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Introduction

Context: Riemannian 7-manifolds with holonomy group G,

a special kind of Ricci-flat manifolds

Bryant's Laplacian flow: a cousin of Ricci flow for closed G,-structures

G, solitons: self-similar solutions to Laplacian flow

We have found asymptotically conical G, solitons of cohomogeneity one
on A2 CP? and A% S, of all three types (shrinker, expander and steady),
as well as complete solitons with different end behaviours.
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1. Laplacian flow, solitons, and AC G,-structures
Riemannian holonomy G,

Gy == Aut O, O = octonions, normed division algebra of real dimension 8.
G, acts on ImQ =2 R, preserving metric, orientation, cross product

G, is the stabiliser in GL(7,R) of a stable g € A3(R7)*
(i.e. the GL(7,R)-orbit of ¢q is open).

¢ € Q3(M7) pointwise equivalent to g defines a Gy-structure.
Because Gy C SO(7), such a ¢ induces a metric and orientation.

Hol(M) C G, < metric induced by some G,-structure ¢ such that Vi = 0.
Then call ¢ torsion-free. This is equivalent to the first-order non-linear PDE

dp=d"¢=0

Metrics with holonomy G, are always Ricci-flat.

All known constructions of examples on closed manifolds (Joyce 1994...)
solve the elliptic PDE by gluing together pieces with dimensional reduction.



Bryant’s Laplacian flow

Solve d
2
dtt = AWt(pt

with initial condition g satisfying dgo = 0. (Then dy, = 0 for all ¢t.)

Starting observations

B dp =dd*o =0= d*p =0, so the stationary points are exactly the
torsion-free Go-structures.

m Upward gradient flow for vol(() restricted to the cohomology class of ¢
(the Hitchin functional)

B Induced metric evolves by

g _ e . _

e ic(gy) + terms quadratic in the torsion d*p;

(while Ric(gy) is linear in d*¢;)



What do we know?

Theorem (Bryant-Xu 2011, Lotay-Wei 2017)

m Short-time existence and uniqueness.

B The stationary points are stable:
initial conditions close to a torsion-free Gy-structure g lead to flow

defined for all time, with limit isomorphic to .

Lotay-Wei also show that the Riemann curvature or gradient of torsion must
blow up at a finite-time singularity, but little is known about the long-term

behaviour in general.

Absent an analogue of Perelman’s no-local-collapse theorem for Ricci flow it
is not known how to obtain blow-up models for singularities.

Nevertheless, solitons for the flow should play a role in the eventual picture...



G, soliton equations

Gy-structure ¢, vector field X, dilation constant A € R satisfying

d@ - 0)
AWQO = dp+ Lxyp
& self-similar solution of Laplacian flow
pr = k(t)*F

22Xt dfy
for k(t) = 3 +3 and diffeomorphisms f; such that d—; = k(t)72X

A > 0: expanders (immortal solutions)
A = 0: steady solitons (eternal solutions)
A < 0: shrinkers (ancient solutions)

m Non-steady soliton = ¢ exact
® Scaling behaviour: (¢, X) is a A-soliton < (k3p, k=1X) is a k=2 \-soliton.



Asymptotically conical solitons

Solitons for the Laplacian flow should play a role in the eventual picture...
...but not compact ones.

® There can be no compact shrinkers, because the Laplacian flow is the
upward gradient flow for volume.

® Any compact steady soliton must be static (¢ torsion-free, X = 0)

® No known examples of compact expanders (or even exact Gp-structures)

A natural class of non-compact solitons that has been studied in Ricci flow
and mean curvature flow is that of asymptotically conical ones.

® AC shrinkers provide models for the formation of an isolated conical
finite-time singularity

®m AC expanders provide models for resolving an isolated conical singularity

® A shrinker and an expander whose asymptotic cones match provide a
model for “flowing through” a singularity.



Asymptotic cones of Laplacian solitons

SU(3)-structure on ¥°

< Hermitian 2-form w € Q2(X) and (normalised) real part a € Q3(%)
of complex 3-form with respect to some almost complex structure

< conical Gy-structure pc on Rygx .

oc=r*drAw+r*a ~ gc=dr’+r’gs
©c is torsion-free if the SU(3)-structure (w,a) is “nearly K3hler”.

_ _Ard
For X = 3 5y

Lxpc = —Aec,
so if ¢ is torsion-free cone then (¢, X) is a “Gaussian” A-soliton.

For A\ # 0 (¢c,X) is a sensible asymptotic model for an AC A-soliton
even if merely dpc = 0, because A, has lower order

For A = 0 the only reasonable asymptotic cones are static,
i.e. pc torsion-free and X = 0.



Bryant-Salamon AC G, metrics

Where to look for Laplacian solitons (M, ¢) that are asymptotically conical,
ie. M\ (compact set) = R, x ¥° and, for some “asymptotic rate” v < 0,
o =ridrAw+rPa+ 0(r’)?

Try spaces with well-known AC torsion-free Gy-structures (ideally exact).
Bryant-Salamon (1987) found the first examples of complete G, metrics.
These examples are AC, and moreover they have a cohomogeneity 1 action
by a group G, i.e. the generic orbit ¥ has dimension 6.
M G > v
A2S*  Sp(2) CP3 —4
A2CP? SU(3) SU@B)/T?> -4
S xR* SU(2® S3xS3 -3

Remark: In the last two cases, ¥ has a Z3 of automorphisms that do not

extend to diffeomorphisms of M

~» Gy conifold transitions: 3 topologically distinct ways to glue in zero
section to resolve conical singularity R+g X X.



Invariant G,-structures on A% S* and A2 CP?

Sp(2)-invariant Gy-structures o on A2 S*\ zero section & R.q x CP3
e f,h 1 Rso = Ry
<+ scale of base and S? fibres of CP3 — S*.

SU(3)-invariant Gy-structures on A2 CP? \ zero section = R~q x SU(3)/T?
o flaf27f3:R>0%R>0
<+ scale of S? fibres of three different fibrations SU(3)/T? — CP2.

Cones: Gp-structure ¢ defined by f; = ¢r.

Closed cones: dpc =0 < scale-normalisation of ¢

Unique holonomy G, cone: f = =f; = 3

The Bryant-Salamon G, metrics on A2 S* and A2 CP? are defined by the

same f; and f, with 3 = £ in the latter case. Each 2 — % as r — oo.



Anti-self-dual bundle construction

Multiplication by —1 on the fibres of A2 $* is an isometry of any
Sp(2)-invariant Gp-structure.

Multiplication by —1 on the fibres of A> CP? is an isometry of the
SU(3)-invariant Gp-structure defined by (A, %, ) & h=1f

The equations encoding the torsion-free condition for SU(3) x Zy-invariant
and Sp(2)-invariant Gy-structures are identical.

Indeed, Bryant-Salamon derived the same equations for certain Gy-structures
on A2 X for any positive Einstein self-dual X (but X = S* or CP? are the
only complete smooth possibilities).

Similarly, the ODEs for Sp(2)-invariant solitons can be regarded as a
subsystem of the SU(3)-invariant soliton ODEs.



2. Main existence results
Explicit asymptotically conical shrinkers

Shrinkers provide models for formation of singularities, and tend to be rare.

Theorem A
There is a complete SU(3) x Zy-invariant shrinking Gy-soliton on N> CP?,
and an Sp(2)-invariant one on N> S*, defined by A = —1 and

9 r r 4r 0
1= 2=5 + (3+9+r2>8r
fi
This is asymptotically conical because — — ¢; (for ¢ = (1, %, %))
r

: : . c .
The asymptotic cone is characterised by 2= lim 2 =2
Co r— 00 f2

f"
The asymptotic rate is v = —2 because — = ¢; + O(r2).
r

Conjecture: This is the unique complete Sp(2)-invariant shrinker.



Asymptotically conical expanders on A? §*

Expanders provide models for how the flow can smooth out a singularity.

Theorem B
Every complete Sp(2)-invariant expanding G,-soliton on N> S* is AC with
rate —2.
Up to scale, there is precisely a 1-parameter family of such expanders.

. . - . . c . f
Their asymptotic limits are distinct, bijecting with (0,1) by C—l = lim 2.

2 r—o0 f2

Keeping the scale fixed, the family can be parametrised by A > 0.

Limit as A — 0 is the Bryant-Salamon G,-manifold (which has ¢; = ¢, = %)
considered as a static G>-soliton.

Remark
The asymptotic cone of the explicit AC shrinker on A2S* (£ = 2) does not
match the asymptotic cone of any AC Sp(2)-invariant expander (2 < 1).



Asymptotically conical expanders on A2 CP?

Theorem B also yields a corresponding 1-parameter family of

SU(3) x Zy-invariant expanders on A2 CP2.

AC expander ends are stable, making it possible to perturb this 1-parameter
family of SU(3) x Zy-invariant solutions to obtain

Theorem C
Up to scale, N2.CP? admits a 2-parameter family of SU(3)-invariant
expanding Gy-solitons that are AC with rate —2.

We do not expect every complete SU(3)-invariant expander to be AC.

3 Ar?
;‘1:;’ fP=fl=re6
solves the soliton ODEs to leading order, and can be corrected to
forward-complete solutions with doubly exponential volume growth.

Conjecture: The boundary of the 2-parameter family of SU(3)-invariant AC
expanders corresponds to complete expanders with such ends.



Flowing through conical singularity?

If a singularity forms modelled on the explicit AC shrinker on A% S#, then no
Sp(2)-invariant expander provides a model for how to smooth it out again.

Harder to control which closed SU(3)-invariant cones over SU(3)/ T2 appear
as asymptotic limits of complete SU(3)-invariant expanders on A2 CP?,
but numerics suggest:
the asymptotic cone of the shrinker on A2 CP?
does match
the asymptotic cone of some SU(3)-invariant expander on A% CP?

after applying an order 3 automorphism to SU(3)/T? that does not extend
to A2.CP? (instead permuting 3 different S2-fibrations SU(3)/T? — CP?)

~+ potential model for “flowing through” the singularity, crushing a CP?
and inflating it again in one of two topologically different ways.

This would realise a “G, conifold transition” .



Complete steady solitons

All known complete examples of steady Ricci solitons have sub-Euclidean
volume growth. In contrast

Theorem D

There is precisely a 1-parameter family of SU(3)-invariant AC steady G
solitons on N2.CP?, all asymptotic with rate —1 to the unique
SU(3)-invariant torsion-free cone (f; = 5 + O(1)).

One limit is again the static soliton on the Bryant-Salamon AC G,-manifold.
The other limit is an explicit complete steady G,-soliton:

9
A=vViter fh=ite, f},:ZSinhg, X = tanh = -2

Asymptotic geometry:
In one other fibration SU(3)/ T2 — CP?, the S fibres have constant size,
and the base is the sinh cone over CP?, i.e. the negative Einstein metric

dr? + (sinh r)>gep2 on Ry x CP2.



3. Initial value problem for invariant solitons
Invariant G,-structures

SU(3)-invariant G,-structures ¢ on Ry x SU(3)/T? such that
= H%H =1, and
® restriction to each slice SU(3)/T? is closed

are parametrised by triples of functions fi, f, 3 : R — R,.
© = dr A (fPwr + fiws + fiws) + Ahfa

for w; € Q2(SU(3)/T?) and « € Q3(SU(3)/ T?) SU(3)-invariant.
f; = scale of S fibres of one of three possible fibrations SU(3)/ T2 — CP?
Vol(SU(3)/T?) proportional to (f1ff3)?

Ones with f, = f3 have extra Z, symmetry, and also define analogous
Sp(2)-invariant G,-structures on R, x CP3.
(Then f; = scale of S2 fibres of CP® — S*, and f, = £; a scale of base.)



Closure and soliton ODE

d
dp =0 & 2 (Ahh) = {1+ +1f

Cones < f; = ¢;r linear
Then dp =0 < 6c1coc3 = ¢ + 3 + ¢3 is a scale-normalisation:
Unique choice of “cone angle” to make a closed cone for each homothety
class on SU(3)/T?
~» 2-parameter family of closed SU(3)-invariant cones
(1-parameter family with ¢, = ¢, giving Sp(2)-invariant closed cones)

The soliton condition for ¢ = f2w; + ffws + ffws + b and X = uZ is
naively a 2nd-order ODE system for (f1,f,,f3,u) (with some constraints).

Useful to rewrite it as a 1st-order ODE in (fi, 2, f3, 71, 72, 73),
where 7; capture the torsion by d*¢ = mw; + Tws + T3ws.
This is a system in 5 variables after taking into account that

f2 = =0

f



Smooth extension problem

Suppose that H C G, that H acts on a vector space V, and that the
action is transitive on the unit sphere in V, with stabiliser K C H.

Then think of the vector bundle G xx V := (G x V)/K = G/K as
zero section G/K U Ry x G/H.

To find complete structures on G Xk V/, the first step is to ask:
Which solutions on (0, €) x G/H extend smoothly over G/K at r = 07?

Applying methods Eschenburg-Wang (2000)

m |dentify conditions on f; : [0,€) — R to ensure smooth extension of
¢ = ffwr + FPwy + FFws + Ahfza from (0,€) x SU(3)/T? to CP%:

O f; odd with £/(0) = 1 (so that S fibres shrink to zero at right rate)
O f, and f3 even with £(0) = £(0) = b = {/Vol(CP?) > 0
® Then solve by power series.



Solutions to the soliton initial value problem

Proposition

For each A € R, there is a 2-parameter family oy, . of solutions to the

G,-soliton equation with dilation constant A defined for small r that extend

smoothly to (a neighbourhood of zero section in) N> CP?.

Two scale-invariant parameters: Ab? and 5

~> up to scale there are 2-parameter families of local expanders and
shrinkers on A2 CP?, and 1-parameter family of local steady solitons.

The parameter b is y/Vol(CP?), while ¢ controls the leading term in f, — f5.

The subfamily ¢, o has f, = f3, so
® has extra Zy-symmetry (multiplication by —1 on fibres of A2 CP?)
m also defines solution near zero section of A2 5.

~> up to scale there are 1-parameter families of local expanders and
shrinkers on A% S* and a unique local steady soliton.

The latter defines the static soliton on the Bryant-Salamon Gy-manifold.

Hence there are no non-trivial Sp(2)-invariant steady solitons on A2 S%.



4. Forward-completeness
Scale decoupling and AC ends for steady solitons

The steady case A = 0 has a very different character because the scale
g = V/fiffy = {/vol(T)
essentially decouples from the homothety class
i h £
(g’ g’ g)

The latter evolves in a surface under a 2nd order autonomous ODE
&> 1st order ODE in 4 parameters

Torsion-free cone ¢; = ¢ = ¢3 = % is unique fixed point, and stable

= Solutions with g bounded are asymptotic to the torsion-free cone.
Eigenvalues of linearisation at fixed point give rate —1.
Since @p o is AC (static Bryant-Salamon), ¢ ¢ is AC too for ¢ near 0.



Trichotomy for SU(3)-invariant steady ends

Proposition

Any initial condition for an SU(3)-invariant steady soliton on R x SU(3)/T?
leads to one of the following behaviours forward in time (up to permuting f;)
(i) AC with rate —1 to torsion-free cone

(i) Complete with exponential volume growth: f; — %, while f ~ f3 ~ ek

(iii) fi = O(V/r« — 1), fo, 5 = O((r. — r)~Y/*) near finite extinction time r,.

We can decide the type of each smoothly closing local solution ¢  thanks
to spotting an explicit solution of type (ii) corresponding to ¢ /5 5

i=vl+te ', h=v1+e, 5=2sinh5, u=tanhz.

Theorem D ,
For A = 0, the local solution @b ¢ is (i) AC for & < 2.

(ii) Exponentially growing for 2—2 = %.

(iii) Incomplete for Z—z > 3.



Non-steady AC ends

The scale does not decouple for A £ 0. On the contrary, scaling up any point

in the phase space makes A terms more dominant, causing

Proposition

Any SU(3)-invariant non-steady soliton with all ratios % bounded in forward
J

time is AC with rate —2.

Schematically, because A has dimensions of length—2, the other factor S of
those terms has dimensions of length?, and satisfies an equation

ds

where e and 3 have dimension of length, and « > 0 involves only f; (not Z—f)

Ifgﬁmasr%oothenSH%

S converging despite having dimension length® ~» AC rate is —2

This behaviour is stable for A > 0
unstable for A <0



AC end solutions

Proposition

For each A\ # 0 and (c1, ¢, c3) such that ¢ + c2 + c2 = 6cicacs there exists
® 3 unique AC end solution if A < 0

® g 2-parameter family of AC end solutions if A > 0

asymptotic to the corresponding closed cone (i.e. é — ¢i).

Letting u = r—2, the sign of A becomes significant in an ODE analogous to

dx

—:)\i—&—ai—f—b with x -0 as u — 0.
du u? u

Setting a = b = 0, the general solution for A # 0 is exp (=2).
But exp (’T’\) — 0 as u — 0 only for A > 0.

Haskins-Khan-Payne (2022) prove rigidity of AC ends for gradient
shrinking G, solitons without cohomogeneity one assumption



AC shrinkers

Heuristic for A < 0:

Invariant shrinkers on Ry x SU(3)/T? are flow lines in 5-dim phase space.
In 4-dimensional space of flow lines

m 2-dimensional submanifold extends across zero section CP2 C A2 CP?
m 2-dimensional submanifold has AC behaviour

Expect isolated intersections ~ finitely many AC shrinkers on A2 CP?.

Theorem A
For A = —1, ©30 is the explicit solution
9 2 r 4r
fi= 2=f2="4 =+ ——.
1 r, 2 3 4 + 4 ’ u 3 + 9 + r2

~~ SU(3) x Zy-invariant shrinker on A2 CP? and Sp(2)-invariant shrinker
on N2.5*, AC with rate —2 to cone with c; =1, ¢ = c3 = 1.

Conjecture: Unique complete shrinker with this symmetry.



Trichotomy for Sp(2)-invariant shrinker ends

In the Sp(2)-invariant case, the AC end solutions are a 1-dimensional
submanifold of a 2-dimensional space of end solutions.

We can characterise the other possible end behaviours.

Theorem
Any initial condition for an Sp(2)-invariant shrinker on R x CP? leads to
one of the following behaviours forward in time

(i) AC with rate —2 to a closed cone
(ii) Complete, exponential growth: fi ~ 4e" and 7 ~ %e‘” for p=y/3.
(iii) fi = O(\/r= — 1), fa = O((r. — r)~/*) near finite extinction time r,.

The end in (ii) is modelled on an explicit shrinking soliton on
R x lwasawa manifold, found by Fowdar (2022).

There is an essentially unique such end solution, appearing as a boundary
point for the curve of AC ends solutions.

The incomplete end behaviour (iii) is the only stable type.



Trichotomy for Sp(2)-invariant expander ends

In the expander case,

’2
fim =, f=AVre¥
Ar

can be uniquely corrected to a forward-complete end solution for each A > 0.

This 1-parameter family of end solutions with doubly exponential growth
forms a “wall” between two different stable types of forward-evolution.

Theorem
Any initial condition for an Sp(2)-invariant expander on R x CP3 leads to
one of the following behaviours forward in time

(i) AC with rate —2 to a closed cone

r2
(i) Complete with doubly exponential growth: f; ~ % while f, ~ \ﬁe%.

(iii) fi = O(V/r« — 1), fa = O((r. — r)~/*) near finite extinction time r,.

All smoothly-closing Sp(2)-invariant solutions ¢p 9 on A2 S* fall in case (i),
but we expect an analogous transition to be relevant for smoothly-closing
SU(3)-invariant expanders @, . on A2 CP?.



Sp(2)-invariant AC expanders on A% S§*

Theorem B
(i) Every Sp(2)-invariant local expander ¢p o defined near the zero section
of N2.5* is AC.
(ii) Moreover L : b+ lim % is a continuous bijection (0, 00) — (0, 1)

r—oo 2
(so each closed Sp(2)-invariant cone f; = ¢;t such that c; < ¢, is the

asymptotic cone of unique complete expander).

Elementary techniques suffice for (i) and non-decreasingness of £, checking
that certain inequalities are preserved.

L strictly increasing builds on detailed understanding of AC ends with given
asymptotic cone.

b — 0 limit equivalent up to scale to keeping b fixed and letting A — 0.
This limit is the Bryant-Salamon manifold (with ¢; = ¢, = 3), so £(b) — 1



5. Twistor bundles and rescaling limits of ODEs
Rescalings of the Sp(2)-invariant soliton ODE

Recall variables in Sp(2)-invariant soliton ODEs:
f, <> scale of the base of A2 5% — 5%
fi <+ scale of S? fibres when foliating by sphere bundles

Changing variable f, to ef, < rescaling “reference metric” on base of A% S*

Taking e = 0
~~+ ODE for solitons on A2 R* invariant under Isom(R*) = SO(4) x R*.
This limit ODE is easier to analyse due to additional scale invariance

and a conserved quantity.

Ar?
6

1

. . 3
The expander system has an explicit solution f; = —, f'22 —re

incomplete at r = 0 but helps understand transition in original system.
Limit of pp0 as b — oo ~» AC solution in limit system ~» L(b) — 0

Taking e = v/—1
~ ODE for solitons on A2 H* invariant under Isom(H*) = SO(4,1).



Twistor space interpretation

For X* oriented, consider on the sphere bundle in A2 X (twistor space)
® volume form w; on fibres

® tautological 2-form w,

For X self-dual Einstein, the conditions for the Isom(X)-invariant
¢ = dr A (fRw1 + ffws) + Affdw € Q3(A2 X)

to be a soliton depend only on the scalar curvature . So

k =1~ Sp(2)-invariant ODE on A% 5%
in general get the ¢ = \/k rescaling.

In particular, the ¢ = 0 limit can be interpreted as ODE for warped product
solitons on R x S2 x Y*, with Y hyper-Kihler.

The steady case was considered by Ball (2022).



Rescalings of the SU(3)-invariant soliton ODE

In a similar way, rescaling f, and f3 in the SU(3)-invariant soliton ODEs is
related to considering A2 X for self-dual Kahler-Einstein X* for different x.

(In particular, one could consider SU(2,1)-invariant solitons of A2 CH2.)

f, = f3 < invariance under under multiplying fibres of A2 X by —1,
recovering ODE from the case not requiring Kahler.

The limit of rescalings of the explicit exponentially growing solution
fi=vV1+e, h=+1+e", fz =2sinh 3 give an explicit solution

Ai=1fh=fh=e

on Ryg x §%2 x Y for Y hyperKihler
~+ complete steady G, soliton that is a metric product of S? and dr? + e’ gy



Another rescaling of Sp(2)-invariant soliton ODE

Changing variables f; — €2f;, », — ef, and taking € — 0

& rescaling both fibres and base of S?-fibration CP3 — S* of link of A% S*
~ soliton ODE on RxCxC?, invariant under complex Heisenberg group Hs.
Same as soliton ODE for certain Gy-structures on R x suitable T2-bundle

over hyper-Kshler Y#.

This system can be reduced to one in two variables.
Fowdar's explicit shrinker corresponds to a fixed point.

We find another complete shrinker with one AC end and one cusp end
modelled on Fowdar's.

The proof of the trichotomy for shrinkers relies on analysing this limit
system.






