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Questions and overview

Focus on G, case.
® Which closed 7-manifolds admit metrics with holonomy G,?
O Finitely many??
0 Obstructions
O Where do examples sit in classification of 7-manifolds?

® For a fixed closed M?, the moduli space M = {holonomy G, metrics on M}/Diff(M) is an
orbifold of dimension bs(M).

0 Global topology of M? Connected?
0 Can the same connected component of M have boundary points exhibiting different
degenerations?

Outline
1. Obstructions
2. Invariants, classification results and applications

3. Constructions



1. Obstructions
Go-structures and 3-forms

First of two ways we will link Gp-structures to topology.

G, C SO(7) can be defined as the stabiliser of a definite 3-form
o = dX123 + dx145 + dX167 + dX246 _ dX257 _ dX347 _ dX356 c A3(R7)*

Therefore Gy-structure on M7 <> ¢ € Q3(M) pointwise equivalent to ¢q.
G-structure induces a metric. A metric has Hol C G; if and only if it is induced by a
Go-structure that is torsion-free, ie satisfies

dp=d"p=0.
In particular, ¢ represents a de Rham cohomology class

[e] € H*(M).



G,-structures and spinors

Second link of Gy-structures to topology.

Spin(7) — SO(7) is a double cover, and G, < SO(7) has a lift G, < Spin(7).
The spin representation A of Spin(7) is real of rank 8.
The image of G, in Spin(7) is precisely the stabiliser of a non-zero sp € A (unique up to scale).

Therefore a Go-structure on M7 is equivalent to
(orientation +) spin structure 4+ metric + nowhere vanishing spinor field (up to scale)
Note: because spinor bundle of a spin M’ has rank 8, nowhere-vanishing sections always exist.

M7 admits Gp-structure <+ M is spin



Topological invariants of closed spin 7-manifolds

Can we express obstructions to existence of holonomy G, metrics on a closed spin 7-manifold M
in terms of established invariants?

Basic invariants:
® Fundamental group 71 (M) (and higher homotopy groups)
m Cohomology algebra H*(M)

®m First Pontrjagin class p1(M) € H*(M)
(Stiefel-Whitney classes of a closed spin 7-manifold M all vanish)

Later consider more subtle invariants:
m Eells-Kuiper

®m Massey triple products



Known obstructions

Let M closed 7-manifold
®m M admits a Gy-structure < M is orientable and spin
m If a metric has Hol C G, then

Hol = G, < m1(M) finite

If ¢ is a torsion-free Gp-structure then
B ¢ is harmonic, so bs(M) > 1.

" / p1(M) — [¢] < 0; in particular p;(M) # 0.
M

" / x* — [¢] < 0 for any non-zero x € H*(M).
M

(So there is an open halfspace in H*(M) that contains both p;(M) and the image of
H2(M)\ {0} — HYM), x = x2.)



Constraints on p;(M) and x? for x € H*(M)

A2(R)* = A2(R)* @ A2,(R)*, where
A3(R)* = {vipo : v € R},
A2,(R)* = {a € N}(R)* : xp A = 0}
If @ € AZ,(R)* then
A = —|lal|?vol .

Hodge theory: If M is closed, any x € H?(M) is represented by a harmonic a € Q?(M).
If M has holonomy G, then o € Q32,(M). Hence

/Xz[cp]:/ az/\@:—/ |a]|? vol < 0.
M M M

Chern-Weil theory: p;(M) = =2 [Tr(R A R)], where R is curvature of M.

8m?

If M has holonomy G,, then 2-form part of R takes values in A2, T*M so

1 1 ,



Formality and Massey products

Slogan-definition: X is formal if it is the simplest rational homotopy type with a fixed rational
cohomology algebra H*(X; Q).

Formality forces vanishing of Massey triple products.
If a, b,c € H*(M) such that ab = bc = 0 € H*(M) are represented by closed forms
a,B,v € Q*(M), and n, T € Q3(M) with

dn=aAp, dr=pB A~y

then
dlaANT+nAvy)=0.

The Massey triple product (a, b,c) C H>(M) is the set of classes obtained for some 7 and 7.
If M is formal then 0 € (a, b, c).



Formality of G,-manifolds?

Simply-connected closed manifolds of dimension < 6 are always formal, but simply-connected
7-manifolds can be non-formal (provided by > 2).

Theorem (Deligne-Griffiths-Morgan-Sullivan 1975)
Any closed Kahler manifold X is formal.

Proof relies on Hodge decomposition, but attempts to use Hodge decomposition on
G,-manifolds to prove formality have been unsuccessful.

Formality is largely independent of the known obstructions to G, metrics.

Proposition (Cavalcanti 2006, Crowley-N 2019)
If M7 is closed simply-connected, by(M) < 3 and J[p] € H3(M) such that [p]x?> < 0 for all
non-zero x € H?(M) then M is formal.

There exist non-formal simply-connected M satisfying all known necessary conditions for
existence of holonomy G, metrics with any by(M) > 4.



Non-fibration by 4-folds

Theorem (Baraglia 2010)

If M is closed and satisfies the known necessary condition for admitting a holonomy G, metric,
then there is no smooth fibration m : M — B with smooth 4-dimensional fibres.

Proof.

Without loss of generality, M and B are simply-connected and the fibres F are connected.
By Leray-Serre, 7* : H3(B) — H3(M) is surjective, so an isomorphism since b3(M) > 1.
Then also H2(M) = H?(F). The condition that

H?(M) x H*(M) = R, (x,y) = [, xv[¢]

is definite forces that the intersection form of F is definite.

By Donaldson’s diagonalisation theorem, the intersection form is therefore odd.

But it is also even because F is spin, so actually H2(F) is trivial.

In particular the signature of F is trivial, and hence p;(F) = 0 by the signature theorem.

As H*(M) = H*(F), that contradicts p;(M) # 0. O



Other fibrations

Have not ruled out the existence of fibrations of a Gp-manifold M by 4-manifolds if some of the
fibres are allowed to be singular.

Indeed, expect many examples of closed Gy-manifolds with such fibrations by coassociative
submanifolds.

Have also not ruled out smooth fibrations by 3-folds.

Indeed, consider the unit sphere bundle M in the total space of rank 4 vector bundle V — S*
with Euler class e(V) = 0 and Pontrjagin class p; (V) = 4k times a generator of H*(S5%).
These M are arguably the simplest 7-manifolds satisfying all the known necessary conditions
for admitting a holonomy G, metric.

Since b3(My) =1, a holonomy G, metric on My would be rigid up to scale.

Therefore the existing arguments for constructing G, metrics cannot possibly apply.

However, eg My#(S3 x $*)#2" does admit holonomy G, metrics for all 30 < n < 73
(Corti-Haskins-N-Pacini 2014).



2. Invariants and classification
Homeomorphism classification

Let M closed 7-manifold. Focus on:

m M 2-connected, jie w1 (M) = m(M) = 0, because that is so far only context where we have
complete classification results so far

m H*(M) torsion-free, to simplify statements

Then p1(M) = dx for some primitive x € H*(M) and d(M) divisible by 4.
(Set d(M) :=0if p1(M) =0.)

Theorem (Wilkens 1972)
Closed 2-connected M are classified up to homeomorphism by the pair (bs(M), d(M)).
A pair (b3, d) is realised if and only if d is divisible by 4 (and d =0 if b3 =0)

Indeed by My#(S3 x S*)#bs—1 where M, in the total space of the rank 4 vector bundle
V — S* with Euler class e(V) = 0 and Pontrjagin class p;(V) = 4d times generator of H*(5%).



Applications to G,-manifolds

Classification theorems for diffeomorphism or G,-structures require further invariants.
With those, we can exhibit the following phenomena.
Example 1 (Crowley-N 2018)

There are closed G,-manifolds with b3 = 89 and d = 16 that are homeomorphic but not
diffeomorphic.

Example 2 (Crowley-Goette-N 2018, Wallis 2019)

There is a closed 7-manifold with b3 = 71 and d = 12 that admits at least 3 different holonomy
G, metrics, such that no two of the associated G,-structures are related by diffeomorphism and
homotopy of Gp-structures (ie deformation through a pth of Gy-structures). In particular, the
moduli space of holonomy G, metrics on this manifold has at least 3 connected components.

Example 3 (Crowley-Goette-N 2018)

There is a closed 7-manifold with b3 = 109 and d = 4 that admits two G,-metrics whose
associated G-structures are homotopic, but the metrics are in different components of the
moduli space.



Coboundary defect invariants

Consider invariants of a class of compact manifolds with boundary that are additive under
gluing boundaries. E.g. for oriented 8-manifolds W whose boundary M has p;(M) =0
® signature o(W) of intersection form on H*(W, M)
L Pl(W)2 Sy
(p1(M) = 0 = p1(W) has a preimage in H*(W, M), whose square is independent of choice)
Linear combinations that vanish for closed manifolds are then invariants of the boundary M.
Eg Hirzebruch signature theorem gives

450(X) + p1(X)? = 7p(X)
for any closed oriented 8-manifold X, so that
30(X) 4+ p1(X)>=0 mod 7.

Therefore

30(W) + pi(W)? € Z)7
depends only on the smooth manifold M, and not on W. This invariant of M was used by
Milnor (1956) to detect non-standard smooth structures on the 7-sphere.



The Eells-Kuiper invariant

For a closed spin 8-manifold X, the Atiyah singer index theorem for the index of the Dirac
operator [y
- 7pi —4p2
d ==
ind Dx = =5
combined with the Hirzebruch signature theorem gives

p1(X)? — 4o(X)

o = 28ind Py.

For a closed spin 7-manifold M with p;(M) = 0 and spin coboundary W

p(W)? — 4o (W)

p(M) = 3

€7/28

is thus a well-defined diffeomorphism invariant.
It distinguishes all 28 classes of smooth structures on S7.



Generalised Eells-Kuiper invariant

If p1(M) # O then we cannot interpret p;(W)? as a well-defined element of Z.
But if H*(M) is torsion-free and py(M) is divisible by d, then p1(W)? € Z/8d is well-defined,
where d :=lcm(8, d). Therefore

u(M) = ”l(W):_z 40 W) ¢ 2/ ged (28, g)

is a well-defined diffeomorphism invariant of M.

Theorem (Crowley-N 2019)
Closed 2-connected M with H*(M) torsion-free are classified up to diffeomorphism by

To find “exotic” G,-manifolds as in Example 1:
generate many examples of 2-connected G,-manifolds with torsion-free H*(M), compute
invariants, and look for pairs where values bz and d agree while p do not.



Invariants of G,-structures

On a spin 8-manifold X, the spinor bundle Sx is real of rank 8.
If X is closed and s, € (Sx) has transverse zeros, then #s,'(0) (counted with signs) does not
depend on s;. It equals the Euler class e(Sx), related to Euler characteristic x(X) by

—30(X) + x(X)— 2#s;(0) = —48ind Dx,
3p1(X)? — 1800(X)
8

+ 7x(X) — 14 #s71(0) = 0.

For W compact spin 8-manifold with boundary M, #s;'(0) of s; € I'(Sw) depends only on W
and s := sy € ['(Su). Therefore
v(M,s) :=30(X)+ x(X)— 2#s,'(0) € Z/48,
3py(W)? — 1800 (W)
8

are well-defined diffeomorphism invariants of (M, s), ie of M equipped with a Gp-structure.
Also clear that v and & are invariant under continuous deformation of a Gp-structure.

£(M,s) = +7x(W) — 144s.1(0) € Z/3d



Classification of G,-structures

Theorem (Crowley-N 2015)

Let M; be closed 2-connected 7-manifolds with torsion-free H*(M;), and Gy-structures ;.
Then there is a diffeomorphism f : My — M, such that f*y, is homotopic to yp; if and only if
bs, d, v and & agree.

To detect components of G, moduli space by homotopy of Gy-structures as in Example 2:

Generate many 2-connected G,-manifolds with H* torsion-free, and compute invariants.
Look for examples where bs and d (and p if not vacuous) agree, so that the G, metrics are on
the same smooth manifold, but where different values of v or ¢ distinguish the Gy-structures.

To detect components of G, moduli space within the same homotopy class of G,-structures as
in Example 3:

Look for Gy-manifolds where bs, d, v and £ all agree, so that by Theorem 3 we get two
homotopic torsion-free G,-structures on the same smooth manifold.

Use an analytic refinement © € Z of v to show that they cannot be connected by a path of
torsion-free Go-structures.



Formality of 7-manifolds as a coboundary defect

If X is a closed oriented 8-manifold and a, b, c,d € H?(X) then
(ac)(bd) — (ad)(bc) = 0.
If we interpret cup product as a map Sym2 Sym2 H?(X) — R, that vanishes when restricted to
B = ker (Sym2 Sym? H?(X) — Sym* H?(X)) .
For a compact W8 with W = M7, let E C Sym? H2(W) be the pre-image of
E := ker(Sym? H3(M) — H*(M)).

Cup product and intersection form of W defines Sym? E— Q. Restriction to BN Sym? E

factors through a
F:BNSym’E - Q

which is a rational homotopy invariant of M.

Theorem (Crowley-N)
A simply-connected closed 7-manifold M is formal if and only if F = 0.



Defect invariants and the h-cobordism theorem

Strategy for finding diffeomorphism between two closed simply-connected manifolds M; and M,
of dimension > 5 (Browder, Novikov, Sullivan, Wall, ..., Kreck):

First check whether there is a cobordism, ie a compact W such that OW = My U —M,.
Try to use surgery to improve W to an h-cobordism, ie M; — W homotopy equivalences.
Smale (2012): Then W is a product cylinder, so My = M,.

W has characteristic numbers such as o(W), p1(W)2, ..., unchanged by surgery.
If W has appropriate structure, the characteristic numbers are the only obstruction to
improving to h-cobordism by surgery.

All defect invariants of My and M, agree
<> characteristic numbers of W equal those of a closed manifold X
< WH# — X is a cobordism with vanishing characteristic numbers.



3. Constructions
Sources of closed G,-manifolds

® Joyce (1995)
Orbifold construction
Resolve singularities of T7/F using QALE Calabi-Yau spaces
0 Joyce-Karigiannis (2018)
Resolve singularities of (CY3 x S')/Z,

= Kovalev (2003), Corti-Haskins-N-Pacini (2014)
Twisted connected sums
Glue asymptotically cylindrical Calabi-Yaus xS?!

0 Crowley-Goette-N (2018)
Extra-twisted connected sums

® Foscolo-Haskins-N (202X)
Collapse to orientifolds
Bulk: Circle bundle over CY3/Z,
Degenerations of bundle modelled on fibrations by Taub-NUT or Atiyah-Hitchin spaces.



Twisted connected sums

Ingredients:
m Closed simply-connected Kahler 3-folds Z,, Z_
® Y, C Zy anticanonical K3 divisors ([X1] = ¢1(Z+)) with trivial normal bundle
mr:Y, — ¥_ diffeomorphism

Let Vi := Z.\ tubular neighbourhood ¥4 x A; so dVy = ¥4 x SL.
Form simply-connected M7 by gluing boundaries of V. x S* to V_ x S! by

Y xStxSt ¥y xStx S
(x,u,v) = (r(x), v, u)
Tian-Yau, Haskins-Hein-N: V. admits asymptotically cylindrical Calabi-Yau metrics.

~~ metric on Vi x S with holonomy SU(3) C G,.
For carefully chosen v, these metrics glue to a holonomy G, metric on M.



Coboundary of twisted connected sum

Vi :=Zy\ ZixA. Glue the 9(V, xS1) = £, xSt S by (x, u,v) = (v(x), v, u).

Form an 8-manifold W by gluing Z; x A to Z_ x A along open subsets

Y XAXA =Y XAXA
(x,z,w) = (v(x), w, 2)

Then OW is the twisted connected sum M.



Invariants of twisted connected sums

Twisted connected sum M is simply-connected.
H*(M) can be computed in terms of H*(Zy.), c2(Z+) and v : H2(X_) — H?(Z,).

While W is not spin but only spin€, it can still be used to compute p, from the same data.

Example 1 (Crowley-N 2018) There are 2-connected twisted connected sums with H*(M)
torsion-free, b3(M) = 89 and d(M) =16, and pn=0,1 € Z/2.

We cannot use v or its analytic refinement to distinguish components of the G, moduli space
reached by twisted connected sums.

Theorem (Crowley-N 2015, Crowley-Goette-N 2018)
Any twisted connected sum Gy-manifold has v = 24, and U = 0.
But W can also be used to compute &.

Example 2a (Wallis 2019) There are 2-connected twisted connected sums with H*(M)
torsion-free, b3(M) =71 and d(M) =12, and £ = 0,12 € Z/36.



Extra-twisted connected sums

Extra-twisted connected sums: gluing of finite quotients of V. x S* and V_ x S!.

We do not know coboundaries, but can compute by eta invariants instead.

Example 2b (Crowley-Goette-N 2018)

There is a 2-connected extra-twisted connected sum with torsion-free H*(M), b3(M) = 71 and
d =12, and v = 36.

Thus M is diffeomorphic to manifold from Example 2a, but the torsion-free G,-structure is
distinguished from both the previous G,-structures, which have v = 0.

Example 3 (Crowley-Goette-N 2018)

There is both a twisted connected sum and an extra-twisted connected sum with that are
2-connected with torsion-free H*(M), b3(M) = 109 and d = 4, and the extra-twisted connected
sum has v = 48.

Because both torsion-free Gy-structures have v = 24 (and ¢ is vacuous when d = 4) the
manifolds are diffeomorphic, and moreover the diffeomorphism can be chosen so that the
torsion-free Gy-structures are homotopic.



Need for further classification results

Twisted connected sums generate many 2-connected examples, but also many with b, > 1.

Examples from Joyce's orbifold construction (nearly) always have b, > 1, as do the tentative
collapsing examples.

Existing complete classification results for 7-manifolds that are not 2-connected impose b; = 0,
so cannot apply to G-manifolds.

Good news: only finitely many invariants missing.

Theorem (Crowley-N 2019)

Closed simply-connected 7-manifolds M are classified up to finitely many diffeomorphism types
by H*(M), p1(M) and the rational homotopy invariant F.

Bad Interesting news: While some of the remaining finite ambiguity is accounted for by friendly
primary invariants like torsion linking form, there will also be subtle secondary invariants.



Further invariants when b, > 1

Beyond 2-connected 7-manifolds, existing classification results require mo(M) torsion-free and
H*(M) finite (+ simplifying assumptions)

Kreck-Stolz (1991)

For myM 2 Z and bs(M) = 0, the secondary data needed is the Eells-Kuiper invariant p and an
additional invariant taking values in a Z1 x Z, coset.

Motivated by metrics of positive sectional curvature on Aloff-Wallach spaces SU(3)/U(1).

Hepworth (2005)
For moM =2 Z" and by(M) = 0, the secondary data needed is F, p and an invariant taking

r(r—1) 3 —6r2411r
valuesina Zj, X Zg ° x7Zy °  -coset.

Motivated by 3-Sasakian manifolds.

Wallis (2019): Analysis of which Hepworth-Kreck-Stolz invariants survive when H*(M) infinite.



