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Overview

Massey products are a basic tool when studying rational homotopy of
spaces/quasi-isomorphism of commutative differential graded algebras, but
sometimes complicated to use due to dependence on choices.

Multiplying a Massey product by a further element can reduce the
dependence on choices, and under Poincaré duality does not lose any
information.

For Massey triple and fourfold products we can relate the result to tensors
that capture more information than the original Massey products, often
enough to completely determine rational homotopy class or at least formality.

1. Background

2. Triple products, Bianchi-Massey tensor and simply-connected 7-manifolds

3. Fourfold products, pentagonal Massey tensor and simply-connected
8-manifolds

4. Dependence on choices



1. Background
Rational homotopy

f : X → Y is a rational homotopy equivalence map if
f∗ : πi (X )⊗Q → πi (Y )⊗Q are isomorphisms.

X is rationally homotopy equivalent to Y if they can be connected by a
zig-zag of rational homotopy equivalence maps.

Rational homotopy equivalence of spaces translates to quasi-isomorphism of
commutative differential graded algebras.

Manifold M ⇝ de Rham complex Ω∗(M) of diff forms ⇝ H∗
dR(M)

Simplicial space X ⇝ piecewise linear de Rham complex ⇝ H∗(X ;Q).

A CDGA homomorphism ϕ : A → B is a quasi-isomorphism if
ϕ# : H∗(A) → H∗(B) is an isomorphism.



Formality

The simplest CDGA with a given cohomology algebra is that algebra itself
regarded as a CDGA with trivial differential.

Call a CDGA formal if it is quasi-isomorphic to its cohomology algebra.
Closed simply-connected manifolds of dimension ≤ 6 are always formal.

Theorem (Deligne-Griffiths-Morgan-Sullivan)

Any closed Kähler manifold is formal (so “its rational homotopy type is a
formal consequence of its cohomology”).

What about closed 7-manifolds with holonomy G2 or 8-manifolds with
holonomy Spin(7)??

Additional structures on the cohomology can be used to detect
non-formality, or more generally to distinguish spaces up to rational
homotopy equivalence.

I am especially interested in finding invariants capable of classifying closed
simply-connected 7- and 8-manifolds up to rational homotopy equivalence.



Massey triple products

Let A be a commutative differential graded algebra.

For x1, x2, x3 ∈ H2(A) such that x1x2 = x2x3 = 0 we can define a Massey
triple product as follows.

Pick representatives αi ∈ A2 of xi .

By hypothesis, α1α2 and α2α3 are exact, say

α1α2 = dγ12, α2α3 = dγ23

for some γij ∈ A3.

Then α1γ23 − γ12α3 is closed, so defines an element of H5(A).

Changing choice of γ12 can change the result by adding an element of
x3H

3(A). But if we let
⟨x1, x2, x3⟩ ⊆ H5(A)

be the set of classes that can be obtained by any choices then that is a
well-defined x1H

3(A) + x3H
3(A) coset.



2. The Bianchi-Massey tensor
Tensorifying the triple products

If xi ∈ H2(A) such that x1x2 = x2x3 = x3x4 = x4x1 = 0 then

m(x1, x2, x3, x4) := ⟨x1, x2, x3⟩x4 ∈ H7(A)

does not depend on the choices.

On the other hand, if A satisfies 7-dimensional Poincaré duality, then
⟨x1, x2, x3⟩ can be recovered from knowing m(x1, x2, x3, x4) for all x4.

If all products of classes in H2(A) vanish in H4(A), then we can think of m
as defining a linear map

H2(A)⊗4 → H7(A).

But this does not work very well if the product on H2(A) is non-trivial,
because the conditions x1x2 = x2x3 = x3x4 = x4x1 = 0 do not define a linear
subspace of H2(A)⊗4.



Better tensor

Notation:
■ PkV := kth symmetric power of vector space V
■ E (A) := ker

(
P2H2(A) → H4(A)

)
Think of m as composition of two maps.
■ b : {x1x2 = x2x3 = x3x4 = x4x1 = 0} → P2E

(x1, x2, x3, x4) 7→ (x1x2)(x3x4)− (x2x3)(x4x1)
b takes values in the kernel K [P2E ] of full symmetrisation
P2E → P4H2(A).

■ Given “uniform choice of representatives” α : H2(A) → A2 and
γ : E → A3 such that α2

|E = γ, consider

P2E → A7, uv 7→ γ(u)α2(v).

Differential is α4, so factors through P4H2(A), and vanishes on K [P2E ].
Thus it induces a linear map

F : K [P2E ] → H7(A).

This is independent of choices! We call it the Bianchi-Massey tensor.



Features of the Bianchi-Massey tensor

If the image of b spans K [P2E ] then the Bianchi-Massey tensor
F : K [P2E ] → H7(A) is completely determined by the Massey triple
products.

Under Poincaré duality F determines all Massey triple products.

Functoriality: For a CDGA homomorphism ϕ : A → B and w ∈ K [P2E (A)]

FB(ϕ#w) = ϕ#FA(w) ∈ H7(B).

Obstruction to formality: A formal ⇒ F = 0.



Classification

Theorem
The quasi-isomorphism type of a simply-connected CDGA A
(i.e. H0(A) = Q, H1(A) = 0) with 7-Poincaré duality is determined by
isomorphism class of its cohomology algebra and FA.

Same is true for (n − 1)-connected m-Poincaré duality CDGAs for
m ≤ 5n − 3; just need to use graded commutative powers instead of Pk .

Selling points for the Bianchi-Massey tensor

■ Completely independent of choices

■ Computable

■ Symmetries transparent, so clear precisely how many components need to
be computed (i.e. dimK [P2E ])



3. The pentagonal Massey tensor
Massey fourfold products

Fourfold Massey product of x1, x2, x3, x4 ∈ H2(A) defined if
x1x2 = x2x3 = x3x4 = 0 ∈ H4(A) and one can choose αi ∈ A2, γij ∈ A3 so
that the resulting representatives of ⟨x1, x2, x3⟩ and ⟨x2, x3, x4⟩ both vanish.
Then for σ123, σ234 ∈ A4 such that

α1γ23 − γ12α3 = dσ123, α2γ34 − γ23α4 = dσ234

we get a representative

−α1σ234 + γ12γ34 − σ123α4

of the fourfold product ⟨x1, x2, x3, x4⟩ ⊆ H6(A).

Dependence on choices more complicated now, but if we fix the choices of
αi and γij (or if H

3(A) = 0) then the remaining ambiguity is a coset for
x1H

4(A) + x4H
4(A).



Tensor

If xi ∈ H2(A) with x1x2 = x2x3 = x3x4 = x4x5 = x5x1 = 0 then choosing
representatives αi ∈ A2 and γij ∈ A3 as above, the product of the
representative of ⟨x1, x2, x3, x4, x5⟩ in H6(A) with x5 is

[−α1σ234 + γ12γ34 − σ123α4][α5] = [−(dγ51)σ234 + γ12γ34α5 − σ123dγ45]

= [−γ51dσ234 + γ12γ34α5 + (dσ123)γ45]

=

[∑
cyc

α1γ23γ45

]
∈ H8(A)

Think of the representative on the right hand side as composition of

■ � : {x1x2 = x2x3 = x3x4 = x4x5 = x5x1 = 0} → H2(A)⊗ Λ2E

(x1, x2, x3, x4, x5) 7→
∑
cyc

x1(x2x3) ∧ (x4x5)

■ Given α : H2(A) → A2 and γ : E → A3 as in definition of F , consider

H2(A)⊗ Λ2E → A8, x(u ∧ v) 7→ α(x)γ(u)γ(v).



Pentagonal symmetries

If the product P2H2(A) → H4(A) is trivial, so that E = P2H2(A), then�
induces a linear map

� : H2(A)⊗5 → H2(A)⊗ Λ2P2H2(A).

Its image equals the kernel of

p : H2(A)⊗ Λ2P2H2(A) → P3H2(A)⊗ P2H2(A)

q ⊗ (xy ∧ zw) 7→ qxy ⊗ zw − qzw ⊗ xy

This is an irreducible representation of GL(H2(A)) of dimension 6
(
r+2
5

)
,

corresponding to the partition (3,1,1).

When the product P2H2(A) → H4(A) is not trivial, we instead focus on

D := (ker p) ∩ H2(A)⊗ Λ2E .



The pentagonal Massey tensor

Given a “uniform choice of representatives” α : H2(A) → A2 and
γ : E → A3 such that α2

|E = dγ, the restriction of

H2(A)⊗ Λ2E → A8, x(u ∧ v) 7→ α(x)γ(u)γ(v).

to D := ker
(
p : H2(A)⊗ Λ2E → P3H2(A)⊗ P2H2(A)

)
takes closed values,

and defines
P : D → H8(A).

In general P still depends on the choices of α and γ, but

■ P is independent of choices if H3(A) = 0

■ Poincaré duality + F = 0 ⇒ canonical class of choices yielding
unique value of P.

Formality obstruction:

■ On a formal CDGA there must exist choices of α and γ that make P = 0.

■ For a formal CDGA with Poincaré duality F = P = 0.



Classification?

Theorem (Nagy-N)

For m ≤ 5n − 2, any (n − 1)-connected m-Poincaré duality CDGA with
F = P = 0 is formal.

Conjecture

For m ≤ 5n − 2, (n − 1)-connected m-Poincaré duality CDGA with F = 0
are classified up to quasi-isomorphism by the cohomology algebra and P.

(Statement without F = 0 requires explaining functoriality of P, and first
clarifying the dependence on choices.)

Theorem (Nagy)

Simply-connected 8-manifolds with isomorphism H2
∼= Zr and H3 = H4 = 0

form a group under parametric connected sum, isomorphic to Za × (Z/2)b
for

a = 6
(
r+2
5

)
, b = 2

(
r+3
4

)
−
(
r−1
2

)
+ 2.

P “detects” the free part of this group.



4. Dependence on choices
Classes of choices

A complete picture of the pentagonal Massey tensor requires details of the
dependence on the choice of a pair c = (α, γ) such that

■ α : H2(A) → A2 picks out a representative of each cohomology class

■ γ : E → A3 satisfies dγ = α2
|E

where E is the kernel of the algebra product P2H2(A) → H4(A).

Given two choices c , c ′ we can define a “difference” δ : E → H3(A):

Pick β : H2(A) → A1 such that dβ = α′ − α.

Then γ′ − γ − β(α+ 1
2dβ) maps E to closed elements of A3, so defines a

map δ : E → H3(A).

This δ itself depends on choice of β, but we call c and c ′ equivalent if there
is some choice of β such that δ = 0.
If c and c ′ are equivalent, then all invariants we define in terms of those
choices will agree.



Uniform triple products

The dependence of the pentagonal Massey tensor on choices is expressed in
terms of some “triple product like” information that is not quite captured by
the Bianchi-Massey tensor, but by a “uniform” version of the triple product
defined using similar ideas.

Let K [H2(A)⊗ E ] be the kernel of symmetrisation H2(A)⊗ E → P3H2(A).

Given c = (α, γ), the restriction of H2(A)⊗ E → A5, xu 7→ α(x)γ(u) to
K [H2(A)⊗ E ] takes closed values, so induces a map

Tc : K [H2(A)⊗ E ] → H5(A).

If the “difference” between c and c ′ is δ : E → H3(A) then Tc′ − Tc is the
restriction of the product of Id : H2(A) → H2(A) and δ.

Under Poincaré duality, the set of values of Tc is determined by F
(in particular Tc = 0 for some c iff F = 0), but the transformation rule for
P depends on the actual map c 7→ Tc and not just its image.



Transformation rule for P

Recall that P is defined on D := ker
(
H2(A)⊗ Λ2E → P3H2(A)⊗ E

)
.

The natural map H2(A)⊗ Λ2E → H2(A)⊗ E ⊗ E maps D to a subspace of
K [H2(A)⊗ E ]⊗ E .

For T : K [H2(A)⊗ E ] → H5(A) and δ : E → H3(A), let

T > δ : D → H8(A)

be the restriction of the product T δ : K [H2(A)⊗ E ]⊗ E → H8(A) to D.

Proposition

The difference between the pentagonal Massey tensors defined with two
choices c and c ′ differing by δ : K [H2(A)⊗ E ] → H3(A) is

Pc′ − Pc = Tc > δ + Idδ2.

■ If Tc = 0 for some c , then Pc takes the same value for all such c .
■ Formality ⇒ Tc = Pc = 0 for some c .
■ Pc+δ+ϵ − Pc+δ − Pc+ϵ + Pc = Id δ∧ϵ is bilinear in δ and ϵ and

independent of c : “affine quadratic” dependence.



Formal domination

Functoriality:

For a homomorphism ϕ : A → B and choices cA and cB, there is an
analogous comparison δ : EA → H3(B). Then

PcB ◦ ϕ# − ϕ# ◦ PcA = (ϕ# ◦ TcA) > δ + (ϕ#)δ
2.

Corollary

Let f : M → N be a map of non-zero degree between closed manifolds.
If FM = PM = 0 then FN = PN = 0.

In particular, if N is (n − 1)-connected of dimension ≤ 5n − 2 and M is
formal then N is formal too.


