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Introduction

Context: Riemannian 7-manifolds with holonomy group G2,
a special kind of Ricci-flat manifolds

Bryant’s Laplacian flow: a cousin of Ricci flow for closed G2-structures

G2 solitons: self-similar solutions to Laplacian flow

We have found asymptotically conical G2 solitons of cohomogeneity one
on Λ2

−CP2 and Λ2
−S

4, of all three types (shrinker, expander and steady),
as well as complete solitons with different end behaviours.

Outline

1. Laplacian flow, solitons, and AC G2-structures

2. Main existence results

3. Invariant soliton ODE and singular initial value problem

4. Forward-completeness



1. Laplacian flow, solitons, and AC G2-structures
Riemannian holonomy G2

G2 := Aut O, O = octonions, normed division algebra of real dimension 8.

G2 acts on ImO ∼= R7, preserving metric, orientation, cross product

G2 is the stabiliser in GL(7,R) of a stable φ0 ∈ Λ3(R7)∗

(i.e. the GL(7,R)-orbit of φ0 is open).

φ ∈ Ω3(M7) pointwise equivalent to φ0 defines a G2-structure.

Because G2 ⊂ SO(7), such a φ induces a metric and orientation.

Hol(M) ⊆ G2 ⇔ metric induced by some G2-structure φ such that ∇φ = 0.
Then call φ torsion-free. This is equivalent to the first-order non-linear PDE

dφ = d∗φ = 0.

Metrics with holonomy G2 are always Ricci-flat.

All known constructions of examples on closed manifolds (Joyce 1994...)
solve the elliptic PDE by gluing together pieces with dimensional reduction.



Bryant’s Laplacian flow

Solve
dφt

dt
= ∆φtφt

with initial condition φ0 satisfying dφ0 = 0. (Then dφt = 0 for all t.)

Starting observations

■ dφ = dd∗φ = 0 ⇒ d∗φ = 0, so the stationary points are exactly the
torsion-free G2-structures.

■ Upward gradient flow for vol(φ) restricted to the cohomology class of φ0

(the Hitchin functional)

■ Induced metric evolves by

dgt
dt

= −2Ric(gt) + terms quadratic in the torsion d∗φt

(while Ric(gt) is linear in d∗φt)



What do we know?

Theorem (Bryant-Xu 2011, Lotay-Wei 2017)

■ Short-time existence and uniqueness.

■ The stationary points are stable:
initial conditions close to a torsion-free G2-structure φ0 lead to flow
defined for all time, with limit isomorphic to φ0.

Lotay-Wei also show that the Riemann curvature or gradient of torsion must
blow up at a finite-time singularity, but little is known about the long-term
behaviour in general.

Absent an analogue of Perelman’s no-local-collapse theorem for Ricci flow it
is not known how to obtain blow-up models for singularities.

Nevertheless, solitons for the flow should play a role in the eventual picture...



G2 soliton equations

G2-structure φ, vector field X , dilation constant λ ∈ R satisfying{
dφ = 0,

∆φφ = λφ+ LXφ.

⇔ self-similar solution of Laplacian flow

φt = k(t)3f ∗φ,
df

dt
= k(t)−2X , k(t) =

3 + 2λt

3

λ > 0: expanders (immortal solutions)
λ = 0: steady solitons (eternal solutions)
λ < 0: shrinkers (ancient solutions)

■ Non-steady soliton ⇒ φ exact

■ Scaling behaviour: (φ,X ) is a λ-soliton ⇔ (k3φ, k−1X ) is a k−2λ-soliton.



Asymptotically conical solitons

Solitons for the Laplacian flow should play a role in the eventual picture...
...but not compact ones.

■ There can be no compact shrinkers, because the Laplacian flow is the
upward gradient flow for volume.

■ Any compact steady soliton must be static (φ torsion-free, X = 0)

■ No known examples of compact expanders (or even exact G2-structures)

A natural class of non-compact solitons that has been studied in Ricci flow
and mean curvature flow is that of asymptotically conical ones.

■ AC shrinkers provide models for the formation of an isolated conical
finite-time singularity

■ AC expanders provide models for resolving an isolated conical singularity

■ A shrinker and an expander whose asymptotic cones match provide a
model for “flowing through” a singularity.



Asymptotic cones of Laplacian solitons

SU(3)-structure on Σ6

↔ Hermitian 2-form ω ∈ Ω2(Σ) and (normalised) real part α ∈ Ω3(Σ)
of complex 3-form with respect to some almost complex structure

↔ conical G2-structure φC on R>0×Σ.

φC = r2dr ∧ ω + r3α ⇝ gC = dr2 + r2gΣ

φC is torsion-free if the SU(3)-structure (ω, α) is “nearly Kähler”.

For X = −λr
3

∂
∂r

LXφC = −λφC ,

so if φC is torsion-free then (φC ,X ) is a “Gaussian” λ-soliton.

If merely dφC = 0, then because ∆φφ has lower order (provided λ ̸= 0),
(φC ,X ) is still a sensible asymptotic model for an AC λ-soliton.

But for λ = 0 the only reasonable asymptotic cones are static, i.e. φC

torsion-free and X = 0.



Bryant-Salamon AC G2 metrics

Where to look for Laplacian solitons (M, φ) that are asymptotically conical,
i.e. M \ (compact set) ∼= R+ × Σ6 and, for some “asymptotic rate” ν < 0,

φ = r2dr ∧ ω + r3α+ O(rν)?

Try spaces with well-known AC torsion-free G2-structures (ideally exact).

Bryant-Salamon (1987) found the first examples of complete G2 metrics.

These examples are AC, and moreover they have a cohomogeneity 1 action
by a group G , i.e. the generic orbit Σ has dimension 6.

M G Σ ν

Λ2
−S

4 Sp(2) CP3 −4
Λ2
−CP2 SU(3) SU(3)/T 2 −4

S3 × R4 SU(2)3 S3 × S3 −3

Remark: In the last two cases, Σ has a Z3 of automorphisms that do not
extend to diffeomorphisms of M
⇝ G2 conifold transitions: 3 topologically distinct ways to glue in zero

section to resolve conical singularity R>0 × Σ.



Invariant G2-structures on Λ2
−S

4 and Λ2
−CP2

Sp(2)-invariant G2-structures φ on Λ2
−S

4 \ zero section ∼= R>0 × CP3

⇝f1, f2 : R>0 → R>0

↔ scale of base and S2 fibres of CP3 → S4.

SU(3)-invariant G2-structures on Λ2
−CP2 \ zero section ∼= R>0 × SU(3)/T 2

⇝f1, f2, f3 : R>0 → R>0

↔ scale of S2 fibres of three different fibrations SU(3)/T 2 → CP2.

Cones: G2-structure φC defined by fi = ci r .

Closed cones: dφC = 0 ⇔ scale-normalisation of c

Unique holonomy G2 cone: f1 = f2 = f3 =
r
2

The Bryant-Salamon G2 metrics on Λ2
−S

4 and Λ2
−CP2 are defined by the

same f1 and f2, with f3 = f2 in the latter case. Each fi
r → 1

2 as r → ∞.



Anti-self-dual bundle construction

Multiplication by −1 on the fibres of Λ2
−S

4 is an isometry of any
Sp(2)-invariant G2-structure.

Multiplication by −1 on the fibres of Λ2
−CP2 is an isometry of the

SU(3)-invariant G2-structure defined by (f1, f2, f3) ⇔ f2 = f3

The equations encoding the torsion-free condition for SU(3)× Z2-invariant
and Sp(2)-invariant G2-structures are identical.

Indeed, Bryant-Salamon derived the same equations for certain G2-structures
on Λ2

−X for any positive Einstein self-dual X (but X = S4 or CP2 are the
only complete smooth possibilities).

Similarly, the ODEs for Sp(2)-invariant solitons can be regarded as a
subsystem of the SU(3)-invariant soliton ODEs.



2. Main existence results
Explicit asymptotically conical shrinkers

Shrinkers provide models for formation of singularities, and tend to be rare.

Theorem A
There is a complete SU(3)× Z2-invariant shrinking G2-soliton on Λ2

−CP2,
and an Sp(2)-invariant one on Λ2

−S
4, defined by λ = −1 and

f1 = r , f2 = f3 =

√
9

4
+

r2

4
, X =

(
t

3
+

4t

9 + t2

)
∂

∂r
.

This is asymptotically conical because
fi
r
→ ci (for c = (1, 1

2 ,
1
2 )).

The asymptotic cone is characterised by lim
r→∞

f1
f2

= 2.

The asymptotic rate is ν = −2 because
fi
r
= ci + O(r−2).

Conjecture: This is the unique complete Sp(2)-invariant shrinker.



Asymptotically conical expanders on Λ2
−S

4

Expanders provide models for how the flow can smooth out a singularity.

Theorem B
Every complete Sp(2)-invariant expanding G2-soliton on Λ2

−S
4 is AC with

rate −2.

Up to scale, there is precisely a 1-parameter family of such expanders.

Their asymptotic limits are distinct, bijecting with (0, 1) by lim
r→∞

f1
f2
.

Keeping the scale fixed, the family can be parametrised by λ > 0.

Limit as λ → 0 is the Bryant-Salamon G2-manifold (which has lim
r→∞

f1
f2

= 1),

considered as a static G2-soliton.

Remark
The asymptotic cone of the explicit AC shrinker on Λ2

−S
4 ( lim

r→∞
f1
f2
= 2) does

not match the cone of any AC Sp(2)-invariant expander ( lim
r→∞

f1
f2
< 1).



Asymptotically conical expanders on Λ2
−CP2

Theorem B also yields a corresponding 1-parameter family of
SU(3)× Z2-invariant expanders on Λ2

−CP2.

AC expander ends are stable, making it possible to perturb this 1-parameter
family of SU(3)× Z2-invariant solutions to obtain

Theorem C
Up to scale, Λ2

−CP2 admits a 2-parameter family of SU(3)-invariant
expanding G2-solitons that are AC with rate −2.

We do not expect every complete SU(3)-invariant expander to be AC.

f1 =
3

λr
, f 22 = f 23 = r e

λr2

6

solves the soliton ODEs to leading order, and can be corrected to
forward-complete solutions with doubly exponential volume growth.

Conjecture: The boundary of the 2-parameter family of SU(3)-invariant AC
expanders corresponds to complete expanders with such ends.



Flowing through conical singularity?

If a singularity forms modelled on the explicit AC shrinker on Λ2
−S

4, then no
Sp(2)-invariant expander provides a model for how to smooth it out again.

Harder to control which closed SU(3)-invariant cones over SU(3)/T 2 appear
as asymptotic limits of complete SU(3)-invariant expanders on Λ2

−CP2,
but numerics suggest:

the asymptotic cone of the shrinker on Λ2
−CP2

does match

the asymptotic cone of some SU(3)-invariant expander on Λ2
−CP2

after applying an order 3 automorphism to SU(3)/T 2 that does not extend
to Λ2

−CP2 (instead permuting 3 different S2-fibrations SU(3)/T 2 → CP2)

⇝ potential model for “flowing through” the singularity, crushing a CP2

and inflating it again in one of two topologically different ways.

This would realise a “G2 conifold transition” (Atiyah-Witten (2001)).



Complete steady solitons

All known complete examples of steady Ricci solitons have sub-Euclidean
volume growth. In contrast

Theorem D
There is precisely a 1-parameter family of SU(3)-invariant AC steady G2

solitons on Λ2
−CP2, all asymptotic with rate −1 to the unique

SU(3)-invariant torsion-free cone (fi =
r
2 + O(1)).

One limit is again the static soliton on the Bryant-Salamon AC G2-manifold.

The other limit is an explicit complete steady G2-soliton:

f1 =
√
1 + e−r , f2 =

√
1 + er , f3 = 2 sinh

r

2
, X = tanh

r

2

∂

∂r

Asymptotic geometry:

In one other fibration SU(3)/T 2 → CP2, the S2 fibres have constant size,

and the base is the sinh cone over CP2, i.e. the negative Einstein metric

dr2 + (sinh r)2gCP2 on R+ × CP2.



3. Initial value problem for invariant solitons
Invariant G2-structures

SU(3)-invariant G2-structures φ on R+ × SU(3)/T 2 such that

■ ∥ ∂
∂r ∥ = 1, and

■ restriction to each slice SU(3)/T 2 is closed

are parametrised by triples of functions f1, f2, f3 : R+ → R+.

φ = dr ∧ (f 21 ω1 + f 22 ω2 + f 23 ω3) + f1f2f3α

for ωi ∈ Ω2(SU(3)/T 2) and α ∈ Ω3(SU(3)/T 2) SU(3)-invariant.

fi = scale of S2 fibres of one of three possible fibrations SU(3)/T 2 → CP2

Vol(SU(3)/T 2) proportional to (f1f2f3)
2

Ones with f2 = f3 have extra Z2 symmetry, and also define analogous
Sp(2)-invariant G2-structures on R+ × CP3.
(Then f1 = scale of S2 fibres of CP3 → S4, and f2 = f3 a scale of base.)



Closure and soliton ODE

dφ = 0 ⇔ 2
d

dr
(f1f2f3) = f 21 + f 22 + f 23

Cones ↔ fi = ci r linear

Then dφ = 0 ⇔ 6c1c2c3 = c21 + c22 + c23 is a scale-normalisation:

Unique choice of “cone angle” to make a closed cone for each homothety
class on SU(3)/T 2

⇝ 2-parameter family of closed cones

The soliton condition for φ = f 21 ω1 + f 22 ω2 + f 23 ω3 + f1f2f3α and X = u ∂
∂r is

naively a 2nd-order ODE system for (f1,f2,f3,u) (with some constraints).

Useful to rewrite it as a 1st-order ODE in (f1, f2, f3, τ1, τ2, τ3),
where τi capture the torsion by d∗φ = τ1ω1 + τ2ω2 + τ3ω3.

This is a system in 5 variables after taking into account that

dφ = 0 ⇒ φ ∧ d∗φ = 0 ⇒ τ1
f 21

+
τ2
f 22

+
τ3
f 23

= 0.



Smooth extension problem

Suppose that H ⊂ G , that H acts on a vector space V , and that the
action is transitive on the unit sphere in V , with stabiliser K ⊂ H.

Then think of the vector bundle G ×K V := (G × V )/K → G/K as

zero section G/K ⊔ R+ × G/H.

To find complete structures on G ×K V , the first step is to ask:

Which solutions on (0, ϵ)× G/H extend smoothly over G/K at r = 0?

Applying methods Eschenburg-Wang (2000)

■ Identify conditions on fi : [0, ϵ) → R+ to ensure smooth extension of
φ = f 21 ω1 + f 22 ω2 + f 23 ω3 + f1f2f3α from (0, ϵ)× SU(3)/T 2 to CP2:

□ f1 odd with f ′1 (0) = 1 (so that S2 fibres shrink to zero at right rate)

□ f2 and f3 even with f2(0) = f3(0) = b = 4
√

Vol(CP2) > 0

■ Then solve by power series.



Solutions to the soliton initial value problem

Proposition

For each λ ∈ R, there is a 2-parameter family φb,c of solutions to the
G2-soliton equation with dilation constant λ defined for small r that extend
smoothly to (a neighbourhood of zero section in) Λ2

−CP2.

Two scale-invariant parameters: λb2 and c
b .

⇝ up to scale there are 2-parameter families of local expanders and
shrinkers on Λ2

−CP2, and 1-parameter family of local steady solitons.

The parameter b is 4
√

Vol(CP2), while c controls the leading term in f2 − f3.

The subfamily φb,0 has f2 = f3, so
■ has extra Z2-symmetry (multiplication by −1 on fibres of Λ2

−CP2)
■ also defines solution near zero section of Λ2

−S
4.

⇝ up to scale there are 1-parameter families of local expanders and
shrinkers on Λ2

−S
4, and a unique local steady soliton.

The latter defines the static soliton on the Bryant-Salamon G2-manifold.

Hence there are no non-trivial Sp(2)-invariant steady solitons on Λ2
−S

4.



4. Forward-completeness
Scale decoupling and AC ends for steady solitons

The steady case λ = 0 has a very different character because the scale

g := 3
√
f1f2f3 =

6
√
vol(Σ)

essentially decouples from the homothety class(
f1
g
,
f2
g
,
f3
g

)
The latter evolves in a surface under a 2nd order autonomous ODE
⇔ 1st order ODE in 4 parameters

Torsion-free cone c1 = c2 = c3 =
1
2 is unique fixed point, and stable

⇒ Solutions with fi
g bounded are asymptotic to the torsion-free cone.

Eigenvalues of linearisation at fixed point give rate −1.

Since φb,0 is AC (static Bryant-Salamon), φb,c is AC too for c near 0.



Trichotomy for SU(3)-invariant steady ends

Proposition

Any initial condition for an SU(3)-invariant steady soliton on R× SU(3)/T 2

leads to one of the following behaviours forward in time (up to permuting fi )

(i) AC with rate −1 to torsion-free cone

(ii) Complete with exponential volume growth: f1 → 1
k , while f2 ∼ f3 ∼ ekr .

(iii) f1 = O(
√
r∗ − r), f2, f3 = O((r∗ − r)−1/4) near finite extinction time r∗.

We can decide the type of each smoothly closing local solution φb,c thanks
to spotting an explicit solution of type (ii) corresponding to φ√

2,3

f1 =
√
1 + e−r , f2 =

√
1 + er , f3 = 2 sinh r

2 , u = tanh r
2 .

Theorem D
For λ = 0, the local solution φb,c is (i) AC for c2

b2 < 9
2 .

(ii) Exponentially growing for c2

b2 = 9
2 .

(iii) Incomplete for c2

b2 > 9
2 .



Non-steady AC ends

The scale does not decouple for λ ̸= 0. On the contrary, scaling up any point
in the phase space makes λ terms more dominant, causing

Proposition

Any SU(3)-invariant non-steady soliton with all ratios fi
fj
bounded in forward

time is AC with rate −2.

Schematically, because λ has dimensions of length−2, the other factor S of
those terms has dimensions of length2, and satisfies an equation

dS

dt
= −λαS + β

where α and β have dimension of length, and α > 0 involves only fi (not
dfi
dr )

If β
α → m as r → ∞ then S → m

λ .

S converging despite having dimension length2 ⇝ AC rate is −2

This behaviour is stable for λ > 0
unstable for λ < 0



AC end solutions

Proposition

For each λ ̸= 0 and (c1, c2, c3) such that c21 + c22 + c23 = 6c1c2c3 there exists

■ a unique AC end solution if λ < 0

■ a 2-parameter family of AC end solutions if λ > 0

asymptotic to the corresponding closed cone (i.e. fi
r → ci ).

Letting u = r−2, the sign of λ becomes significant in an ODE analogous to

dx

du
= λ

x

u2
+ a

x

u
+ b with x → 0 as u → 0.

Setting a = b = 0, the general solution for λ ̸= 0 is exp
(−λ

u

)
.

But exp
(−λ

u

)
→ 0 as u → 0 only for λ > 0.

Haskins-Khan-Payne (2022) prove rigidity of AC ends for gradient
shrinking G2 solitons without cohomogeneity one assumption



AC shrinkers

Heuristic for λ < 0:

Invariant shrinkers on R+ × SU(3)/T 2 are flow lines in 5-dim phase space.
In 4-dimensional space of flow lines

■ 2-dimensional submanifold extends across zero section CP2 ⊂ Λ2
−CP2

■ 2-dimensional submanifold has AC behaviour

Expect isolated intersections ⇝ finitely many AC shrinkers on Λ2
−CP2.

Theorem A
For λ = −1, φ 3

2 ,0
is the explicit solution

f1 = r , f 22 = f 23 =
9

4
+

r2

4
, u =

r

3
+

4r

9 + r2
.

⇝ SU(3)× Z2-invariant shrinker on Λ2
−CP2 and Sp(2)-invariant shrinker

on Λ2
−S

4, AC with rate −2 to cone with c1 = 1, c2 = c3 =
1
2 .

Conjecture: Unique complete shrinker with this symmetry.



Trichotomy for Sp(2)-invariant shrinker ends

In the Sp(2)-invariant case, the AC end solutions are a 1-dimensional
submanifold of a 2-dimensional space of end solutions.

We can characterise the other possible end behaviours.

Theorem
Any initial condition for an Sp(2)-invariant shrinker on R× CP3 leads to
one of the following behaviours forward in time

(i) AC with rate −2 to a closed cone

(ii) Complete, exponential growth: f1 ∼ 4eµr and f 22 ∼ 1
µe

µr for µ =
√

−λ
18 .

(iii) f1 = O(
√
r∗ − r), f2 = O((r∗ − r)−1/4) near finite extinction time r∗.

The end in (ii) is modelled on an explicit shrinking soliton on
R× Iwasawa manifold, found by Fowdar (2022).

There is an essentially unique such end solution, appearing as a boundary
point for the curve of AC ends solutions.

The incomplete end behaviour (iii) is the only stable type.



Trichotomy for Sp(2)-invariant expander ends

In the expander case,

f1 =
3

λr
, f2 = A

√
r e

λr2

12

can be uniquely corrected to a forward-complete end solution for each A > 0.

This 1-parameter family of end solutions with doubly exponential growth
forms a “wall” between two different stable types of forward-evolution.

Theorem
Any initial condition for an Sp(2)-invariant expander on R× CP3 leads to
one of the following behaviours forward in time

(i) AC with rate −2 to a closed cone

(ii) Complete with doubly exponential growth: f1 ∼ 3
λr , while f2 ∼

√
re

λr2

12 .

(iii) f1 = O(
√
r∗ − r), f2 = O((r∗ − r)−1/4) near finite extinction time r∗.

All smoothly-closing Sp(2)-invariant solutions φb,0 on Λ2
−S

4 fall in case (i),
but we expect an analogous transition to be relevant for smoothly-closing
SU(3)-invariant expanders φb,c on Λ2

−CP2.



Sp(2)-invariant AC expanders on Λ2
−S

4

Theorem B

(i) Every Sp(2)-invariant local expander φb,0 defined near the zero section
of Λ2

−S
4 is AC.

(ii) Moreover L : b 7→ lim
r→∞

f1
f2
is a continuous bijection (0,∞) → (0, 1)

(so each closed Sp(2)-invariant cone fi = ci t such that c1 < c2 is the
asymptotic cone of unique complete expander).

Elementary techniques suffice for (i) and non-decreasingness of L, checking
that certain inequalities are preserved.

L strictly increasing builds on detailed understanding of AC ends with given
asymptotic cone.

b → 0 limit equivalent up to scale to keeping b fixed and letting λ → 0.

This limit is the Bryant-Salamon manifold (with c1 = c2 =
1
2 ), so L(b) → 1



5. Twistor bundles and rescaling limits of ODEs
Rescalings of the Sp(2)-invariant soliton ODE

Recall variables in Sp(2)-invariant soliton ODEs:

f2 ↔ scale of the base of Λ2
−S

4 → S4

f1 ↔ scale of S2 fibres when foliating by sphere bundles

Changing variable f2 to ϵf2 ⇔ rescaling “reference metric” on base of Λ2
−S

4

Taking ϵ → 0

⇝ ODE for solitons on Λ2
−R4 invariant under Isom(R4) = SO(4)⋉R4.

This limit ODE is easier to analyse due to additional scale invariance
and a conserved quantity.

The expander system has an explicit solution f1 =
3

λr
, f 22 = r e

λr2

6 ,

incomplete at r = 0 but helps understand transition in original system.

Limit of φb,0 as b → ∞ ⇝ AC solution in limit system ⇝ L(b) → 0

Taking ϵ =
√
−1

⇝ ODE for solitons on Λ2
−H

4 invariant under Isom(H4) = SO(4, 1).



Twistor space interpretation

For X 4 oriented, consider on the sphere bundle in Λ2
−X (twistor space)

■ volume form ω1 on fibres

■ tautological 2-form ω2

For X self-dual Einstein, the conditions for the Isom(X )-invariant

φ = dr ∧ (f 21 ω1 + f 22 ω2) + f1f
2
2 dω1 ∈ Ω3(Λ2

−X )

to be a soliton depend only on the scalar curvature κ. So

κ = 1⇝ Sp(2)-invariant ODE on Λ2
−S

4;

in general get the ϵ =
√
κ rescaling.

In particular, the ϵ = 0 limit can be interpreted as ODE for warped product
solitons on R× S2 × Y 4, with Y hyper-Kähler.

The steady case was considered by Ball (2022).



Rescalings of the SU(3)-invariant soliton ODE

In a similar way, rescaling f2 and f3 in the SU(3)-invariant soliton ODEs is
related to considering Λ2

−X for self-dual Kähler-Einstein X 4 for different κ.

(In particular, one could consider SU(2, 1)-invariant solitons of Λ2
−CH2.)

f2 = f3 ⇔ invariance under under multiplying fibres of Λ2
−X by −1,

recovering ODE from the case not requiring Kähler.

The limit of rescalings of the explicit exponentially growing solution
f1 =

√
1 + e−r , f2 =

√
1 + er , f3 = 2 sinh r

2 give an explicit solution

f1 = 1, f2 = f3 = er

on R>0 × S2 × Y for Y hyperKähler

⇝ complete steady G2 soliton that is a metric product of S2 and dr2 + ergY



Another rescaling of Sp(2)-invariant soliton ODE

Changing variables f1 → ϵ2f1, f2 → ϵf2 and taking ϵ → 0

⇔ rescaling both fibres and base of S2-fibration CP3 → S4 of link of Λ2
−S

4

⇝ soliton ODE on R×C×C2, invariant under complex Heisenberg group H3.

Same as soliton ODE for certain G2-structures on R × suitable T 2-bundle
over hyper-Kähler Y 4.

This system can be reduced to one in two variables.

Fowdar’s explicit shrinker corresponds to a fixed point.

We find another complete shrinker with one AC end and one cusp end
modelled on Fowdar’s.

The proof of the trichotomy for shrinkers relies on analysing this limit
system.




