Differential Topology

Example Sheet 4

1. Let M^{m} and N^{n} be closed manifolds. Meditate on the formulas

$$
\begin{aligned}
\chi(M \times N) & =\chi(M) \chi(N), \\
\chi\left(M_{1} \# M_{2}\right) & =\chi\left(M_{1}\right)+\chi\left(M_{2}\right)-\left\{\begin{array}{l}
0 \text { if } n \text { is odd } \\
2 \text { if } n \text { is even }
\end{array}\right.
\end{aligned}
$$

in light of the Poincaré-Hopf index theorem ($m=n$ for the second formula).
2. Let Y be a topological space and $\varphi_{0}, \varphi_{1}: S^{n-1} \rightarrow Y$. Show that if $\varphi_{0} \simeq \varphi_{1}$ then the spaces $Y \cup_{\varphi_{i}} B^{n}$ obtained by attaching n-cells to Y by φ_{0} and φ_{1} are homotopy equivalent.
3. (a) Let $0 \rightarrow C_{n} \rightarrow \cdots \rightarrow C_{1} \rightarrow 0$ be a chain complex of finitely generated free \mathbb{Z}-modules. Let $H_{*}\left(C_{*}\right)$ be the associated homology groups (which are finitely generated \mathbb{Z}-modules), and $\chi\left(C_{*}\right)=\sum(-1)^{i}$ rk $H_{i}\left(C_{*}\right)$. For any field $F, C_{*} \otimes_{\mathbb{Z}} F$ is a chain complex, and its homology groups are vector spaces over F. Show that

$$
\chi\left(C_{*}\right)=\sum(-1)^{i} \operatorname{rk} C_{i}=\sum(-1)^{i} \operatorname{dim}_{F} H_{i}\left(C_{*} \otimes F\right)
$$

(b) Now drop the condition that the free \mathbb{Z}-module C_{*} is finitely generated. Show that if $H_{*}\left(C_{*}\right)$ is finitely generated, then

$$
\chi\left(C_{*}\right)=\sum(-1)^{i} \operatorname{dim}_{F} H_{i}\left(C_{*} \otimes_{\mathbb{Z}} F\right)
$$

4. Let $T=B^{2} / \sim$, where $z_{1} \sim z_{2}$ if $z_{i} \in S^{1}$ and $z_{1}^{3}=z_{2}^{3}$. Compute the singular homology of T with coefficients in $\mathbb{Z}, \mathbb{Z}_{3}$ and \mathbb{Z}_{2}. Is T homotopy equivalent to a closed manifold?
5. Let M^{n}, N^{n} smooth closed connected oriented manifolds of equal dimension, and $f: M \rightarrow N$ a map of non-zero degree. Does the pull-back $f^{*}: H^{*}(N ; \mathbb{Z}) \rightarrow H^{*}(M ; \mathbb{Z})$ on cohomology with integer coefficients need to be injective?
6. (a) For any path-connected topological space X, prove that $H_{1}\left(X ; \mathbb{Z}_{2}\right)$ is the two-elementary part of $\pi_{1}(X)$, i.e. the quotient by the subgroup generated by all squares.
(b) Prove that if M is a non-orientable manifold, then $H_{1}\left(M ; \mathbb{Z}_{2}\right)$ is non-trivial.
7. (Combinatorial proof of the Brouwer fixed point theorem)
(a) Let Δ be an n-simplex $\left[v_{0}, \ldots, v_{n}\right]$, and give each vertex v_{i} a different colour c_{i}. Consider any simplicial subdivision of Δ, and colour each of the vertices in the subdivision subject to the following constraint: if v belongs to the k-dimensional face $\left[v_{i_{0}}, \ldots, v_{i_{k}}\right]$ of Δ, then v has one of the $k+1$ colours $c_{i_{0}}, \ldots, c_{i_{k}}$. Show that there is an n-simplex in the subdivision for which all $n+1$ vertices have different colours.
(Hint: Consider the discriminant polynomial $\prod_{i<j}\left(c_{i}-c_{j}\right) \in \mathbb{Z}\left[c_{0}, \ldots, c_{n}\right]$.)
(b) Deduce the Brouwer fixed point theorem: any continuous map $f: \Delta \rightarrow \Delta$ has a fixed point.

Questions and corrections to j.nordstrom@imperial.ac.uk.
March 13, 2012

