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Introduction

Context: Riemannian 7-manifolds with holonomy group G2,
a special kind of Ricci-flat manifolds

Bryant’s Laplacian flow: a G2 cousin of Ricci flow

G2 solitons: self-similar solutions to Laplacian flow.

We found asymptotically conical G2 solitons with cohomogeneity one,
SU(3)-invariant ones on Λ2

−CP2 and Sp(2)-invariant ones on Λ2
−S

4.

Shrinkers provide models for formation of singularities, and tend to be rare.

Theorem
There exists a shrinking G2-soliton on each of Λ2

−CP2 and Λ2
−S

4.

Expanders provide models for how the flow can smooth out a singularity.

Theorem
There exist families of expanding G2-solitons on both Λ2

−CP2 and Λ2
−S

4.

These can be viewed as deformations of Bryant-Salamon AC G2-manifolds.



Introduction

Theorem
There is a 1-parameter family of steady G2-solitons on Λ2

−CP2.

This is in contrast to Ricci flow, where all known complete examples of
steady solitons have sub-Euclidean volume growth.

Moreover, a steady G2-soliton with exponential volume growth appears as
one limit of the family. (The other limit is the static soliton from the
Bryant-Salamon AC G2-manifold.)
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1. Holonomy G2

The group G2

G2 := Aut O, O = octonions, normed division algebra of real dimension 8.

G2 acts on ImO ∼= R7, preserving metric, orientation, cross product

a× b := Im(ab), and

φ0(a, b, c) := ⟨a× b, c⟩.

In terms of basis e1, . . . , e7 ∈ (R7)∗

φ0 = e123 + e145 + e167 + e246 − e257 − e347 − e356 ∈ Λ3(R7)∗.

Peculiar algebra facts:

■ G2 is not just contained in stabiliser of φ0 in GL(7,R), but equality holds.

■ The GL(7,R)-orbit of φ0 is open in Λ3(R7)∗.



Holonomy and G2-structures

For a Riemannian manifold M (and base point p)

Hol(M) = {parallel transport around loops γ based at p} ⊆ O(TpM).

Parallel tensor fields on Riemannian manifold M ↔ invariants of Hol(M).

G2 is an exceptional case in Berger’s list of Riemannian holonomy groups.

A metric with holonomy G2 is always Ricci-flat.

A 3-form φ ∈ Ω3(M7) such that (TxM, φ) ∼= (R7, φ0) for all x ∈ M defines
a G2-structure. (This is an open condition on φ)

Because G2 ⊂ SO(7), this induces a metric and orientation.

Hol(M) ⊆ G2 ⇔ metric induced by some G2-structure φ such that ∇φ = 0.
Then call φ torsion-free. This is equivalent to the first-order non-linear PDE

dφ = d∗φ = 0,

elliptic transverse to diffeomorphisms.



Examples of holonomy G2 metrics

Local examples:

■ Bryant (1985) by understanding local generality of solutions

Complete examples:

■ Bryant-Salamon (1987) AC examples on Λ2
−CP2, Λ2

−S
4 and S3×R4.

Examples on closed manifolds:

■ Joyce (1994) Resolutions of flat orbifolds

■ Kovalev (2003), Corti-Haskins-N-Pacini (2014) Twisted connected sums

All known constructions of examples on closed manifolds solve the elliptic
PDE by gluing together pieces with dimensional reduction.

Can sometimes determine topology completely, but little clue as to how to
characterise which differentiable manifolds admit holonomy G2 metrics.
Can flow approach do any better?



2. G2 solitons
Bryant’s Laplacian flow

Solve dφt

dt
= ∆φtφt

with initial condition φ0 satisfying dφ0 = 0. (Then dφt = 0 for all t.)

■ Stationary points are exactly torsion-free G2-structures.

■ Gradient flow for vol(φ) restricted to cohomology class of φ0.

■ Induced metric evolves by

dgt
dt

= −2Ric(gt) + terms quadratic in torsion of φt

Theorem (Bryant-Xu 2011, Lotay-Wei 2017)

Short-time existence and uniqueness.
Torsion-free G2-structures are stable.

What is long term behaviour?? Expect singularities to form in finite time.
By analogy with other flows, expect solitons as models.



G2 soliton equations

G2-structure φ, vector field X , dilation constant λ ∈ R satisfying{
dφ = 0,

∆φφ = λφ+ LXφ.

⇔ self-similar solution of Laplacian flow

φt = k(t)3f ∗φ,
df

dt
= k(t)−2X , k(t) =

3 + 2λt

3

λ > 0: expanders (immortal solutions)
λ = 0: steady solitons (eternal solutions)
λ < 0: shrinkers (ancient solutions)

■ Non-steady soliton ⇒ φ exact

■ Solitons on a compact manifold are stationary or expanders

■ Scaling behaviour: (φ,X ) is a λ-soliton ⇔ (k3φ, k−1X ) is a k−2λ-soliton.



Asymptotically conical behaviour

A positive 3-form φ on M is asymptotically conical with rate ν if there is a
compact set K , diffeomorphism M \ K → R+ × Σ6 and

φC = r2dr ∧ ω + r3α for ω ∈ Ω2(Σ6), α ∈ Ω3(Σ6)

such that
∥∇k(φ− φC )∥ = O(rν−k).

The Bryant-Salamon G2-metrics on S3 × R4, Λ2
−CP2 and Λ2

−S
4 are

asymptotically conical with rates −4, −3 and −3 respectively.

If the conical G2-structure φC is torsion-free, then setting X = −λ
3 r

∂
∂r

defines a “Gaussian” soliton with dilation constant λ.

If merely dφC = 0, then (φC ,−λ
3 r

∂
∂r ) is not a soliton, but does solve the

equations to first order, so still a sensible asymptotic model.



Cohomogeneity 1 action

Suppose M7 has an action by G such that generic orbit Σ has dimension 6.

Then there are at most two “special” orbits, at ends of Σ × open interval.

Unique special orbit X ⇒ M is a total space of a vector bundle over X .

Looking for G -invariant solutions to PDE reduces to an ODE.

Bryant-Salamon AC G2 manifolds

■ M = S3 × R4 with SU(2)3 action, Σ = S3 × S3.

■ M = Λ2
−CP2 with SU(3) action, Σ = SU(3)/T 2.

■ M = Λ2
−S

4 with Sp(2) action, Σ = CP3.

Only the last two have any chance of deforming to expanders, since
non-steady solitons must be exact.

Aside: In the first two, Σ has Z3 of automorphisms that do not extend to M
⇝ 3 different ways to glue in special orbit to resolve conical singularity

(Atiyah-Witten (2001) “G2 conifold transition”)



3. Main results
Expanders on Λ2

−S
4

{ Closed Sp(2)-invariant conical G2-structures on R+ × CP3 } ∼= R,
contains a unique torsion-free cone (limit of Bryant-Salamon manifold)

Theorem
Up to scale, Λ2

−S
4 admits precisely a 1-parameter family of Sp(2)-invariant

expanding G2-solitons that are AC with rate −2.

Their asymptotic limits biject with the closed cones “on one side” of the
torsion-free one.

Keeping the scale fixed, the family can be parametrised by λ > 0.

Limit as λ → 0 is the Bryant-Salamon G2-manifold, considered as a static
G2-soliton.



Expanders on Λ2
−CP2

{ Closed SU(3)-invariant conical G2-structures on R+ × SU(3)/T 2 } ∼= R2,
contains a unique torsion-free cone (limit of Bryant-Salamon manifold)

Among SU(3)-invariant G2-structures on Λ2
−CP2, there is a subset that is in

addition anti-invariant under multiplying fibres by −1.

Soliton equations for such G2-structures reduce to the Sp(2)-invariant ones
⇝ 1-parameter family of SU(3)×Z2-symmetric expanders on Λ2

−CP2 where
we understand the asymptotic limit cones well.

Stability of AC expander ends ⇝

Theorem
Up to scale, Λ2

−CP2 admits a 2-parameter family of SU(3)-invariant
expanding G2-solitons that are AC with rate −2.

but less clear picture of which closed cones appear as asymptotic limits.



Explicit shrinkers

Spotting an explicit polynomial solution to the ODE (same in both cases) ⇝

Theorem
There is an Sp(2)-invariant AC shrinking G2-soliton on Λ2

−S
4.

There is an SU(3)× Z2-symmetric AC shrinking G2-soliton on Λ2
−CP2.

Both have rate −2.

Conjecture: This is unique.

The asymptotic cone of the shrinker on Λ2
−S

4 does not match the
asymptotic cone of any Sp(2)-invariant expander.

However, numerics suggest that the asymptotic cone of the shrinker on
Λ2
−CP2 does match the asymptotic cone of some SU(3)-invariant expanders.

⇝ potential model for “flowing through” the singularity in a way that cuts
out a CP2 and glues it back in a topologically different way, realising a
G2 conifold transition.



Steady G2-solitons

Theorem

■ There are no complete Sp(2)-invariant steady G2 solitons on Λ2
−S

4

(other than the static one from Bryant-Salamon AC G2-manifold)

■ There is precisely a 1-parameter family of SU(3)-invariant AC steady G2

solitons on Λ2
−CP2, all asymptotic with rate −1 to the unique

SU(3)-invariant torsion-free cone.

One limit of the family is the static soliton on Bryant-Salamon.

Other limit is a complete steady G2 soliton with exponential volume growth:

The cross-section SU(3)/T 2 is an S2-bundle over CP2, in two other ways
then the sphere bundle in Λ2

−CP2 we started with.
Asymptotically, the fibres have constant size, and the base is the sinh cone
over CP2, i.e. the negative Einstein metric

dr2 + (sinh r)2gCP2 on R+ × CP2.



4. ODE for invariant solitons
Invariant G2-structures

SU(3)-invariant G2-structures φ on R+ × SU(3)/T 2 such that

■ ∥ ∂
∂r ∥ = 1, and

■ restriction to each slice SU(3)/T 2 is closed

are parametrised by triples of functions f1, f2, f3 : R+ → R+.

φ = f 21 ω1 + f 22 ω2 + f 23 ω3 + f1f2f3Ω

for ωi ∈ Ω2(SU(3)/T 2) and Ω ∈ Ω3(SU(3)/T 2) SU(3)-invariant.

fi = scale of S2 fibres of one of three possible fibrations SU(3)/T 2 → CP2

Vol(SU(3)/T 2) proportional to (f1f2f3)
2

Ones with f2 = f3 have extra Z2 symmetry, and also define analogous
Sp(2)-invariant G2-structures on R+ × CP3.
(Then f1 = scale of S2 fibres of CP3 → S4, and f2 = f3 a scale of base.)



Closure and cones

dφ = 0 ⇔ 2
d

dr
(f1f2f3) = f 21 + f 22 + f 23

Then the torsion of φ is captured by

d∗φ = τ1ω1 + τ2ω2 + τ3ω3

for

τi = (f 2i )
′ +

f 2i
f1f2f3

(
f 2i − f 2j − f 2k

)
,

and satisfies the algebraic constraint

“d∗φ has type 14” ⇔ φ ∧ d∗φ = 0 ⇔ τ1
f 21

+
τ2
f 22

+
τ3
f 23

= 0.

Cones ↔ fi = ci r linear

Then dφ = 0 ⇔ 6c1c2c3 = c21 + c22 + c23 is a scale-normalisation:
for homothety class on SU(3)/T 2, there is a unique choice of “cone angle”
to make a closed cone.



Soliton ODE

The soliton condition for φ = f 21 ω1 + f 22 ω2 + f 23 ω3 + f1f2f3Ω and X = u ∂
∂r is

naively a 2nd-order ODE system for (f1,f2,f3,u) (with some constraints).

Useful to rewrite it as a 1st-order ODE in (f1, f2, f3, τ1, τ2, τ3);
system in 5 variables after taking into account type 14 constraint.

If we impose f2 = f3 we are left with a system in 3 variables (f1, f2, τ2):

Closure ⇔ d

dr
(f1f

2
2 ) = f 21 + 2f 22

Definition of torsion ⇔ d

dr
log

f1
f2

=
f 22 − f 21 − 3

2 f1τ2

f1f 22

Soliton condition ⇔ dτ2
dr

=
4(λf1f

2
2 − 3τ2)(f

2
2 − f 21 − 3

2 f1τ2)

3f1(f 21 + 2f 22 )

Qualitative features
■ Homogeneous if we consider r , f1, f2, τ2 to have weight 1, λ weight −2,

but inhomogeneous if we consider λ ̸= 0 unweighted.
■ S := f 22 − f 21 − 3

2 f1τ2 plays a distinguished role (and ≡ 0 on a closed cone)



5. Initial value problem and infinite lifetime
General strategy

Complete solutions to ODE for G -invariant structures on R+ × G/H?

Suppose that H ⊂ G , that H acts on vector space V , and that
the action is transitive on unit sphere in V , with stabiliser K ⊂ H.

Then think of the vector bundle G ×K V := (G × V )/K → G/K as

zero section G/K ⊔ R+ × G/H.

To find AC structures on G ×K V , can consider

(1) Solutions on (0, ϵ)× G/H that extend smoothly over G/K at r = 0?

(2) Solutions on (R,∞)× G/H asymptotic to prescribed cone?

(3) Do they fit together?

Alternatively “Solve (1), evolve forward and see what happens”

Picture for (1) is clearest, applying methods of Eschenburg-Wang (2000).



Initial value problem on Λ2
−CP2

■ Identify conditions on fi : [0, ϵ) → R+ ensuring smooth extension of
φ = f 21 ω1 + f 22 ω2 + f 23 ω3 + f1f2f3Ω from (0, ϵ)× SU(3)/T 2 to CP2.
□ f1 odd with f ′1 (0) = 1 (so that S2 fibres shrink to zero at right rate)
□ f2 and f3 even with f2(0) = f3(0) = b = 4

√
Vol(CP2) > 0

■ Solve resulting singular initial value problem by power series in r .

Proposition

For each λ ∈ R, there is a 2-parameter family φb,c of solutions to the
G2-soliton equation with dilation constant λ defined for small r that extend
smoothly to (a neighbourhood of zero section in) Λ2

−CP2.

Two scale-invariant parameters: λb2 and c
b .

⇝ up to scale there are 2-parameter families of local expanders and
shrinkers on Λ2

−CP2, and 1-parameter family of local steady solitons.

The parameter c controls the leading term in f2 − f3.

The subfamily φb,0 has f2 = f3, so has extra Z2-symmetry.



Complete solutions on Λ2
−S

4

The subfamily φb,0 also defines solution near zero section of Λ2
−S

4.

⇝ up to scale there are 1-parameter families of local expanders and
shrinkers on Λ2S4, and a unique local steady soliton.

The latter defines the static soliton on the Bryant-Salamon G2-manifold.

Hence there are no non-trivial Sp(2)-invariant steady solitons on Λ2
−S

4.

Theorem
For λ = −1, φ 3

2 ,0
is the explicit solution

f1 = r , f 22 = f 23 =
9

4
+

r2

4
, u =

r

3
+

4r

9 + r2
.

AC with rate −2 to cone with c1 = 1, c2 =
1
2 .

Theorem
For λ > 0, every local solution φb,0 extends to an AC solution on Λ2

−S
4.

Moreover, b 7→ lim
r→∞

f1
f2
is a continuous bijection (0,∞) → (1,∞).



Long-time behaviour on R+ × CP3

d

dr
(f1f

2
2 ) = f 21 + 2f 22 (1)

d

dr
log

f1
f2

=
S

f1f 22
(2)

dτ2
dr

=
4(λf1f

2
2 − 3τ2)S

3f1(f 21 + 2f 22 )
(3)

Solutions are forward-complete (infinite lifetime) unless log f1
f2
unbounded.

If f1
f2
converges then

■ (1) ⇒ fi
r → ci for solution of closed cone equation c21 + 2c22 = 6c1c

2
2

■ (2) ⇒ lim inf S
r2 = 0

In fact for λ ̸= 0, factor of S in only λ term in (3) causes

log
f1
f2

bounded ⇒ S converges ⇒ AC with rate − 2



6. Stability and rigidity for the end problem
Decoupling

While the initial value problem (1) was essentially the same regardless of λ,
the end problem (2) is very different.

First, the steady case λ = 0 has a very different character because the scale

g := 3
√
f1f2f3 =

6
√
vol(Σ)

essentially decouples from the homothety class(
f1
g
,
f2
g
,
f3
g

)
The latter evolves in a surface under a 2nd order autonomous ODE
⇔ 1st order ODE in 4 parameters

(Reduces to 2 parameters thanks to conserved quantities τi − uf 2i .)

Torsion-free cone c1 = c2 = c3 =
1
2 is unique fixed point

⇒ Solutions with fi
g bounded are asymptotic to the torsion-free cone.

Eigenvalues of linearisation at fixed point give rate −1 (and S = O(r)).



Stability of steady end

The fixed point corresponding to the torsion-free cone c1 = c2 = c3 is stable
⇒ the torsion-free cone is stable considered as a steady soliton end
⇒ for c in an open neighbourhood of 0, the local solution φb,c extends to

an AC solution asymptotic to the torsion-free cone

Actually get more decisive results thanks to spotting an explicit solution
with exponential volume growth:

f1 = 2 sinh r
2 , f2 =

√
1 + er , f3 =

√
1 + e−r , u = tanh r

2 ,

which corresponds to the local solution φ√
2,3.

Theorem
For λ = 0, the local solution φb,c

■ extends to an AC solution for c2

b2 < 9
2 .

■ is incomplete for c2

b2 > 9
2 .



Stability of AC expander ends

Given λ > 0 and any SU(3)-invariant closed cone (c1, c2, c3)

- There is a 2-parameter family of solutions defined for large r asymptotic
to the given cone, with rate −2

- Difference between two solutions is of order exp(−λ
6 r

2) ∗ polynomial.

Flow lines of this 4-parameter family of solutions fill open subset of
5-dimensional phase space, so AC expander ends are stable.

Hence the set U ⊆ R+ ×R of parameters (b, c) such that the local solutions
φb,c extends to an AC expander is open.

Results from Sp(2)-invariant case show that U contains R+ × {0}.

Thus (b, c) in a neighbourhood U of R+ × {0} yield SU(3)-invariant AC
expanders on Λ2

−CP2, but we don’t know how big U is or what the
asymptotic cones are.



Rigidity of AC shrinker ends

For λ < 0, for each closed cone (c1, c2, c3) there is a unique solution defined
for large r asymptotic to the given cone; shrinker ends are rigid.

For AC Ricci solitons, Kotschwar-Wang (2015) prove an analogous rigidity
statement without any homogeneity assumption.

Haskins-Khan-Payne (2022) adapt this to Laplacian flow.

In the special case of cohomogeneity one G2 solitons, the sign of λ is
significant in an ODE analogous to

dx

du
= λ

x

u3
+

x

2u
+ 1 with x → 0 as u → 0.

λ < 0: Unique smooth solution x(u) =
√
u exp

(
−λ

2u2

)∫ u

0

exp

(
λ

2s2

)
ds√
s

λ = 0: General solution x(u) = 2u + C
√
u

λ > 0: Any two smooth solutions differ by multiple of
√
u exp

(
− λ

2u2

)



Consequence of rigidity for AC shrinker ends

Heuristic for λ < 0:

Invariant shrinkers on R+ × SU(3)/T 2 are flow lines in 5-dim phase space.
In 4-dimensional space of flow lines

■ 2-dimensional submanifold extends across zero section CP2 ⊂ Λ2
−CP2

■ 2-dimensional submanifold has AC behaviour

Expect isolated intersections ⇝ finitely many AC shrinkers on Λ2
−CP2.

Similarly, restricting attention to solutions with f2 = f3:

In 2-dimensional space of flow lines

■ 1-dimensional submanifold extends over special orbit

■ 1-dimensional submanifold has AC behaviour.

Expect isolated intersections ⇝ finitely many AC shrinkers on Λ2
−S

4.

Conjecture: The explicit shrinker is unique.


