
Singular cohomology with compact supports

It is possible to define singular cohomology of Mn with compact supports. It is the cohomology
H∗

c (M) of the complex C∗
c (M), where Ck

c (M) ⊆ Ck(M) is the subgroup of cochains α such that
there is a compact K ⊂ M such that α(σ) = 0 for any chain σ contained in M\K.

If M is non-compact (and connected) then Hn(M) ∼= 0, so the ad hoc definition of orientability
in terms of existence of a fundamental class is no longer suitable. An equally ad hoc definition that
does work regardless of whether M is compact or not (as long as M is connected and ∂M = ∅) is
that M is R-orientable if Hn

c (M ;R) ∼= R.
A proper map between topological spaces induces pull-backs on the compactly supported co-

homology. For a proper map f : Mn
1 → Mn

2 between connected manifolds without boundary of
equal dimension, we can define a mod 2 degree in terms of f∗ : Hn

c (M2; Z2) → Hn
c (M1; Z2). If

Mi and f are smooth we can prove that this coincides with the degree mod 2 defined in terms
of counting pre-images. The argument is similar to the one we used in the oriented case to show
that the signed count of pre-images equals the degree defined in terms of de Rham cohomology
(using that Hn

c (U ; Z2) ∼= Hn
c (Mi; Z2) for any open ball U ⊂ Mi). Similarly, if Mi are oriented with

corresponding generators ui ∈ Hn
c (Mi; Z), then defining deg f by f∗u2 = (deg f)u1 is equivalent

to our previous definitions of degree.
For non-compact manifolds, compactly supported cohomology can be used to state Poincaré

duality. Note that Hk(M ; R) ∼= Hk(M ; R)∨, so under the de Rham isomorphism we recover the
de Rham cohomology version of Poincaré duality.

Theorem ([2, Theorem 3.35]). If Mn is R-orientable and ∂M = ∅ then Hk(M ;R) ∼= Hn−k
c (M ;R).

If M is closed and X is a closed submanifold, then Hk
c (M \X;G) is isomorphic to the ‘relative’

cohomology Hk(M,X;G) of the pair (M,X). The latter is defined for any pair of topological
spaces M ⊃ X, and fits into a long exact sequence:

· · · → Hk−1(X;G) → Hk(M,X;G) → Hk(M ;G) → Hk(X;G) → · · ·

Cup products and transverse intersections

The cup product on singular cohomology is harder to work out from first principles than the wedge
product on de Rham cohomology. But on manifolds one can interpret the cup product as dual to
transverse intersection under Poincaré duality,

The homology class represented by a closed R-oriented submanifold Y n−j ⊂ Mn is the image
[Y ] ∈ Hn−j(M ;R) of the fundamental class of Y under the push-forward of the inclusion. If M
too is closed R-oriented, let PDM (Y ) ∈ Hj(M ;R) denote the image of [Y ] under the Poincaré
isomorphism.

Now suppose that M and Y is smooth, and that X is another smooth manifold. A smooth map
f : X → M is called transverse to Y if Dfx(TxX) + TyY = TyM for each y ∈ Y and x ∈ f−1(y).
Then f−1(Y ) ⊂ X is a smooth submanifold of codimension j. If X too is R-oriented, then f−1(Y )
has a natural R-orientation as well.

Proposition (cf. [1, p.69]). f∗PDM (Y ) = PDX(f−1(Y )) ∈ Hj(N ;R).

Proof idea. Let NY be the normal bundle of Y in M , and identify it with a tubular neighbourhood
of Y . Like in Q1 of the coursework, we can identify PDM (Y ) with a push-forward of PDNY

(Y ) ∈
Hj

c (NY ;R). The Poincaré dual of the zero section on a closed manifold is equal to the ‘Thom class’
Φ(NY ), which is naturally associated to any oriented vector bundle.

Note that the normal bundle of f−1(Y ) in X is f∗NY . The naturality of the Thom class
implies that Φ(f∗NY ) = f∗Φ(NY ). Now by the same argument that is the Poincaré dual of the
zero section, and its push-forward in Hj(X;R) is PDX(f−1(Y )).

If n ≥ 10 then not every homology class in Mn need be represented even by a continuous
image of a manifold (this problem was studied by Thom [4]). Therefore the results below cannot
be regarded as a complete characterisation of the cup product even on smooth manifolds, but it
is still useful.



Proposition. Let Mn be a smooth closed R-oriented manifold, and Xn−i, Y n−j smooth closed
R-oriented submanifolds that intersect transversely, i.e. TxX + TxY = TxM for every x ∈ X ∩ Y
(then X ∩Y is a smooth submanifold of codimension i+ j in M , and it has a natural orientation).

(i) PDX(X ∩ Y ) = PDM (Y )|X ∈ Hj(X;R)

(ii) PDM (X) ∪ PDM (Y ) = PDM (X ∩ Y ) ∈ Hi+j(M ;R)

Proof. (i) is obtained by applying the previous proposition to the inclusion map f : X →֒ M .
(ii) follows using standard relations for the cap product: ([M ] ∩ [α]) ∩ [β] = [M ] ∩ ([α] ∪ [β]) for
[α], [β] ∈ H∗(M ;R), and i∗([X] ∩ i∗[α]) = i∗[X] ∩ [α] for i : X → M . See Hutchings [3, §1 and §4]
for more detail.

In particular, for transverse oriented submanifolds whose codimensions add up to n, the cup
product of the Poincaré duals can be interpreted as the intersection number. One application is
to give a geometric derivation of the cohomology rings of projective spaces.

Any hyperplane P ⊂ CPn represents the same class [P ] ∈ H2n−2(CPn; Z). PDCP n(P )n ∈
H2n(CPn; Z) ∼= Z corresponds to the number of intersection points of n transverse hyperplanes,
which is 1. Therefore PDCP n(P )k is a generator for H2k(CPn; Z) for 0 ≤ k ≤ n, and H∗(CPn; Z)
is isomorphic as a ring to the truncated polynomial ring Z[x]/(xn+1).

Similarly if [α] ∈ H1(RPn; Z2) is the dual of hyperplane in RPn then [α]n ∈ Hn(RPn; Z2) ∼= Z2

corresponds to the mod 2 intersection number of n transverse hyperplanes. This is again 1, so
[α]k ∈ Hk(RPn; Z2) is a generator for each 0 ≤ k ≤ n, and H∗(RPn; Z2) is isomorphic as a ring
to the truncated polynomial ring Z2[x]/(xn+1).

Recognising closed manifolds

Poincaré duality is a special property of closed manifolds; it can fail if there is even a single
singular point. We can therefore use it (together with results about orientability) to show that
certain topological spaces cannot be homotopy equivalent to closed manifolds. (Being homotopy
equivalent to a non-closed manifold is not much of a restriction: any reasonably nice subset of R

n

is homotopy equivalent to some sort of tubular neighbourhood.)
Let X be a connected topological space. If we suppose that X is homotopy equivalent to an

orientable closed manifold then we can detect its dimension as the highest degree in which the Betti
number is non-zero. When we know the dimension n we can check whether bn(X) = 1 and various
consequences of Poincaré duality are satisfied, most easily bi(X) = bn−i(X) and that b2k+1(X) is
even if n = 4k + 2. If any of these properties fails, then X cannot be homotopy equivalent to an
orientable closed manifold.

One can sometimes rule out the possibility that X is homotopy equivalent to a nonorientable
manifold by using that then π1(X) must contain an index 2 subgroup (in particular a nonorient-
able manifold is never simply-connected). Equivalently H1(X; Z2) must be non-trivial (see Q6
on example sheet 4). In general the easiest way is perhaps to work out the homology with Z2

coefficients. If X is homotopy equivalent to a closed manifold (whether orientable or not) then
the dimension must be the maximal n such that Hn(X; Z2) is non-trivial. Poincaré duality then
imposes dim Hi(X; Z2) = dimHn−i(X; Z2).
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