The induction step in the proof of Poincaré duality

Consider the following diagram, where the top row is the Mayer-Vietoris sequence for H* and the
bottom row is the dual of the Mayer-Vietoris sequence for H;.
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If we prove that the diagram commutes, then the result follows from the Five lemma. In fact, some
squares only commute up to sign, but that’s not a problem since changing the signs of some maps
doesn’t affect the exactness of the rows and the application of the Five lemma.

Commutativity of the squares involving I and J is straight-forward and boils down to the fact
that if ¢ : U — M is inclusion of an open set then this square commutes:
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This means that if [a] € H*(M) and [8] € H" *(U) then Py (i*[a])[3] = i
LHS is [;; a A 3, while by definition of the dual of a map the RHS is Py ([c])
so they are equal.

Finally we prove that
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For [a] € H*(Vi NVz) and [B] € H?~*~1(V; U V4) we need to compare
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But §[a] = [dp1 A a] € H*1 (M) and 6.[5] = [dp1 A 8] € HP*(M). Thus
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