The induction step in the proof of Poincaré duality

Consider the following diagram, where the top row is the Mayer-Vietoris sequence for H^{*} and the bottom row is the dual of the Mayer-Vietoris sequence for H_{c}^{*}.

$$
\begin{aligned}
& \cdots H^{k-1}\left(V_{1} \cap V_{2}\right) \xrightarrow{\delta} H^{k}\left(V_{1} \cup V_{2}\right) \xrightarrow{I} H^{k}\left(V_{1}\right) \oplus H^{k}\left(V_{2}\right) \xrightarrow{J} H^{k}\left(V_{1} \cap V_{2}\right) \cdots \\
& P_{V_{1} \cap V_{2}} \downarrow \downarrow P_{V_{1} \cup V_{2}} \downarrow P_{V_{1}}+P_{V_{2}} \downarrow \quad P_{V_{1} \cap V_{2}} \downarrow \\
& \cdots H_{c}^{n-k-1}\left(V_{1} \cap V_{2}\right)^{\vee} \xrightarrow{\delta_{c}^{\vee}} H_{c}^{n-k}\left(V_{1} \cup V_{2}\right)^{\vee} \xrightarrow{I_{c}^{\vee}} H_{c}^{n-k}\left(V_{1}\right)^{\vee} \oplus H_{c}^{n-k}\left(V_{2}\right)^{\vee} \xrightarrow{J_{c}^{\vee}} H_{c}^{n-k}\left(V_{1} \cap V_{2}\right)^{\vee} \ldots
\end{aligned}
$$

If we prove that the diagram commutes, then the result follows from the Five lemma. In fact, some squares only commute up to sign, but that's not a problem since changing the signs of some maps doesn't affect the exactness of the rows and the application of the Five lemma.

Commutativity of the squares involving I and J is straight-forward and boils down to the fact that if $i: U \rightarrow M$ is inclusion of an open set then this square commutes:

This means that if $[\alpha] \in H^{k}(M)$ and $[\beta] \in H^{n-k}(U)$ then $P_{U}\left(i^{*}[\alpha]\right)[\beta]=i_{*}^{\vee}\left(P_{M}([\alpha])\right)[\beta]$. The LHS is $\int_{U} \alpha \wedge \beta$, while by definition of the dual of a map the RHS is $P_{M}([\alpha])\left(i_{*}[\beta]\right)=\int_{M} \alpha \wedge \beta$, so they are equal.

Finally we prove that

$$
(-1)^{k} P_{V_{1} \cup V_{2}} \circ \delta=\delta_{c}^{\vee} \circ P_{V_{1} \cap V_{2}}: H^{k}\left(V_{1} \cap V_{2}\right) \rightarrow H_{c}^{n-k-1}\left(V_{1} \cup V_{2}\right)^{\vee}
$$

For $[\alpha] \in H^{k}\left(V_{1} \cap V_{2}\right)$ and $[\beta] \in H_{c}^{n-k-1}\left(V_{1} \cup V_{2}\right)$ we need to compare

$$
P_{V_{1} \cup V_{2}}(\delta[\alpha])[\beta]=\int_{V_{1} \cup V_{2}} \delta[\alpha] \wedge[\beta]
$$

with

$$
\delta_{c}^{\vee}\left(P_{V_{1} \cap V_{2}}[\alpha]\right)[\beta]=P_{V_{1} \cap V_{2}}[\alpha]\left(\delta_{c}[\beta]\right)=\int_{V_{1} \cap V_{2}}[\alpha] \wedge \delta_{c}[\beta] .
$$

But $\delta[\alpha]=\left[d \rho_{1} \wedge \alpha\right] \in H^{k+1}(M)$ and $\delta_{c}[\beta]=\left[d \rho_{1} \wedge \beta\right] \in H_{c}^{n-k}(M)$. Thus

$$
\int_{V_{1} \cup V_{2}} \delta[\alpha] \wedge[\beta]=\int_{V_{1} \cup V_{2}} d \rho_{1} \wedge \alpha \wedge \beta=(-1)^{k} \int_{V_{1} \cup V_{2}} \alpha \wedge d \rho_{1} \wedge \beta=(-1)^{k} \int_{V_{1} \cap V_{2}}[\alpha] \wedge \delta_{c}[\beta] .
$$

Questions and corrections to j.nordstrom@imperial.ac.uk.

