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Questions and overview

Focus on G2 case.

� Which closed 7-manifolds admit metrics with holonomy G2?

� Finitely many??
� Obstructions
� Where do examples sit in classification of 7-manifolds?

� For a fixed closed M7, the moduli space M = {holonomy G2 metrics on M}/Diff(M) is an
orbifold of dimension b3(M).

� Global topology of M? Connected?
� Can the same connected component of M have boundary points exhibiting different

degenerations?
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1. Obstructions
G2-structures and 3-forms

First of two ways we will link G2-structures to topology.

G2 ⊂ SO(7) can be defined as the stabiliser of a definite 3-form

ϕ0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356 ∈ Λ3(R7)∗.

Therefore G2-structure on M7 ↔ ϕ ∈ Ω3(M) pointwise equivalent to ϕ0.
G2-structure induces a metric. A metric has Hol ⊆ G2 if and only if it is induced by a
G2-structure that is torsion-free, ie satisfies

dϕ = d∗ϕ = 0.

In particular, ϕ represents a de Rham cohomology class

[ϕ] ∈ H3(M).



G2-structures and spinors

Second link of G2-structures to topology.

Spin(7)→ SO(7) is a double cover, and G2 ↪→ SO(7) has a lift G2 ↪→ Spin(7).

The spin representation ∆ of Spin(7) is real of rank 8.

The image of G2 in Spin(7) is precisely the stabiliser of a non-zero s0 ∈ ∆ (unique up to scale).

Therefore a G2-structure on M7 is equivalent to

(orientation +) spin structure + metric + nowhere vanishing spinor field (up to scale)

Note: because spinor bundle of a spin M7 has rank 8, nowhere-vanishing sections always exist.

M7 admits G2-structure ↔ M is spin



Topological invariants of closed spin 7-manifolds

Can we express obstructions to existence of holonomy G2 metrics on a closed spin 7-manifold M
in terms of established invariants?

Basic invariants:

� Fundamental group π1(M) (and higher homotopy groups)

� Cohomology algebra H∗(M)

� First Pontrjagin class p1(M) ∈ H4(M)
(Stiefel–Whitney classes of a closed spin 7-manifold M all vanish)

Later consider more subtle invariants:

� Eells-Kuiper

� Massey triple products



Known obstructions

Let M closed 7-manifold

� M admits a G2-structure ⇔ M is orientable and spin

� If a metric has Hol ⊂ G2, then

Hol = G2 ⇔ π1(M) finite

If ϕ is a torsion-free G2-structure then

� ϕ is harmonic, so b3(M) ≥ 1.

�

∫
M

p1(M) ^ [ϕ] < 0; in particular p1(M) 6= 0.

�

∫
M

x2 ^ [ϕ] < 0 for any non-zero x ∈ H2(M).

(So there is an open halfspace in H4(M) that contains both p1(M) and the image of
H2(M) \ {0} → H4(M), x → x2.)



Constraints on p1(M) and x2 for x ∈ H2(M)

Λ2(R)∗ = Λ2
7(R)∗ ⊕ Λ2

14(R)∗, where

Λ2
7(R)∗ = {vyϕ0 : v ∈ R7},

Λ2
14(R)∗ = {α ∈ Λ2(R)∗ : ∗ϕ ∧ α = 0}

If α ∈ Λ2
14(R)∗ then

α2 ∧ ϕ = −‖α‖2 vol .

Hodge theory: If M is closed, any x ∈ H2(M) is represented by a harmonic α ∈ Ω2(M).
If M has holonomy G2, then α ∈ Ω2

14(M). Hence∫
M

x2[ϕ] =

∫
M

α2 ∧ ϕ = −
∫
M

‖α‖2 vol < 0.

Chern-Weil theory: p1(M) = 1
8π2 [Tr(R ∧ R)], where R is curvature of M.

If M has holonomy G2, then 2-form part of R takes values in Λ2
14T

∗M so∫
M

1

8π2
TrR ∧ R ∧ ϕ = − 1

8π2
Tr

∫
M

‖R‖2 vol < 0



Formality and Massey products

Slogan-definition: X is formal if it is the simplest rational homotopy type with a fixed rational
cohomology algebra H∗(X ;Q).

Formality forces vanishing of Massey triple products.
If a, b, c ∈ H2(M) such that ab = bc = 0 ∈ H4(M) are represented by closed forms
α, β, γ ∈ Ω2(M), and η, τ ∈ Ω3(M) with

dη = α ∧ β, dτ = β ∧ γ

then
d(α ∧ τ + η ∧ γ) = 0.

The Massey triple product 〈a, b, c〉 ⊂ H5(M) is the set of classes obtained for some η and τ .
If M is formal then 0 ∈ 〈a, b, c〉.



Formality of G2-manifolds?

Simply-connected closed manifolds of dimension ≤ 6 are always formal, but simply-connected
7-manifolds can be non-formal (provided b2 ≥ 2).

Theorem (Deligne-Griffiths-Morgan-Sullivan 1975)

Any closed Kähler manifold X is formal.

Proof relies on Hodge decomposition, but attempts to use Hodge decomposition on
G2-manifolds to prove formality have been unsuccessful.

Formality is largely independent of the known obstructions to G2 metrics.

Proposition (Cavalcanti 2006, Crowley-N 2019)

If M7 is closed simply-connected, b2(M) ≤ 3 and ∃[ϕ] ∈ H3(M) such that [ϕ]x2 < 0 for all
non-zero x ∈ H2(M) then M is formal.
There exist non-formal simply-connected M satisfying all known necessary conditions for
existence of holonomy G2 metrics with any b2(M) ≥ 4.



Non-fibration by 4-folds

Theorem (Baraglia 2010)

If M is closed and satisfies the known necessary condition for admitting a holonomy G2 metric,
then there is no smooth fibration π : M → B with smooth 4-dimensional fibres.

Proof.
Without loss of generality, M and B are simply-connected and the fibres F are connected.

By Leray-Serre, π∗ : H3(B)→ H3(M) is surjective, so an isomorphism since b3(M) ≥ 1.
Then also H2(M) ∼= H2(F ). The condition that

H2(M)× H2(M)→ R, (x , y) 7→
∫
M
xy [ϕ]

is definite forces that the intersection form of F is definite.
By Donaldson’s diagonalisation theorem, the intersection form is therefore odd.
But it is also even because F is spin, so actually H2(F ) is trivial.
In particular the signature of F is trivial, and hence p1(F ) = 0 by the signature theorem.
As H4(M) ∼= H4(F ), that contradicts p1(M) 6= 0.



Other fibrations

Have not ruled out the existence of fibrations of a G2-manifold M by 4-manifolds if some of the
fibres are allowed to be singular.

Indeed, expect many examples of closed G2-manifolds with such fibrations by coassociative
submanifolds.

Have also not ruled out smooth fibrations by 3-folds.
Indeed, consider the unit sphere bundle Mk in the total space of rank 4 vector bundle V → S4

with Euler class e(V ) = 0 and Pontrjagin class p1(V ) = 4k times a generator of H4(S4).

These Mk are arguably the simplest 7-manifolds satisfying all the known necessary conditions
for admitting a holonomy G2 metric.

Since b3(Mk) = 1, a holonomy G2 metric on Mk would be rigid up to scale.
Therefore the existing arguments for constructing G2 metrics cannot possibly apply.

However, eg M4#(S3 × S4)#2n does admit holonomy G2 metrics for all 30 ≤ n ≤ 73
(Corti-Haskins-N-Pacini 2014).



2. Invariants and classification
Homeomorphism classification

Let M closed 7-manifold. Focus on:

� M 2-connected, ie π1(M) = π2(M) = 0, because that is so far only context where we have
complete classification results so far

� H4(M) torsion-free, to simplify statements

Then p1(M) = dx for some primitive x ∈ H4(M) and d(M) divisible by 4.
(Set d(M) := 0 if p1(M) = 0.)

Theorem (Wilkens 1972)

Closed 2-connected M are classified up to homeomorphism by the pair (b3(M), d(M)).
A pair (b3, d) is realised if and only if d is divisible by 4 (and d = 0 if b3 = 0)

Indeed by Md#(S3 × S4)#b3−1 where Md in the total space of the rank 4 vector bundle
V → S4 with Euler class e(V ) = 0 and Pontrjagin class p1(V ) = 4d times generator of H4(S4).



Applications to G2-manifolds

Classification theorems for diffeomorphism or G2-structures require further invariants.
With those, we can exhibit the following phenomena.

Example 1 (Crowley-N 2018)

There are closed G2-manifolds with b3 = 89 and d = 16 that are homeomorphic but not
diffeomorphic.

Example 2 (Crowley-Goette-N 2018, Wallis 2019)

There is a closed 7-manifold with b3 = 71 and d = 12 that admits at least 3 different holonomy
G2 metrics, such that no two of the associated G2-structures are related by diffeomorphism and
homotopy of G2-structures (ie deformation through a pth of G2-structures). In particular, the
moduli space of holonomy G2 metrics on this manifold has at least 3 connected components.

Example 3 (Crowley-Goette-N 2018)

There is a closed 7-manifold with b3 = 109 and d = 4 that admits two G2-metrics whose
associated G2-structures are homotopic, but the metrics are in different components of the
moduli space.



Coboundary defect invariants

Consider invariants of a class of compact manifolds with boundary that are additive under
gluing boundaries. E.g. for oriented 8-manifolds W whose boundary M has p1(M) = 0

� signature σ(W ) of intersection form on H4(W ,M)
� p1(W )2 ∈ Z

(p1(M) = 0⇒ p1(W ) has a preimage in H4(W ,M), whose square is independent of choice)

Linear combinations that vanish for closed manifolds are then invariants of the boundary M.
Eg Hirzebruch signature theorem gives

45σ(X ) + p1(X )2 = 7p2(X )

for any closed oriented 8-manifold X , so that

3σ(X ) + p1(X )2 ≡ 0 mod 7.

Therefore
3σ(W ) + p1(W )2 ∈ Z/7

depends only on the smooth manifold M, and not on W . This invariant of M was used by
Milnor (1956) to detect non-standard smooth structures on the 7-sphere.



The Eells-Kuiper invariant

For a closed spin 8-manifold X , the Atiyah singer index theorem for the index of the Dirac
operator /DX

ind /DX =
7p2

1 − 4p2

45 · 27

combined with the Hirzebruch signature theorem gives

p1(X )2 − 4σ(X )

32
= 28 ind /DX .

For a closed spin 7-manifold M with p1(M) = 0 and spin coboundary W

µ(M) =
p1(W )2 − 4σ(W )

32
∈ Z/28

is thus a well-defined diffeomorphism invariant.
It distinguishes all 28 classes of smooth structures on S7.



Generalised Eells-Kuiper invariant

If p1(M) 6= 0 then we cannot interpret p1(W )2 as a well-defined element of Z.
But if H4(M) is torsion-free and p1(M) is divisible by d , then p1(W )2 ∈ Z/8d̃ is well-defined,
where d̃ := lcm(8, d). Therefore

µ(M) :=
p1(W )2 − 4σ(W )

32
∈ Z/ gcd

(
28, d̃8

)
is a well-defined diffeomorphism invariant of M.

Theorem (Crowley-N 2019)

Closed 2-connected M with H4(M) torsion-free are classified up to diffeomorphism by
(b3(M), d(M), µ(M)).

To find “exotic” G2-manifolds as in Example 1:
generate many examples of 2-connected G2-manifolds with torsion-free H4(M), compute
invariants, and look for pairs where values b3 and d agree while µ do not.



Invariants of G2-structures

On a spin 8-manifold X , the spinor bundle SX is real of rank 8.
If X is closed and s+ ∈ Γ(SX ) has transverse zeros, then #s−1

+ (0) (counted with signs) does not
depend on s+. It equals the Euler class e(SX ), related to Euler characteristic χ(X ) by

−3σ(X ) + χ(X )− 2 #s−1
+ (0) = −48 indDX ,

3p1(X )2 − 180σ(X )

8
+ 7χ(X )− 14 #s−1

+ (0) = 0.

For W compact spin 8-manifold with boundary M, #s−1
+ (0) of s+ ∈ Γ(SW ) depends only on W

and s := s+|M ∈ Γ(SM). Therefore

ν(M, s) := 3σ(X ) + χ(X )− 2 #s−1
+ (0) ∈ Z/48,

ξ(M, s) :=
3p1(W )2 − 180σ(W )

8
+ 7χ(W )− 14 #s−1

+ (0) ∈ Z/ 3
2 d̃

are well-defined diffeomorphism invariants of (M, s), ie of M equipped with a G2-structure.
Also clear that ν and ξ are invariant under continuous deformation of a G2-structure.



Classification of G2-structures

Theorem (Crowley-N 2015)

Let Mi be closed 2-connected 7-manifolds with torsion-free H4(Mi ), and G2-structures ϕi .
Then there is a diffeomorphism f : M1 → M2 such that f ∗ϕ2 is homotopic to ϕ1 if and only if
b3, d , ν and ξ agree.

To detect components of G2 moduli space by homotopy of G2-structures as in Example 2:

Generate many 2-connected G2-manifolds with H4 torsion-free, and compute invariants.
Look for examples where b3 and d (and µ if not vacuous) agree, so that the G2 metrics are on
the same smooth manifold, but where different values of ν or ξ distinguish the G2-structures.

To detect components of G2 moduli space within the same homotopy class of G2-structures as
in Example 3:

Look for G2-manifolds where b3, d , ν and ξ all agree, so that by Theorem 3 we get two
homotopic torsion-free G2-structures on the same smooth manifold.
Use an analytic refinement ν̂ ∈ Z of ν to show that they cannot be connected by a path of
torsion-free G2-structures.



Formality of 7-manifolds as a coboundary defect

If X is a closed oriented 8-manifold and a, b, c , d ∈ H2(X ) then

(ac)(bd)− (ad)(bc) = 0.

If we interpret cup product as a map Sym2 Sym2 H2(X )→ R, that vanishes when restricted to

B := ker
(
Sym2 Sym2 H2(X )→ Sym4 H2(X )

)
.

For a compact W 8 with ∂W = M7, let Ẽ ⊂ Sym2 H2(W ) be the pre-image of

E := ker(Sym2 H2(M)→ H4(M)).

Cup product and intersection form of W defines Sym2 Ẽ → Q. Restriction to B ∩ Sym2 Ẽ
factors through a

F : B ∩ Sym2 E → Q
which is a rational homotopy invariant of M.

Theorem (Crowley-N)

A simply-connected closed 7-manifold M is formal if and only if F = 0.



Defect invariants and the h-cobordism theorem

Strategy for finding diffeomorphism between two closed simply-connected manifolds M1 and M2

of dimension ≥ 5 (Browder, Novikov, Sullivan, Wall, . . ., Kreck):

First check whether there is a cobordism, ie a compact W such that ∂W = M1 t −M2.

Try to use surgery to improve W to an h-cobordism, ie Mi ↪→W homotopy equivalences.

Smale (2012): Then W is a product cylinder, so M1
∼= M2.

W has characteristic numbers such as σ(W ), p1(W )2, . . ., unchanged by surgery.

If W has appropriate structure, the characteristic numbers are the only obstruction to
improving to h-cobordism by surgery.

All defect invariants of M1 and M2 agree
⇔ characteristic numbers of W equal those of a closed manifold X
⇔ W#− X is a cobordism with vanishing characteristic numbers.



3. Constructions
Sources of closed G2-manifolds

� Joyce (1995)
Orbifold construction
Resolve singularities of T 7/Γ using QALE Calabi-Yau spaces

� Joyce-Karigiannis (2018)
Resolve singularities of (CY 3 × S1)/Z2

� Kovalev (2003), Corti-Haskins-N-Pacini (2014)
Twisted connected sums
Glue asymptotically cylindrical Calabi-Yaus ×S1

� Crowley-Goette-N (2018)
Extra-twisted connected sums

� Foscolo-Haskins-N (202X)
Collapse to orientifolds
Bulk: Circle bundle over CY 3/Z2

Degenerations of bundle modelled on fibrations by Taub-NUT or Atiyah-Hitchin spaces.



Twisted connected sums

Ingredients:

� Closed simply-connected Kähler 3-folds Z+, Z−
� Σ± ⊂ Z± anticanonical K3 divisors ([Σ±] = c1(Z±)) with trivial normal bundle

� r : Σ+ → Σ− diffeomorphism

Let V± := Z±\ tubular neighbourhood Σ± ×∆; so ∂V± = Σ± × S1.
Form simply-connected M7 by gluing boundaries of V+ × S1 to V− × S1 by

Σ+ × S1 × S1 → Σ− × S1 × S1,

(x , u, v) 7→ (r(x), v , u)

Tian-Yau, Haskins-Hein-N: V± admits asymptotically cylindrical Calabi-Yau metrics.
 metric on V± × S1 with holonomy SU(3) ⊂ G2.
For carefully chosen r, these metrics glue to a holonomy G2 metric on M.



Coboundary of twisted connected sum

V± := Z± \ Σ±×∆. Glue the ∂(V+×S1) = Σ+×S1×S1 by (x , u, v) 7→ (r(x), v , u).

V+

V−

S1

×
Σ+

×
S1

S1

×
Σ−

×
S1

Form an 8-manifold W by gluing Z+×∆ to Z−×∆ along open subsets

Σ+ ×∆×∆→ Σ− ×∆×∆,

(x , z ,w) 7→ (r(x),w , z)

Then ∂W is the twisted connected sum M.



Invariants of twisted connected sums

Twisted connected sum M is simply-connected.

H∗(M) can be computed in terms of H∗(Z±), c2(Z±) and r∗ : H2(Σ−)→ H2(Σ+).

While W is not spin but only spinc , it can still be used to compute µ, from the same data.

Example 1 (Crowley-N 2018) There are 2-connected twisted connected sums with H4(M)
torsion-free, b3(M) = 89 and d(M) = 16, and µ = 0, 1 ∈ Z/2.

We cannot use ν or its analytic refinement to distinguish components of the G2 moduli space
reached by twisted connected sums.

Theorem (Crowley-N 2015, Crowley-Goette-N 2018)

Any twisted connected sum G2-manifold has ν = 24, and ν̄ = 0.

But W can also be used to compute ξ.

Example 2a (Wallis 2019) There are 2-connected twisted connected sums with H4(M)
torsion-free, b3(M) = 71 and d(M) = 12, and ξ = 0, 12 ∈ Z/36.



Extra-twisted connected sums

Extra-twisted connected sums: gluing of finite quotients of V+ × S1 and V− × S1.

We do not know coboundaries, but can compute by eta invariants instead.

Example 2b (Crowley-Goette-N 2018)
There is a 2-connected extra-twisted connected sum with torsion-free H4(M), b3(M) = 71 and
d = 12, and ν = 36.
Thus M is diffeomorphic to manifold from Example 2a, but the torsion-free G2-structure is
distinguished from both the previous G2-structures, which have ν = 0.

Example 3 (Crowley-Goette-N 2018)
There is both a twisted connected sum and an extra-twisted connected sum with that are
2-connected with torsion-free H4(M), b3(M) = 109 and d = 4, and the extra-twisted connected
sum has ν̄ = 48.
Because both torsion-free G2-structures have ν = 24 (and ξ is vacuous when d = 4) the
manifolds are diffeomorphic, and moreover the diffeomorphism can be chosen so that the
torsion-free G2-structures are homotopic.



Need for further classification results

Twisted connected sums generate many 2-connected examples, but also many with b2 ≥ 1.

Examples from Joyce’s orbifold construction (nearly) always have b2 ≥ 1, as do the tentative
collapsing examples.

Existing complete classification results for 7-manifolds that are not 2-connected impose b3 = 0,
so cannot apply to G2-manifolds.

Good news: only finitely many invariants missing.

Theorem (Crowley-N 2019)

Closed simply-connected 7-manifolds M are classified up to finitely many diffeomorphism types
by H∗(M), p1(M) and the rational homotopy invariant F .

Bad Interesting news: While some of the remaining finite ambiguity is accounted for by friendly
primary invariants like torsion linking form, there will also be subtle secondary invariants.



Further invariants when b2 ≥ 1

Beyond 2-connected 7-manifolds, existing classification results require π2(M) torsion-free and
H4(M) finite (+ simplifying assumptions)

Kreck-Stolz (1991)

For π2M ∼= Z and b4(M) = 0, the secondary data needed is the Eells-Kuiper invariant µ and an
additional invariant taking values in a Z12 × Z2 coset.

Motivated by metrics of positive sectional curvature on Aloff-Wallach spaces SU(3)/U(1).

Hepworth (2005)

For π2M ∼= Zr and b4(M) = 0, the secondary data needed is F , µ and an invariant taking

values in a Zr
12 × Z

r(r−1)
2

6 × Z
r3−6r2+11r

6
2 -coset.

Motivated by 3-Sasakian manifolds.

Wallis (2019): Analysis of which Hepworth-Kreck-Stolz invariants survive when H4(M) infinite.


