The induction step in the proof of the Künneth formula

Let $V_{1}, V_{2} \subset M$ be open subsets such that $M=V_{1} \cup V_{2}$. Suppose that

$$
\begin{gathered}
\psi_{V_{1}}: \bigoplus_{i+j=k} H^{i}\left(V_{1}\right) \otimes H^{j}(N) \rightarrow H^{k}\left(V_{1} \times N\right) \\
\psi_{V_{2}}: \bigoplus_{i+j=k} H^{i}\left(V_{2}\right) \otimes H^{j}(N) \rightarrow H^{k}\left(V_{2} \times N\right) \\
\psi_{V_{1} \cap V_{2}}: \bigoplus_{i+j=k} H^{i}\left(V_{1} \cap V_{2}\right) \otimes H^{j}(N) \rightarrow H^{k}\left(\left(V_{1} \cap V_{2}\right) \times N\right)
\end{gathered}
$$

are isomorphisms for all k. Then

$$
\psi_{M}: \bigoplus_{i+j=k} H^{i}(M) \otimes H^{j}(N) \rightarrow H^{k}(M \times N)
$$

is also an isomorphism.
Proof. (Based on Bott and Tu, pp. 49) Consider the diagram

$$
\begin{aligned}
& \cdots \bigoplus_{i+j=k}\left(H^{i}\left(V_{1}\right) \oplus H^{i}\left(V_{2}\right)\right) \otimes H^{j}(N) \rightarrow \bigoplus_{i+j=k} H^{i}\left(V_{1} \cap V_{2}\right) \otimes H^{j}(N) \xrightarrow{\delta} \bigoplus_{i+j=k} H^{i+1}(M) \otimes H^{j}(N) \cdots \\
& \psi_{V_{1}}+\left.\psi_{V_{2}} \downarrow \psi_{V_{1} \cap V_{2}}\right|_{\delta} \psi_{M} \downarrow \\
& \cdots \quad H^{k}\left(V_{1} \times N\right) \oplus H^{k}\left(V_{2} \times N\right) \longrightarrow H^{k}\left(\left(V_{1} \cap V_{2}\right) \times N\right) \longrightarrow \quad \delta \quad H^{k+1}(M \times N) \quad \ldots
\end{aligned}
$$

Here the top row is obtained from the Mayer-Vietoris sequence for $M=V_{1} \cup V_{2}$ by first taking the tensor product with $H^{j}(N)$ for $j=0,1, \ldots$ to get exact sequences

$$
\cdots \rightarrow\left(H^{i}\left(V_{1}\right) \oplus H^{i}\left(V_{2}\right)\right) \otimes H^{j}(N) \rightarrow H^{i}\left(V_{1} \cap V_{2}\right) \otimes H^{j}(N) \xrightarrow{\delta} H^{i+1}(M) \otimes H^{j}(N) \rightarrow \cdots,
$$

and then adding them all up, with the index i shifted by j so that $i+j$ is the same for all the terms in each entry in the sequence. (Each entry has finite number of non-trivial terms; with the dummy variables as written, the sum in the top right corner includes a possibly nontrivial contribution from $i=-1, j=k$.) The bottom row is just the Mayer-Vietoris sequence for $M \times N=\left(V_{1} \times N\right) \cup\left(V_{2} \times N\right)$.

The diagram is commutative. The only square for which the commutativity is not straightforward is the one on the right, i.e. that $\psi_{M} \circ \delta=\delta \circ \psi_{V_{1} \cap V_{2}}$. By definition of the maps ψ, this means that for any $[\alpha] \in H^{i}\left(V_{1} \cap V_{2}\right),[\beta] \in H^{j}(N)$,

$$
p^{*}(\delta[\alpha]) \wedge q^{*}[\beta]=\delta\left(p^{*}[\alpha] \wedge q^{*}[\beta]\right) \in H^{i+j+1}(M \times N)
$$

where $p: M \times N \rightarrow M$ and $q: M \times N \rightarrow N$ denote the projection maps (and their restriction to $\left.\left(V_{1} \cap V_{2}\right) \times N\right)$. Let $\left\{\rho_{1}, \rho_{2}\right\}$ be a partition of unity on M relative to $\left\{V_{1}, V_{2}\right\}$, i.e. spt $\rho_{r} \subset V_{r}$ and $\rho_{1}+\rho_{2} \equiv 1$. From the details of the proof of the Mayer-Vietoris theorem and the Snake lemma, $\delta[\alpha] \in H^{i+1}(M)$ can be represented by an $(i+1)$-form on M whose restriction to V_{3-r} is $(-1)^{r} d\left(\rho_{r} \alpha\right)$. Since $d \rho_{1}=-d \rho_{2}$ and has support in $V_{1} \cap V_{2}$, this means that $\delta[\alpha]=\left[d \rho_{1} \wedge \alpha\right]$. So $p^{*}(\delta[\alpha]) \wedge q^{*}[\beta]$ is represented by

$$
p^{*}\left(d \rho_{1} \wedge \alpha\right) \wedge q^{*} \beta=d\left(\rho_{r} \circ p\right) \wedge\left(p^{*} \alpha \wedge q^{*} \beta\right)
$$

As $\left\{\rho_{1} \circ p, \rho_{2} \circ p\right\}$ is a partition of unity on $M \times N$ relative to $\left\{V_{1} \times N, V_{2} \times N\right\}$, the right hand side represents $\delta\left(p^{*}[\alpha] \wedge q^{*}[\beta]\right)$.

Because the diagram commutes and the rows are exact, and $\psi_{V_{1}}+\psi_{V_{2}}$ and $\psi_{V_{1} \cap V_{2}}$ are isomorphisms by hypothesis, the Five lemma implies that ψ_{M} is also an isomorphism.

Questions and corrections to j.nordstrom@imperial.ac.uk.
February 19, 2013

