Differential Topology

Assessed Coursework

Submit solutions (with cover sheet) by 4 pm on Friday 24 February.

1. Let M^{n} be an oriented manifold without boundary. Let $X^{n-k} \subset M$ be an oriented closed submanifold (i.e. X is compact without boundary), and $Y^{k} \subset M$ an oriented submanifold without boundary that is closed as a subspace of M (but not necessarily compact).
(a) Show that there is a unique element $P D(Y) \in H^{n-k}(M)$ such that $\int_{Y} \alpha=\int_{M} \alpha \wedge P D(Y)$ for any $\alpha \in \Omega_{c}^{k}(M)$ such that $d \alpha=0$.
(b) Show that there is a unique element $P D_{c}(X) \in H_{c}^{k}(M)$ such that $\int_{X} \alpha=\int_{M} \alpha \wedge P D_{c}(X)$ for any $\alpha \in \Omega^{n-k}(M)$ such that $d \alpha=0$ (you may assume that the de Rham cohomology of M is finite-dimensional). Show that the image of $P D_{c}(X)$ under the natural map $H_{c}^{k}(M) \rightarrow H^{k}(M)$ is $P D(X)$.

Recall that a real rank k vector bundle over X with total space E and projection map π : $E \rightarrow X$ is defined by local trivialisations: every $x \in X$ has a neighbourhood $U \subset X$ with a diffeomorphism $\psi_{U}: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k}$ such that $p_{1} \circ \psi_{U}=\pi$ (where $p_{1}: U \times \mathbb{R}^{k}$ is projection to the first factor), and the transition functions $\psi_{V} \circ \psi_{U}^{-1}:(U \cap V) \times \mathbb{R}^{k} \rightarrow(U \cap V) \times \mathbb{R}^{k}$ have the form $(y, v) \mapsto\left(y, g_{U V}(y) v\right)$ for some smooth map $g_{U V}: U \cap V \rightarrow G L(k, \mathbb{R})$.
Recall that X has a tubular neighbourhood T, i.e. a neighbourhood with a diffeomorphism $j: N_{X} \rightarrow T$ from the total space of the normal bundle of X in M, identifying $X \subset T$ with the zero section in N_{X}.
(c) Let $\tau \in \Omega_{c}^{k}\left(N_{X}\right)$ be a representative of the Poincaré dual of X in N_{X}. Let $F=\pi^{-1}(x)$ be a fibre in N_{X} (note that F has a natural orientation, as it is the quotient $T_{x} M / T_{x} X$ of oriented vector spaces). Show that $\int_{F} \tau=1$, and that $j_{*} \tau=P D_{c}(X)$.
(Hint: Consider $\int_{\pi^{-1}(U)} \pi^{*} \rho \wedge \tau$, for $\rho \in \Omega^{n-k}(X)$ supported in a trivialising neighbourhood U for N_{X} near x.)
X and Y are said to intersect transversely if $T_{x} M=T_{x} X \oplus T_{x} Y$ for every $x \in X \cap Y$. Let $\epsilon(x)=1$ if the orientation of $T_{x} M$ agrees with that on the right hand side coming from the orientations of Y and X. The intersection number of X with Y is $\sum_{x \in X \cap Y} \epsilon(x)$, which is finite since $X \cap Y$ is a discrete compact subset of X. (If $k(n-k)$ is odd then $\epsilon(x)$, and hence the intersection number, depends on the ordering of X and Y.)
(d) If X and Y intersect transversely, show that the intersection number of X with Y equals $\int_{M} P D_{c}(X) \wedge P D(Y)$.
(Hint: If the tubular neighbourhood T of X is thin enough, U is small trivialising neighbourhood for N_{X} near $x \in X \cap Y$, then the image of $T \cap Y$ in $U \times \mathbb{R}^{k}$ is a graph over \mathbb{R}^{k}.)
[7 marks]
2. (a) Identify sets of submanifolds of $\mathbb{R}^{2} \backslash\{0\}$ whose Poincaré duals forms bases for $H^{1}\left(\mathbb{R}^{2} \backslash\{0\}\right)$ and $H_{c}^{1}\left(\mathbb{R}^{2} \backslash\{0\}\right)$ respectively. Is $\mathbb{R}^{2} \backslash\{0\}$ diffeomorphic to the interior of a compact manifold with boundary?
(b) Compute $H^{1}\left(\mathbb{R}^{2} \backslash \mathbb{Z}\right)$ and $H_{c}^{1}\left(\mathbb{R}^{2} \backslash \mathbb{Z}\right)$ (where \mathbb{Z} is identified with $\left\{(n, 0) \in \mathbb{R}^{2}: n \in \mathbb{Z}\right\}$). Is $\mathbb{R}^{2} \backslash \mathbb{Z}$ diffeomorphic to the interior of a compact manifold with boundary?
(Hint: Consider $U_{n}=\left\{(x, y) \in \mathbb{R}^{2} \backslash \mathbb{Z}:|x-n|<\frac{3}{4}\right\}$.)
3. Let M be a compact manifold and $X \subset M$ a closed submanifold. Let $U=M \backslash X$, and let $i: U \rightarrow M$ and $j: X \rightarrow M$ denote the inclusion maps.
(a) Show that $j^{*}: \Omega^{*}(M) \rightarrow \Omega^{*}(X)$ is surjective. Let $\Omega^{*}(M, X)$ be its kernel, and $H^{*}(M, X)$ the cohomology of this cochain complex. Show that for any $\beta \in \Omega^{k}(M, X)$ such that $d \beta=0$ on some tubular neighbourhood T of X, there is a $\gamma \in \Omega_{c}^{k-1}(T)$ such that the support of $\beta+d \gamma$ is contained in U. Deduce that the map $H_{c}^{*}(U) \rightarrow H^{*}(M, X)$ induced by the chain map $\Omega_{c}^{*}(U) \hookrightarrow \Omega^{*}(M, X)$ is injective. Prove that it is also surjective, and deduce that there is a long exact sequence

$$
0 \rightarrow H_{c}^{0}(U) \xrightarrow{i_{*}} H^{0}(M) \xrightarrow{j^{*}} H^{0}(X) \rightarrow H_{c}^{1}(U) \rightarrow \cdots
$$

(b) Recall that a plane cubic curve $E \subset \mathbb{C} P^{2}$ is diffeomorphic to T^{2}. Compute the Betti numbers of $U=\mathbb{C} P^{2} \backslash E$. What is the image of $H_{c}^{2}(U) \rightarrow H^{2}(U)$? (Hint: The FubiniStudy form $\omega \in \Omega^{2}\left(\mathbb{C} P^{2}\right)$ restricts to an orientation form on any complex curve.)
[7 marks]
Questions and corrections to j.nordstrom@imperial.ac.uk.
March 9, 2012

