Differential Topology

Example Sheet 3

1. Prove the following part of the Five lemma: if the diagram below commutes, rows are exact, ψ_{2} and ψ_{4} are surjective and ψ_{5} is injective then ψ_{3} is surjective.

2. Let T^{2} be the 2-torus $\mathbb{R}^{2} / \mathbb{Z}^{2}$. If x^{1}, x^{2} coordinates on \mathbb{R}^{2}, then $\left[d x^{1}\right],\left[d x^{2}\right]$ form a basis for $H^{1}\left(T^{2}\right)$. Identify oriented submanifolds $X_{i} \subset T^{2}$ that are Poincaré dual to this basis, i.e. $\int_{X_{i}} \alpha=\int_{T^{2}} d x^{i} \wedge \alpha$ for any $[\alpha] \in H^{1}\left(T^{2}\right)$. What is the number of intersection points of X_{1} and X_{2} ?
3. Let M^{n+1} and N^{n} be smooth oriented manifolds such that M has boundary but N does not. If $f: M \rightarrow N$ is a proper map, show that $\operatorname{deg} f_{\mid \partial M}=0$.
4. Let $f: M \rightarrow N$ be a smooth map between connected oriented manifolds without boundary, of equal dimension. Suppose M is compact while N is non-compact. Show that $\operatorname{deg} f=0$.
5. (a) Let f be a degree d polynomial in \mathbb{C}. Show that the degree of the smooth map $f: \mathbb{C} \rightarrow \mathbb{C}$ equals d. Deduce the fundamental theorem of algebra (provided that you did not assume it in the proof).
(b) Let f, g be coprime polynomials in \mathbb{C}. Show that the degree of the meromorphic map $f / g: \mathbb{C} P^{1} \rightarrow \mathbb{C} P^{1}$ is the maximum of the degrees of the polynomials f and g.
6. Prove the "hairy-ball theorem": S^{n} has a nowhere-vanishing vector field if and only if n is odd.
7. Let M be a smooth manifold with boundary, and $\stackrel{\circ}{M}=M \backslash \partial M$ its interior. Show that the pull-back of the inclusion $i: \stackrel{\circ}{M} \rightarrow M$ is an isomorphism $i^{*}: H^{*}(M) \rightarrow H^{*}(\stackrel{\circ}{M})$.
8. Let M^{n}, N^{n} smooth closed connected oriented manifolds of equal dimension. If $f: M \rightarrow N$ has non-zero degree, show that the pull-back on de Rham cohomology $f^{*}: H^{*}(N) \rightarrow H^{*}(M)$ is injective.
9. Let M^{n} be an oriented manifold without boundary, and suppose its cohomology is finitedimensional. Let $H_{0}^{k}(M) \subset H^{k}(M)$ be the subset of classes that can be represented by forms with compact support (i.e. the image of the natural map $\left.H_{c}^{k}(M) \rightarrow H^{k}(M)\right)$. Show that there is a non-degenerate pairing $H_{0}^{k}(M) \times H_{0}^{n-k}(M) \rightarrow \mathbb{R}$.

Questions and corrections to j.nordstrom@imperial.ac.uk.
February 7, 2012

