Differential Topology

Example Sheet 5

1. Let $j: \mathbb{R} P^{n-1} \rightarrow \mathbb{R} P^{n}$ be the inclusion of a hyperplane. Use the Mayer-Vietoris sequence for $H_{*}\left(-; \mathbb{Z}_{2}\right)$ to show $j_{*}: H_{k}\left(\mathbb{R} P^{n-1} ; \mathbb{Z}_{2}\right) \rightarrow H_{k}\left(\mathbb{R} P^{n} ; \mathbb{Z}_{2}\right)$ is an isomorphism for $0 \leq k \leq n-1$.
2. Let G be a group order m acting freely on M, and let $\pi: M \rightarrow M / G$ be the quotient map. For any abelian group A, show that the kernel of $\pi^{*}: H^{k}(M / G ; A) \rightarrow H^{k}(M ; A)$ is contained in $T_{m}\left(H^{k}(M / G ; A)\right)$ and that the image contains $m H^{k}(M ; A)^{G}$ (where $-{ }^{G}$ denotes the G invariant part).
3. Let X be a cell complex with a single 0 -cell, 2 -cell and 4 -cell, such that the attaching map for the 4 -cell is the composition of a degree 2 map $S^{3} \rightarrow S^{3}$ with the Hopf map $S^{3} \rightarrow S^{2}$. Is X homotopy equivalent to a closed manifold?
4. (a) Let M be a compact manifold and $X \subset M$ a closed submanifold. Let $U=M \backslash X$, and let $i: U \rightarrow M$ and $j: X \rightarrow M$ denote the inclusion maps. Use the existence of a tubular neighbourhood of X to show that $j^{*}: \Omega^{*}(M) \rightarrow \Omega^{*}(X)$ is surjective. Let $\Omega^{*}(M, X)$ be the kernel of j^{*}, and $H^{*}(M, X)$ the cohomology of this cochain complex. One can prove that the cochain map $i_{*}: \Omega_{c}^{*}(U) \rightarrow \Omega^{*}(M, X)$ induces an isomorphism $H_{c}^{*}(U) \cong H^{*}(M, X)$. Deduce that there is a long exact sequence

$$
0 \rightarrow H_{c}^{0}(U) \xrightarrow{i_{*}} H^{0}(M) \xrightarrow{j^{*}} H^{0}(X) \xrightarrow{\delta} H_{c}^{1}(U) \rightarrow \cdots,
$$

and describe δ.
(b) If M is compact and oriented, show that the sequence obtained by setting $X=\partial M$ in (a) is Poincaré dual to itself. (The Poincaré dual of a map between two cohomology groups means the composition of the dual map with the two Poincaré duality isomorphisms.)
(c) Let M compact oriented of dimension $n=2 k+1$, and L the image of $H^{k}(M) \rightarrow H^{k}(\partial M)$. Show that $L=L^{\perp}$, where $L^{\perp}=\left\{[\alpha] \in H^{2 k+1}(\partial M): \int_{\partial M}[\alpha] \wedge[\beta]=0\right.$ for any $\left.[\beta] \in L\right\}$ (so L is an isotropic subspace of dimension exactly half the dimension of $H^{k}(\partial M)$).
Deduce that if $X^{4 k}$ is the boundary of a compact manifold then the signature of X is 0 . (Hint: Recall that if $f: V \rightarrow W$ is a linear map, then the kernel of the dual map f^{\vee} : $W^{\vee} \rightarrow V^{\vee}$ is the annihilator of the image of f.)
5. Let $Q \subset \mathbb{C} P^{4}$ be the hypersurface $\left\{\left(z_{0}: \cdots: z_{4}\right): \sum_{j=0}^{4} z_{j}^{2}=0\right\}$. Show that $\mathbb{C} P^{4} \backslash Q \simeq \mathbb{R} P^{4}$, and deduce that Q has the same Betti numbers as $\mathbb{C} P^{3}$. Is $Q \simeq \mathbb{C} P^{3}$?
(Hint: Consider $\mathbb{C} P^{4} \backslash Q$ as the image of $\left\{\left(z_{0}, \ldots, z_{4}\right) \in \mathbb{C}^{5}: \sum_{j=0}^{4} z_{j}^{2}=1\right\}$.)
6. (a) Show that any antipode-preserving map $f: S^{n} \rightarrow S^{n}$ (i.e. $f(-x)=-f(x)$ for all $x \in S^{n}$) has odd degree.
(b) Deduce the Borsuk-Ulam theorem: for any smooth $f: S^{n} \rightarrow \mathbb{R}^{n}$ there is some $x \in S^{n}$ such that $f(x)=f(-x)$.
7. (a) Let $p, q: \mathbb{R} P^{n-1} \times \mathbb{R} P^{n-1} \rightarrow \mathbb{R} P^{n-1}$ be the projection maps, and $c \in H^{1}\left(\mathbb{R} P^{n-1} ; \mathbb{Z}_{2}\right)$ the generator. Show that $\left(p^{*} c+q^{*} c\right)^{n}=0 \in H^{n}\left(\mathbb{R} P^{n-1} \times \mathbb{R} P^{n-1} ; \mathbb{Z}_{2}\right)$ if and only if n is a power of 2 .
(b) Deduce the Hopf theorem: the dimension of any division algebra over \mathbb{R} (i.e. an algebra where every non-zero element has a multiplicative inverse; the multiplication need not be associative or commutative) is a power of 2 .
(Remark: In fact the only possibilities are 1, 2, 4 and 8.)
8. Let M^{n} be a closed oriented manifold with fundamental class $[M] \in H_{n}(M ; \mathbb{Z})$. Let $[\alpha] \in$ $H^{a}(M ; \mathbb{Z})$ and $[\beta] \in H^{n-a+1}(M ; \mathbb{Z})$ be torsion classes, i.e. $k[\alpha]=0, m[\beta]=0$ for some $k, m \in \mathbb{N}$. Then we can write $k \alpha=d \gamma$ for some $\gamma \in C^{a-1}(M ; \mathbb{Z})$. Let

$$
[\alpha] \vee[\beta]=\frac{1}{k}(\gamma \cup \beta)[M] \in \mathbb{Q} / \mathbb{Z}
$$

(a) Show that $[\alpha] \vee[\beta]$ is well-defined (independent of choice of representatives $\alpha \in C^{a}(M ; \mathbb{Z})$ and $\beta \in C^{n-a-1}(M ; \mathbb{Z})$, and of the choice of γ), and that $[\beta] \vee[\alpha]=(-1)^{a(n-a+1)}[\alpha] \vee[\beta]$.
(b) Show that the 'torsion linking pairing'

$$
T\left(H^{a}(M ; \mathbb{Z})\right) \times T\left(H^{n-a+1}(M ; \mathbb{Z})\right) \rightarrow \mathbb{Q} / \mathbb{Z},([\alpha],[\beta]) \mapsto[\alpha] \vee[\beta]
$$

is non-degenerate.
9. (a) Let M be a closed oriented manifold of dimension $4 k-1$. Let $\ell(M)$ denote the image of the quadratic form $T\left(H^{2 k}(M ; \mathbb{Z})\right) \rightarrow \mathbb{Q} / \mathbb{Z},[\alpha] \mapsto[\alpha] \vee[\alpha]$. If N is a closed oriented manifold of the same dimension and $f: M \rightarrow N$, show that $(\operatorname{deg} f) \ell(N) \subseteq \ell(M)$.
(b) Let M be a closed orientable manifold of dimension 3. Show that if $\pi_{1}(M) \cong \mathbb{Z}_{p}$ for a prime p such that -1 is not a quadratic residue $\bmod p$, then there is no orientation reversing diffeomorphism $f: M \rightarrow M$.
10. Let $\lambda_{0}<\cdots<\lambda_{n}$.
(a) Let $f: \mathbb{C} P^{n} \rightarrow \mathbb{R},\left(z_{0}: \cdots: z_{n}\right) \mapsto \sum \lambda_{i}\left|z_{i}\right|^{2} / \sum\left|z_{i}\right|^{2}$. Show that f is a Morse function, identify the critical points, and compute $H^{*}\left(\mathbb{C} P^{n} ; \mathbb{Z}\right)$.
(b) Let $f: \mathbb{R} P^{n} \rightarrow \mathbb{R},\left(x_{0}: \cdots: x_{n}\right) \mapsto \sum \lambda_{i} x_{i}^{2} / \sum x_{i}^{2}$. Show that f is a Morse function and identify the critical points. Identify the gradient flow (with respect to the standard round metric on $\left.\mathbb{R} P^{n}\right)$ lines between critical points of adjacent index, and compute $H^{*}\left(\mathbb{R} P^{n} ; \mathbb{Z}_{2}\right)$. (Hint: Lift f to a function on S^{n}, and show that if $f<\lambda_{k}$ then $(\operatorname{grad} f) \cdot e_{k}$ has the same sign as x_{k}.)
11. (a) Let M_{1}, M_{2} be smooth manifolds with boundary, and $f: \partial M_{1} \rightarrow \partial M_{2}$ a diffeomorphism. Given collar neighbourhoods of M_{i}, define a smooth structure on $M_{1} \cup_{f} M_{2}=M_{1} \sqcup M_{2} / \sim$, where $x_{1} \sim x_{2}$ if $x_{i} \in \partial M_{i}$ and $f\left(x_{1}\right)=x_{2}$. Show that different choices of collar neighbourhoods give rise to equivalent smooth structures.
(b) Let $f: S^{n-1} \rightarrow S^{n-1}$ be a diffeomorphism. Show that $B^{n} \cup_{f} B^{n}$ is homeomorphic to S^{n} ($B^{n} \subset \mathbb{R}^{n}$ is the closed unit ball, and S^{n-1} is its boundary). We call this a twisted sphere. Show that if it is not diffeomorphic to S^{n}, then f is not smoothly isotopic to $i d_{S^{n-1}}$ (i.e. there is no smooth homotopy $F_{t}, t \in[0,1]$ with $F_{0}=i d_{S^{n-1}}$ and $F_{1}=f$, such that F_{t} is a diffeomorphism for each fixed t).
(c) Persuade yourself that the (oriented) diffeomorphism classes of smooth n-dimensional oriented manifolds homeomorphic to S^{n} form an Abelian monoid under connected sums, i.e. the binary operation is associative, commutative and has an identity element. (Take for granted that the connect-sum operation is well-defined on connected oriented manifolds.) Show that the twisted spheres form a subgroup, i.e. the set is closed under connected sums and inverses exist. How does the operation of reversing orientation act on this subgroup? (Remark: For $n \geq 5$, any smooth closed n-manifold homotopy equivalent to S^{n} is a twisted sphere.)

Questions and corrections to j.nordstrom@imperial.ac.uk.
August 2, 2013

