
The induction step in the proof of Poincaré duality

Consider the following diagram, where the top row is the Mayer-Vietoris sequence for H∗ and the
bottom row is the dual of the Mayer-Vietoris sequence for H∗
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If we prove that the diagram commutes, then the result follows from the Five lemma. In fact, some
squares only commute up to sign, but that’s not a problem since changing the signs of some maps
doesn’t affect the exactness of the rows and the application of the Five lemma.

Commutativity of the squares involving I and J is straight-forward and boils down to the fact
that if i : U → M is inclusion of an open set then this square commutes:
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This means that if [α] ∈ Hk(M) and [β] ∈ Hn−k(U) then PU (i∗[α])[β] = i∨
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so they are equal.

Finally we prove that
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