is the Hodge star map on L; the definition of the Hodge star involves
the volume form, and we use that volL = ReΩ|L by hypothesis.

By Hodge theory,
Ω1(L) = H1(L) ⊕ dΩ0(L) ⊕ d∗Ω2(L),

and the formula for D0F shows that it vanishes on the first term, maps the second isomorphically
to dΩn−1(L), and the third isomorphically to dΩ1(L). By IFT, a neighbourhood of 0 in F−1(0) is
a graph over H1(L), which has dimension b1(L).

Technical issue: to apply IFT, we would really require that the vector spaces Ω1(L) etc are
complete, which they are not. To get around this problem, complete them with respect to suitable
Sobolev or Hölder norms. IFT now shows that F−1(0) in the completion of Ω1(L) is a smooth
manifold. The elements of this manifold are a priori just Sobolev/Hölder regular forms, but elliptic
regularity shows that they are actually smooth. ¤
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Saying that ML is a manifold gives no information about its global properties, whereas if one
knew that it were compact (possibly with some boundary) one would at least have some control.
The reason one should not expect ML to be compact is that one could deform L continuously
to a limit that is still SLag, but with singularities (a basic analogy would be how {xy = t} ⊂ R

2

is smooth for t 6= 0, but becomes singular at t = 0). It is an important problem to understand
how one could define a compactification ML by adding boundary points to ML corresponding to
singular SLag submanifolds.

Special cases.

• b1(L) = 0
Then dimML = 0, so it is a discrete set of points, finite if it is compact. For any small
deformation of the Calabi-Yau structure (ω,Ω) on M , there is a unique deformation of L that
keeps it SLag, provided the obvious necessary topological condition that [ω|L] ∈ H2(L; R)
and [Im Ω|L] ∈ Hn(L; R) vanish; this is proved by an argument similar to theorem 15.
Nevertheless, the number of elements of ML need not stay constant, because of the possibility
of singular degenerations.

• L ∼= Tn

Then dimML = n. If L is close to flat, then harmonic 1-forms on L have no zeros, so the
small deformations of L do not intersect. Thus M is locally fibred by deformations of L.
Global fibrations of Calabi-Yau manifolds by SLag tori would be of relevance for mirror
symmetry (SYZ conjecture), but to construct them one would need to be able to handle
singular fibres.

Lecture four

G2-manifolds.

The group G2. The octonions O are the unique real normed division algebra of dimension 8. The
multiplication has no zero divisors, but is not commutative or even associative. ‖a‖2 = aā for a
conjugation map ¯: O → O, splitting O = R ⊕ Im O.

Any a ∈ O \ R generates a subalgebra ∼= C. Any a, b ∈ O that are linearly independent (also
from 1) generate a subalgebra ∼= H (the quaternions).

Setting a × b = Im(ab) defines a cross product on Im O: it is anti-symmetric and satisfies the
relation ‖a × b‖2 + ‖a ∧ b‖2 = ‖a‖2‖b‖2.

G2 = Aut(O) is an exceptional case in the classification of simple Lie groups. G2 is 2-connected
and has dimension 14. The natural action of G2 on Im O identifies it with a subgroup of SO(7).
It preserves the cross product, and hence also the “multiplication table”

ϕ0(a, b, c) = <a × b, c>.

ϕ0 is anti-symmetric in all three arguments, and can be written in coordinates as

ϕ0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx356 − dx347 ∈ Λ3(R7)∗.

Fact: G2 is exactly the stabiliser of ϕ0 in GL(7, R).

dim GL(7, R)ϕ0 = 49 − 14 = 35 = dim Λ3(R7)∗,

so the orbit of ϕ0 is open in Λ3(R7)∗ (“ϕ0 is stable”). Call elements of this orbit positive 3-forms.

G2-structures. Let M7 be a smooth manifold. Call ϕ ∈ Ω3(M) a G2-structure if it is positive at
each p ∈ M , in other words (TpM,ϕ) ∼= (R7, ϕ0). Because ϕ0 is stable, any small perturbation of
the 3-form ϕ is also a G2-structure.

Because G2 ⊂ SO(7), a G2-structure induces a Riemannian metric. Say that ϕ is torsion-free
if ∇ϕ = 0; here ∇ is the Levi-Civita connection of the metric induced by ϕ, so the condition is
non-linear. By proposition 6

Hol(M, g) ⊆ G2 ⇔ g induced by some torsion-free G2-structureϕ.

Call (M,ϕ) where ϕ is torsion-free a G2-manifold.
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SU(3) ⊂ G2 (it is the stabiliser of a non-zero vector). Therefore, if X6 is a Calabi-Yau manifold
(of complex dimension 3), then X × S1 is a (reducible) G2-manifold. Its G2-structure can be
written as

ϕ = ReΩ + dθ ∧ ω. (16)

But we are most interested in irreducible G2-manifolds, i.e. ones that have full holonomy G2. In
the compact case, there is a simple topological criterion for irreducibility.

Proposition 17. For M a closed G2-manifold,

Hol(M) = G2 ⇔ π1(M) is finite.

Constructions. ∇ϕ = 0 is equivalent to dϕ = d∗ϕ = 0 (again, ∇ and d∗ involve the metric induced
by ϕ). To construct G2-manifolds, solve this non-linear PDE.

• Bryant [3]: first local examples using exterior differential systems (1985)
• Bryant-Salamon [4]: first complete examples (1989)

These complete examples have cohomogeneity 1, i.e. there is an isometry group with orbits of
codimension 1. This can be used to reduce the PDE for G2 holonomy to an ODE, and numerous
complete G2 metrics with large isometry groups have been found since.

Compact (irreducible) G2-manifolds cannot have continuous isometries; on a Ricci-flat manifold
any Killing vector field is parallel, so if one exists then the holonomy cannot be irreducible. Instead,
the known constructions of compact examples solve the PDE by gluing together reducible pieces to
a smooth closed simply-connected manifold, and deduce that it is irreducible from proposition 17.

• Joyce [7]: First compact examples (1995). Resolve a flat orbifold T 7/Γ to a simply-connected
smooth closed M7, in simplest case by replacing singularities of the form T 3 × C

2/±1 by
T 3 × Y . Here Y is the Eguchi-Hansen space, a Ricci-flat Kähler metric on T ∗

CP 2, asymp-
totic to C

2/±1. As Hol(Y ) = SU(2), Y 3 × SU(2) has a torsion-free G2-structure. Define a
G2-structure ϕ on M by interpolating between this and the flat G2-structure on T 7/Γ. With
some hard work, one can make sure that the torsion ∇ϕ is small in a quantifiable sense, and
prove that ϕ can be perturbed to a torsion-free G2-structure.

• Kovalev [9]: More compact examples (2000). First construct Calabi-Yau 3-folds V± with
cylindrical end of the form R × S1 × K3. Then form a closed smooth M7 from S1 × V+

and S1 × V−, by truncating the cylindrical ends and gluing the resulting S1 × S1 × K3
boundaries. One takes the gluing map to swap the two circle factors in order to ensure that
π1(M) = 1; we call M a “twisted connected sum”. Finding a gluing map that matches up
the torsion-free G2-structures on S1 × V+ and S1 × V− takes some work, but once that is
done it is comparatively straight-forward to glue to define a G2-structure with small torsion
and perturb to a torsion-free one.

Notice the difference between these constructions and the Calabi-Yau theorem 9: for complex
manifolds there is an obvious necessary topological condition for admitting a holonomy SU(n)
metric that can also be proved to be sufficient, while these constructions rely on first finding a
metric that is “almost” a G2 metric (in the sense that it is induced by a G2-structure with small
torsion). While a few necessary topological conditions are known for a closed manifold to admit
a holonomy G2 metric, there is currently no clear conjecture for what a necessary and sufficient
condition might be.

Calibrations on G2-manifolds. ϕ0 ∈ Λ3(R7)∗ and ∗ϕ0 ∈ Λ4(R7)∗ are calibrations on R
7. The

calibrated planes are called associative 3-planes and coassociative 4-planes.

V 3 ⊂ R
7 associative ⇔ V y(∗ϕ0) = 0 ⇔ R ⊕ V ⊂ O is a subalgebra ∼= H

V 4 ⊂ R
7 coassociative ⇔ ϕ0|V = 0

If (M,ϕ) is a G2-manifold, then ϕ and ∗ϕ are calibrations on M . A smooth coassociative
submanifold C4 ⊂ M has unobstructed deformations, similar to SLag submanifolds. Since C has
dimension 4, the degree 2 cohomology can be split into self-dual and anti-self-dual parts, whose
ranks are denoted by b2

±(C).
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Theorem 18 (McLean [10]). The moduli space MC is a smooth manifold of dimension b2
+(C).

T 4 and K3 have b2
+ = 3, so could be fibres in coassociative fibrations. (16) implies that if C ⊂ V

is a complex surface in a Calabi-Yau 3-fold V , then {θ}×C ⊂ S1 ×V is coassociative. It therefore
seems feasible to construct twisted connected sum G2-manifolds that are fibred by coassociative
K3s, because often the asymptotically cylindrical Calabi-Yau 3-folds V± in the construction have
holomorphic K3 fibrations where the singular fibres are well-behaved (only ordinary double point
singularities).

The deformation theory of an associative A3 ⊂ M is more complicated. McLean shows that the
deformation operator for this problem is a twisted Dirac operator /DA on A. /DA is self-adjoint,
so the infinitesimal deformation space ker /DA is isomorphic to the obstruction space coker /DA,
but neither is controlled by the topology of A (unlike SLag and coassociative cases, where the
deformation operator can be written in terms of exterior derivatives). So one can only use the
Implicit Function Theorem to prove smoothness of the space of deformations of A when A is in
fact rigid.

The expected dimension of the moduli space is 0, so one could try to count its elements. If A
is rigid, then it persists under sufficiently small deformations of the G2-structure on M . But for
larger deformations, singularities may develop, or A may become non-rigid and then disappear,
so one should not expect a crude count of associatives to stay constant under deformation.

In recent work with Corti, Haskins and Pacini, we show that there are many examples of twisted
connected sum G2-manifolds containing rigid associatives diffeomorphic to S1 × S2. The idea is
to first find asymptotically cylindrical Calabi-Yau 3-folds V+ containing rigid complex curves
CP 1 ∼= S2. Then (16) shows that S1 × S2 is associative in S1 × V+, and one can check that the
rigidity of the complex curve translates into rigidity of the associative. Therefore it persists under
the perturbation of the G2-structure involved in the gluing construction.
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