Differential Topology

Example Sheet 2

1. Let $0 \rightarrow A^{*} \xrightarrow{f} B^{*} \xrightarrow{g} C^{*} \rightarrow 0$ be a short exact sequence of cochain complexes. Show that the sequence

$$
\cdots \rightarrow H^{k}\left(B^{*}\right) \xrightarrow{g} H^{k}\left(C^{*}\right) \xrightarrow{\delta} H^{k+1}\left(A^{*}\right) \rightarrow \cdots
$$

in the Snake lemma is exact at $H^{k}\left(C^{*}\right)$.
2. The Euler characteristic of a manifold M^{n} is the alternating sum of its Betti numbers (if finite): $\chi(M)=\sum_{i=0}^{n}(-1)^{i} b_{i}(M)$.
(a) Let U and V be open subsets of a manifold M. Show that (if the terms are well-defined)

$$
\chi(U)+\chi(V)=\chi(U \cup V)+\chi(U \cap V) .
$$

(b) Let M_{1}^{n}, M_{2}^{n} be manifolds. Show that

$$
\chi\left(M_{1} \# M_{2}\right)=\chi\left(M_{1}\right)+\chi\left(M_{2}\right)-\left\{\begin{array}{l}
0 \text { if } n \text { is odd } \\
2 \text { if } n \text { is even }
\end{array}\right.
$$

(c) Let M^{m}, N^{n} be manifolds. Show that $\chi(M \times N)=\chi(M) \chi(N)$.
3. Let U, V open connected in \mathbb{R}^{n} such that $\mathbb{R}^{n}=U \cup V$. Show that $U \cap V$ is connected.
4. Show that $b_{k}\left(T^{n}\right)=\binom{n}{k}$ for all $0 \leq k \leq n$.
5. (a) Show that $S^{2} \times S^{4}$ is not homotopy equivalent to $\mathbb{C} P^{3}$.
(b) Are the punctured manifolds $\left(S^{2} \times S^{4}\right) \backslash\{p t\}$ and $\mathbb{C} P^{3} \backslash\{p t\}$ homotopy equivalent to any closed manifolds?
6. Let M_{1}^{n}, M_{2}^{n} be closed connected oriented manifolds of equal dimension. Find smooth maps $\phi_{i}: M_{1} \# M_{2} \rightarrow M_{i}$ such that $\phi_{i}^{*}: H^{*}\left(M_{i}\right) \rightarrow H^{*}\left(M_{1} \# M_{2}\right)$ are injective, $H^{k}\left(M_{1} \# M_{2}\right)=$ $\phi_{1}^{*}\left(H^{k}\left(M_{1}\right)\right) \oplus \phi_{2}^{*}\left(H^{k}\left(M_{2}\right)\right)$ for $0<k<n$, and $\phi_{1}^{*}[\alpha] \wedge \phi_{2}^{*}[\beta]=0$ for any $[\alpha] \in H^{a}\left(M_{1}\right)$, $[\beta] \in H^{b}\left(M_{2}\right), a, b>0$.
(Remark: Since $H^{0}\left(M_{i}\right)$ are both naturally isomorphic to \mathbb{R}, there is a well-defined notion for a pair $\left(h_{1}, h_{2}\right) \in H^{*}\left(M_{1}\right) \oplus H^{*}\left(M_{2}\right)$ to have equal degree 0 components. Let $A \subset H^{*}\left(M_{1}\right) \oplus$ $H^{*}\left(M_{2}\right)$ be the subset of such pairs. $H^{*}\left(M_{1}\right) \oplus H^{*}\left(M_{2}\right)$ is not an algebra because it has no multiplicative identity, but A is. The question proves that $H^{*}\left(M_{1} \# M_{2}\right)$ is isomorphic as a graded algebra to the quotient A / K, where $K=\left\{\left(\left[\omega_{1}\right],\left[\omega_{2}\right]\right) \in H^{n}\left(M_{1}\right) \oplus H^{n}\left(M_{2}\right): \int_{M_{1}} \omega_{1}=\int_{M_{2}} \omega_{2}\right\}$.)
7. Show that there is an orientation-reversing diffeomorphism $\mathbb{C} P^{n} \rightarrow \mathbb{C} P^{n}$ if and only if n is odd.
8. Find a pair of connected oriented manifolds M, N that do not have orientation-reversing selfdiffeomorphisms such that $M \times N$ and $M \# N$ do.
9. Let G^{n} be a compact Lie group, i.e. a smooth compact manifold of dimension n with a group structure such that the multiplication and inverse maps are smooth. For $g \in G$, let $L_{g}: G \rightarrow G$ be the left multiplication by g, i.e. $L_{g}: h \mapsto g h$.
(a) Show that there is a left-invariant orientation form on G, i.e. a non-zero $\omega \in \Omega^{n}(G)$ such that $L_{g}^{*} \omega=\omega$ for any $g \in G$. Show that for any $f: G \rightarrow \mathbb{R}$ (or $f: G \rightarrow V$ for some vector space V)

$$
\int_{G} f \omega=\int_{G}\left(f \circ L_{g}\right) \omega .
$$

(b) Let M^{m} be a smooth manifold with a smooth G-action, i.e. a smooth map $G \times M \rightarrow M$, $(g, x) \mapsto g h$ such that $g(h x)=(g h) x$. Let $\Omega_{G}^{k}(M)=\left\{\alpha \in \Omega^{k}(M): g^{*} \alpha=\alpha\right.$ for all $\left.g \in G\right\}$. If G is connected, show that there is a projection $A: \Omega^{k}(M) \rightarrow \Omega_{G}^{k}(M)$ such that $[A(\alpha)]=$ $[\alpha] \in H^{k}(M)$ for any closed $\alpha \in \Omega^{k}(M)$.
(c) $U(n) \subset G L(n, \mathbb{C})$ is the subgroup that preserves the hermitian inner product $h_{0}=\sum d z^{j} \otimes$ $d \bar{z}^{j}$. Alternatively it can be characterised as preserving the real part g_{0} of the hermitian product (which is just the Euclidean inner product), or the "Kähler form" $\omega_{0}=g_{0}(i \cdot, \cdot)=$ $\frac{i}{2} \sum d z^{j} \wedge d \bar{z}^{j} \in \Lambda_{\mathbb{R}}^{2}\left(\mathbb{C}^{n}\right)^{*}$. Show that the natural action of $U(n+1)$ on $\mathbb{C} P^{n}$ is transitive, with stabiliser isomorphic to $U(1) \times U(n)$. Describe the action of the stabiliser of a point on the tangent space at that point, and show that $\Omega_{U(n+1)}^{2}\left(\mathbb{C} P^{n}\right)$ is 1-dimensional (a certain normalised non-zero element ω is called the Fubini-Study form). Deduce that a generator $c \in H^{2}\left(\mathbb{C} P^{n}\right)$ satisifies $c^{k} \neq 0 \in H^{2 k}\left(\mathbb{C} P^{n}\right)$ for $0 \leq k \leq n$. (Hint: Prove or assume that up to scaling ω_{0} is the only real 2-form on \mathbb{C}^{n} invariant under $U(n)$.)

Questions and corrections to j.nordstrom@imperial.ac.uk.
January 27, 2012

