Disconnecting the G_{2} moduli space

Johannes Nordström

27 June 2017

Joint work in progress with Diarmuid Crowley and Sebastian Goette

C-N, New invariants of G_{2}-structures, Geom. Topol. 19 (2015) C-G-N, An analytic invariant of G_{2}-manifolds, arXiv:1505.02734

These slides available at http://people.bath.ac.uk/jlpn20/disconnect.pdf

The G_{2} moduli space

Let M be a smooth closed 7-manifold admitting metrics with holonomy G_{2}. The moduli space

$$
\mathcal{M}:=\left\{\text { Holonomy } G_{2} \text { metrics on } M\right\} / \operatorname{Diff}(M)
$$

is an orbifold, locally homeomorphic to finite quotients of $H_{d R}^{3}(M)$.
So far little is known about the global properties of \mathcal{M}.
Main results:
Exhibit examples of closed G_{2}-manifolds with \mathcal{M} disconnected, both

- by studying homotopies of G_{2}-structures, and
- where the G_{2}-structures are indistinguishable using homotopy theory

Outline:

1. Background and examples
2. Invariants of G_{2}-structures
3. Constructions
4. Computation

1. Background and examples The group G_{2}

$G_{2}:=$ Aut $\mathbb{O}, \quad \mathbb{O}=$ octonions, normed division algebra of real dimension 8. G_{2} acts on $\operatorname{Im} \mathbb{O} \cong \mathbb{R}^{7}$, preserving metric, orientation, cross product

$$
\begin{aligned}
a \times b & :=\operatorname{Im}(a b), \text { and } \\
\varphi_{0}(a, b, c) & :=\langle a \times b, c\rangle
\end{aligned}
$$

In terms of basis $e^{1}, \ldots, e^{7} \in\left(\mathbb{R}^{7}\right)^{*}$

$$
\varphi_{0}=e^{123}+e^{145}+e^{167}+e^{246}-e^{257}-e^{347}-e^{356} \in \Lambda^{3}\left(\mathbb{R}^{7}\right)^{*}
$$

Peculiar algebra facts:

- G_{2} is not just contained in stabiliser of φ_{0} in $G L(7, \mathbb{R})$, but equality holds.
- The $G L(7, \mathbb{R})$-orbit of φ_{0} is open in $\Lambda^{3}\left(\mathbb{R}^{7}\right)^{*}$.

G_{2}-structures and holonomy

G_{2} is an exceptional case in Berger's list of Riemannian holonomy groups.
A metric with holonomy G_{2} is always Ricci-flat.
Parallel tensor fields on Riemannian manifold $M \leftrightarrow$ invariants of $\mathrm{Hol}(M)$.
A 3-form $\varphi \in \Omega^{3}\left(M^{7}\right)$ such that $\left(T_{x} M, \varphi\right) \cong\left(\mathbb{R}^{7}, \varphi_{0}\right)$ for all $x \in M$ defines a G_{2}-structure. (This is an open condition on φ)
Because $G_{2} \subset S O(7)$, this induces a metric and orientation.
$\operatorname{Hol}(M) \subseteq G_{2} \Leftrightarrow$ metric induced by some G_{2}-structure φ such that $\nabla \varphi=0$. Then call φ torsion-free. This is equivalent to the first-order non-linear PDE

$$
d \varphi=d^{*} \varphi=0
$$

Bryant (1985): Local examples
Bryant-Salamon (1987): Complete examples
Joyce (1994): Examples on closed manifolds

Two perspectives on G_{2}-structures

The spin representation Δ of $\operatorname{Spin}(7)$ is real of rank 8. $\operatorname{Spin}(7)$ acts transitively on $S^{7} \subset \Delta$ with stabiliser G_{2}.
$G_{2} \quad=\quad \begin{gathered}\text { stabiliser } \operatorname{in~} G L(7, \mathbb{R}) \\ \quad \text { of } \varphi_{0} \in \Lambda^{3}\left(\mathbb{R}^{7}\right)^{*}\end{gathered}$
G_{2}-structure on $M^{7} \quad \leftrightarrow \quad$ positive $\varphi \in \Omega^{3}(M) \quad \leftrightarrow \quad+$ spin structure + unit spinor field s

Holonomy $\subseteq G_{2} \quad \Leftrightarrow$

$$
d \varphi=d^{*} \varphi=0
$$

\Leftrightarrow

$$
\nabla s=0
$$

Homotopies of G_{2}-structures

Let M be a closed 7-dimensional spin manifold.
Given a metric g, the spinor bundle $S M$ is a real vector bundle of rank 8.
Two G_{2}-structures inducing the same metric and spin structure are homotopic if the corresponding unit spinors can be connected by a path of non-vanishing spinors.
All metrics on M are homotopic, so if we fix the spin structure

$$
\left\{\begin{array}{c}
\text { Homotopy classes of } \\
G_{2} \text {-structures on } M
\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}
\text { Homotopy classes of non- } \\
\text { vanishing sections of } S M
\end{array}\right\} \leftrightarrow \mathbb{Z}
$$

by counting (with signs) the zeros of an interpolating section of a rank 8 bundle on $M \times[0,1]$.
$\operatorname{Diff}(M)$ can act by non-trivial translations.
Each component of the G_{2} moduli space \mathcal{M} maps to a fixed class of G_{2}-structures modulo homotopies and diffeomorphisms.

Classification of 2-connected manifolds

Let M be a closed smooth 7-manifold with $\pi_{1}(M)=\pi_{2}(M)=0$ and $H^{4}(M)$ torsion-free. Remaining algebraic topology captured by $b_{3}(M)$.
Let $d(M):=$ greatest integer dividing $\frac{1}{2} p_{1}(M) \in H^{4}(M)$ $\left(d(M):=0\right.$ if $\left.p_{1}(M)=0\right)$.

Theorem (Wilkens, 1972)
Such M are classified up to homeomorphism by $\left(b_{3}(M), d(M)\right) \in \mathbb{N} \times 2 \mathbb{N}$. The number of inequivalent smooth structures on the topological manifold underlying M is

$$
\operatorname{GCD}\left(28, \text { Numerator }\left(\frac{d(M)}{4}\right)\right) .
$$

Theorem (C-N)

The number of G_{2}-structures up to homotopy+diffeomorphism on such M is

$$
24 \text { Numerator }\left(\frac{d(M)}{112}\right) \text {. }
$$

A 2-connected example

Example (C-G-N)

Let M be the unique smooth closed 2-connected 7-manifold with $H^{4}(M)=\mathbb{Z}^{97}$ and $d=2$.
There are G_{2} metrics g_{1}, g_{2}, g_{3} on M such that
A the G_{2}-structures φ_{1}, φ_{2} associated to g_{1} and g_{2} are not equivalent under homotopies and diffeomorphisms; thus g_{1} and g_{2} are in different components of the G_{2} moduli space \mathcal{M}
B the G_{2}-structures φ_{1} and φ_{3} are homotopic, but nevertheless g_{1} and g_{3} lie in different components of \mathcal{M}.
So for this manifold, the moduli space \mathcal{M} has at least 3 connected components.

Ingredients

Invariants
A The G_{2}-structures are distinguished by a homotopy and diffeomorphism invariant $\nu(\varphi) \in \mathbb{Z} / 48 \mathbb{Z}$.
B An analytic refinement $\widehat{\nu}(\varphi) \in \mathbb{Z}$ of $\nu(\varphi)$ is invariant under diffeomorphisms and under deformations through torsion-free G_{2}-structures (but not under arbitrary homotopies), and can distinguish components of \mathcal{M} even when the G_{2}-structures are homotopic.

Construction
The "twisted connected sum construction" of Kovalev and Corti-Haskins-N-Pacini produces large numbers of 2-connected G_{2}-manifolds for which the invariants can be evaluated.

A more complicated version produces some 2-connected examples where $\widehat{\nu}$ takes a range of values.

2. Invariants of G_{2}-structures The homotopy invariant

Let X closed spin 8-manifold, and $n(X)$ the signed count of zeros of a transverse positive spinor field (\Leftrightarrow Euler class of rank 8 bundle $S^{+} X$). Atiyah-Singer index theorem $+\operatorname{Spin}(8)$ characteristic class computation

$$
\begin{equation*}
\rightsquigarrow \quad-48 \text { ind } D_{X}^{+}=\chi(X)-3 \sigma(X)-2 n(X) . \tag{*}
\end{equation*}
$$

Let W be a compact spin 8 -manifold with boundary M, s a transverse positive spinor field on W, and φ the G_{2}-structure on M induced by $s_{\mid} M$. Let $n(W, \varphi)$ be the signed count of zeros of $s .(*)$ implies that

$$
\nu(\varphi):=\chi(W)-3 \sigma(W)-2 n(W, \varphi) \bmod 48
$$

is independent of choice of coboundary W.
On a fixed M, ν takes the 24 values allowed by $\nu(\varphi)=\sum_{i=0}^{3} b_{i}(M) \bmod 2$. If M is 2 -connected with $H^{4}(M)$ torsion-free and d a divisor of 112 , then ν distinguishes all classes.

Analytic invariant of G_{2}-structures

Given a metric on a closed spin M^{7}, define
$D=$ Dirac operator
$B: \Omega^{e v} \rightarrow \Omega^{e v}=$ odd signature operator, $(-1)^{k}(* d-d *)$ on $\Omega^{2 k}$
$h(D)=\operatorname{dim} \operatorname{ker}(D) \in \mathbb{Z}$
$\eta(D):=\eta(D, 0) \in \mathbb{R}$, defined by analytic continuation from

$$
\eta(D, s):=\sum_{\lambda \in \operatorname{Spec} D \backslash\{0\}}(\operatorname{sign} \lambda)|\lambda|^{-s} \text { for } \operatorname{Re} s \gg 0 .
$$

For a G_{2}-structure φ on M, define $M Q(\varphi) \in \mathbb{R}$ in terms of Mathai-Quillen current.

Definition

$$
\begin{gathered}
\widehat{\nu}_{0}(\varphi):=-24 \eta(D)+3 \eta(B)+2 M Q(\varphi) \in \mathbb{R} \\
\widehat{\nu}(\varphi):=\widehat{\nu}_{0}(\varphi)-24 h(D) \in \mathbb{R}
\end{gathered}
$$

Analytic invariant as refinement

$$
\widehat{\nu}_{0}(\varphi):=-24 \eta(D)+3 \eta(B)+2 M Q(\varphi) \in \mathbb{R}
$$

Reversing orientation changes the sign of $\widehat{\nu}_{0}$.
All terms are continuous in φ, except that the first jumps by 24 when an eigenvalue of D changes between zero and non-zero.

$$
\widehat{\nu}(\varphi):=\widehat{\nu}_{0}(\varphi)-24 h(D) \in \mathbb{R}
$$

$\widehat{\nu}$ is continuous in φ except for jumps by 48.
Theorem (C-G-N)
Let φ be G_{2}-structure on a closed M^{7}. Then

$$
\nu(\varphi)=\widehat{\nu}(\varphi) \quad \bmod 48
$$

(In particular $\widehat{\nu}, \widehat{\nu}_{0} \in \mathbb{Z}$.)

Analytic invariant as refinement

$$
\begin{aligned}
\widehat{\nu}(\varphi) & :=-24(\eta+h)(D)+3 \eta(B)+2 M Q(\varphi) \in \mathbb{R} \\
\nu(\varphi) & :=\chi(W)-3 \sigma(W)-2 n(W, \varphi) \in \mathbb{Z} / 48 \mathbb{Z} .
\end{aligned}
$$

Proof.

For $\partial W=M$ with metric that is product on collar of M

$$
\begin{aligned}
\sigma(W) & =\int_{W} L(\nabla)-\eta(B) \\
\text { ind } D_{W}^{+} & =\int_{W} \widehat{A}(\nabla)-\frac{1}{2}(\eta+h)(D) \\
n(W, \varphi) & =\int_{W} e_{+}(\nabla)-M Q(\varphi)
\end{aligned}
$$

Chern-Weil term boundary correction

Linear combination of Chern-Weil terms gives $\int_{W} e(\nabla)=\chi(W)$ (essentially by characteristic class formula $(*)$ used to show that ν is well-defined), so

$$
\widehat{\nu}(\varphi)=\chi(W)-3 \sigma(W)-2 n(W, \varphi)+48 \text { ind } D_{W}^{+} \in \mathbb{Z} .
$$

Analytic invariant of torsion-free G_{2}-structures

$$
\begin{gathered}
\widehat{\nu}_{0}(\varphi):=-24 \eta(D)+3 \eta(B)+2 M Q(\varphi) \in \mathbb{Z} \\
\widehat{\nu}(\varphi):=\widehat{\nu}_{0}(\varphi)-24 h(D) \in \mathbb{Z}
\end{gathered}
$$

For torsion-free φ

- $M Q(\varphi)=0$
- $h(D)=1+b_{1}(M)$ (so 1 when $\mathrm{Hol}=G_{2}$)
- $\eta(D)$ does not jump

Therefore $\widehat{\nu}_{0}$ and $\widehat{\nu}$ are constant on connected components of \mathcal{M}, and can distinguish components even when the associated G_{2}-structures are homotopic.

Even if we are only interested in ν, it may be easier to evaluate the intrinsic formula for $\widehat{\nu}$ than to find a spin coboundary to compute ν.

Similarities with e.g. the use of Donnelly's analytic refinement of the Eells-Kuiper invariant by Kreck-Stolz and Goette-Kitchloo-Shankar.

3. Constructions G_{2} and $S U(3)$

The action of $S U(3)$ on $\mathbb{C}^{3} \cong \mathbb{R}^{6}$ preserves

$$
\begin{aligned}
& \omega_{0}:=\frac{i}{2}\left(d z^{1} \wedge d \bar{z}^{1}+d z^{2} \wedge d \bar{z}^{2}+d z^{3} \wedge d \bar{z}^{3}\right) \in \Lambda^{2}\left(\mathbb{R}^{6}\right)^{*} \\
& \Omega_{0}:=d z^{1} \wedge d z^{2} \wedge d z^{3} \in \Lambda^{3}\left(\mathbb{R}^{6}\right)^{*} \otimes \mathbb{C}
\end{aligned}
$$

On $\mathbb{R}^{7}=\mathbb{R} \oplus \mathbb{C}^{3}$,
$e^{1} \wedge \omega_{0}+\operatorname{Re} \Omega_{0} \cong e^{1} \wedge\left(e^{23}+e^{45}+e^{67}\right)+e^{246}-e^{257}-e^{347}-e^{356}=\varphi_{0}$,
the 3-form preserved by G_{2}.
The stabiliser in G_{2} of a non-zero vector is $S U(3)$.
If X is a Calabi-Yau 3-fold (6 -manifold with $\operatorname{Hol}(X)=S U(3)$) then $\operatorname{Hol}\left(S^{1} \times X\right)=S U(3) \subset G_{2}$, so $S^{1} \times X$ has a torsion-free G_{2}-structure.
But we are more interested in manifolds with full holonomy G_{2}.
Proposition (Joyce)
If M^{7} is closed and $\mathrm{Hol}(M) \subseteq G_{2}$ then

$$
\mathrm{Hol}(M)=G_{2} \Leftrightarrow \pi_{1}(M) \text { finite }
$$

Twisted connected sums

Donaldson, Kovalev, Corti-Haskins-N-Pacini

- Construct simply-connected, complete Calabi-Yau 3-folds V, with "asymptotically cylindrical end" $\mathbb{R} \times S^{1} \times K 3$.
- $\operatorname{Hol}\left(S^{1} \times V\right)=\mathrm{SU}(3) \subset G_{2}$, so $S^{1} \times V$ has torsion-free G_{2}-structure
- Find pairs of such $V_{ \pm}$, with a diffeomorphism F of the cylindrical ends of $S^{1} \times V_{+}$and $S^{1} \times V_{-}$ensuring
\square Gluing G_{2}-structures on the halves with "neck length" $T \gg 0$ defines φ_{T} on M with $\nabla \varphi_{T}$ exponentially small in T.
$\square M=S^{1} \times V_{+} \cup_{F} S^{1} \times V_{-}$is simply-connected (F is "twisted")

- Perturb to φ_{T} so that $d \varphi_{T}=d^{*} \varphi_{T}=0$. Then $\operatorname{Hol}(M)=G_{2}$.

Matching

The ACyl end of $S^{1} \times V_{ \pm}$is $\mathbb{R} \times S^{1} \times S^{1} \times K 3_{+} \cong \mathbb{R} \times T_{ \pm}^{2} \times K 3_{ \pm}$. Glue the cylindrical ends using a product isometry

$$
F:=(-1) \times m \times r: \mathbb{R} \times T_{+}^{2} \times K 3_{+} \rightarrow \mathbb{R} \times T_{-}^{2} \times K 3_{-},
$$

where $m: T_{+}^{2} \rightarrow T_{-}^{2}$ is the reflection $S^{1} \times S^{1} \rightarrow S^{1} \times S^{1},(u, v) \mapsto(v, u)$. m swaps "internal" and "external" circles $\Rightarrow \pi_{1} M=0$ by van Kampen.

Matching problem: Find pairs V_{+}and V_{-}such that there is an isometry $r: K 3_{+} \rightarrow K 3_{-}$making F an isomorphism of the $\mathrm{ACyl} G_{2}$-structures.

Kovalev (2003): Use Fano 3-folds to produce examples of pairs V_{+}, V_{-} with solution to the matching problem.

Corti-Haskins-N- Millions of examples from weak Fano 3-folds. Pacini (2014): Topological type determined in many cases. Many gluings give same smooth manifold.

Invariants of twisted connected sums

Theorem (C-N)

Any twisted connected sum has $\nu=24 \in \mathbb{Z} / 48 \mathbb{Z}$.
Theorem (C-G-N)
Any twisted connected sum has $\widehat{\nu}=-24 \in \mathbb{Z}$.
Analytic computation reveals the result to be related to a geometric feature: $m: T_{+}^{2} \rightarrow T_{-}^{2}$ aligns "external" circle tangents ∂_{v} at right angle.

Inevitable, because m is an isometry of rectangular tori, and is not allowed to align the external circles: otherwise M would have an S^{1} factor.

Tori with symmetries

Warm-up question:
Let $a: S^{1} \rightarrow S^{1}$ be the antipodal map $z \mapsto-z$.
Let $T^{2}:=S^{1} \times S^{1} / a \times a$ where the S^{1} factors have circumference 1 and x. For how many different x does T^{2} have rotation symmetries other than ± 1 ?

$$
x=1, \sqrt{3}, \text { or } \frac{1}{\sqrt{3}}
$$

Isometries between tori

Consider a pair of tori that are either rectangular (metric product $S^{1} \times S^{1}$) or quotient of a rectangular one by an involution ($S^{1} \times S^{1} / a \times a$). For isometries between such tori, at what angles θ can the sides of the rectangles be aligned?

Can achieve $\theta=\frac{\pi}{4}$ with an involution on one side.

Isometries between tori

Consider a pair of tori that are either rectangular (metric product $S^{1} \times S^{1}$) or quotient of a rectangular one by an involution ($S^{1} \times S^{1} / a \times a$). For isometries between such tori, at what angles θ can the sides of the rectangles be aligned?

With involutions on both sides, one can achieve $\theta=\frac{\pi}{3}$.

Isometries between tori

Consider a pair of tori that are either rectangular (metric product $S^{1} \times S^{1}$) or quotient of a rectangular one by an involution ($S^{1} \times S^{1} / a \times a$). For isometries between such tori, at what angles θ can the sides of the rectangles be aligned?

With involutions on both sides, one can achieve $\theta=\frac{\pi}{6}$.

Extra-twisted connected sums

Suppose V is an ACyl Calabi-Yau with an involution τ, that acts on the asymptotic cross-section $S^{1} \times K 3$ by $a \times \operatorname{ld}_{k 3}$.
Then $S^{1} \times V / a \times \tau$ is an ACyl G_{2}-manifold with cross-section

$$
\left(S^{1} \times S^{1} / a \times a\right) \times K 3=T^{2} \times K 3 .
$$

Let $M_{ \pm}$be a pair of ACyl G_{2}-manifolds of this form, or of the form $S^{1} \times V$. Let $m: T_{+}^{2} \rightarrow T_{-}^{2}$ be a reflection. Depending on the circumferences of the circles, m can align the external circle directions at angle $\theta=\frac{\pi}{3}, \frac{\pi}{4}$ or $\frac{\pi}{6}$.
θ-matching problem: Find pairs V_{+}and V_{-}with involution, and with an isometry $r: K 3_{+} \rightarrow K 3_{-}$such that $(-1) \times m \times r$ is an isomorphism of the limits of the ACyl G_{2}-structures of M_{+}and M_{-}.

Can obtain some ACyl Calabi-Yau manifolds with involution, and solutions to the matching problem, from branched double covers of Fano 3-folds.

Examples from extra-twisted connected sums

For each $\theta \neq \frac{\pi}{2}$, a range of values of $\widehat{\nu}$ can be realised by θ-TCSs.
Claim A
For a certain $\frac{\pi}{4}$-TCS M_{2}, compute that $\pi_{2} M_{2}=0, H^{4}\left(M_{2}\right) \cong \mathbb{Z}^{97}$, $d\left(M_{2}\right)=2$, and $\nu\left(\varphi_{2}\right)=36 \in \mathbb{Z} / 48 \mathbb{Z}$.

Among the millions of 2-connected ordinary TCS, find one that also has $H^{4}\left(M_{1}\right)=\mathbb{Z}^{97}$ and $d\left(M_{1}\right)=2$. By the classification of 2-connected 7-manifolds, it is diffeomorphic to M_{2}.

However, the ordinary TCS has $\nu\left(\varphi_{1}\right)=24 \in \mathbb{Z} / 48 \mathbb{Z}$, so the G_{2}-structures φ_{1} and φ_{2} are not homotopic (not even after changing the diffeomorphism that identifies M_{1} and M_{2}). Hence the constructed G_{2}-metrics g_{1} and g_{2} lie in different components of the G_{2} moduli space on M.

Examples from extra-twisted connected sums

Claim B

For a certain $\frac{\pi}{6}$-TCS M_{3}, compute that $\pi_{2} M_{3}=0, H^{4}\left(M_{3}\right) \cong \mathbb{Z}^{97}$, $d\left(M_{3}\right)=2$, and $\widehat{\nu}\left(\varphi_{3}\right)=-72 \in \mathbb{Z}$.
M_{3} is thus diffeomorphic to M_{1} above.
On this manifold, there are precisely 24 Numerator $\left(\frac{d}{112}\right)=24$ classes of G_{2}-structures modulo homotopy and diffeomorphism, all distinguished by ν.
Since $\nu\left(\varphi_{1}\right)=\nu\left(\varphi_{3}\right)=24 \in \mathbb{Z} / 48 \mathbb{Z}$, the diffeomorphism $M_{1} \cong M_{3}$ can therefore be chosen so that the torsion-free G_{2}-structures are homotopic.

However, the ordinary TCS has $\widehat{\nu}\left(\varphi_{1}\right)=-24$, so the two torsion-free G_{2}-structures lie in different components of the G_{2} moduli space.
$\frac{\pi}{3}$-TCSs have 3 -torsion in $H^{4}(M)$, making it harder to apply classification results to find different examples realising the same smooth manifold.

4. Computation
 Limits of the eta invariants

$M_{ \pm}:=S^{1} \times V_{ \pm}$or $S^{1} \times V_{ \pm} / a \times \tau$, with asymptotic limit $\mathbb{R} \times T_{ \pm}^{2} \times K 3$.
$m: T_{+}^{2} \rightarrow T_{-}^{2}$ reflection, aligning external circle factors at angle $\theta \in\left(0, \frac{\pi}{2}\right]$.
Construct family of torsion-free G_{2}-structures φ_{T} on M the result of gluing M_{+}to M_{-}by $(-1) \times m \times r$ with "neck length" T.

Theorem
Let $\rho:=\pi-2 \theta$. Then $\eta(D) \rightarrow \frac{\rho}{\pi}$ as $T \rightarrow \infty$.
Let $R_{ \pm}: H^{2}(K 3 ; \mathbb{R}) \rightarrow H^{2}(K 3 ; \mathbb{R})$ be reflection in $\operatorname{Im}\left(H^{2}\left(V_{ \pm}\right) \rightarrow H^{2}(K 3)\right)$
Theorem
Define a unitary map $U: H^{2}(K 3 ; \mathbb{C}) \rightarrow H^{2}(K 3 ; \mathbb{C})$ by $e^{ \pm i \rho} R_{+} R_{-}$on $H^{2, \pm}(K 3 ; \mathbb{C})$. Then

$$
\eta(B) \rightarrow \frac{1}{\pi} \sum_{\substack{\lambda \in \text { Spec } \\ \lambda \neq-1}} \arg \lambda
$$

as $T \rightarrow \infty$, where the branch of arg takes values in $(-\pi, \pi)$.

Evaluating $\widehat{\nu}$

$U:=e^{ \pm i \rho} R_{+} R_{-}$on $H^{2, \pm}(K 3 ; \mathbb{C})$. The theorems imply

$$
\widehat{\nu}_{0}=-24 \eta(D)+3 \eta(B)=-24 \frac{\rho}{\pi}+\frac{3}{\pi} \sum_{\substack{\lambda \in \text { Spec } U \\ \lambda \neq-1}} \arg \lambda .
$$

If $\theta=\frac{\pi}{2}$ then $\rho=\pi-2 \theta=0$, and U is the real orthogonal map $R_{+} R_{-}$.
Hence eigenvalues are ± 1 or occur in conjugate pairs, so $\sum \arg \lambda=0$, and

$$
\widehat{\nu}_{0}=0 .
$$

In general

$$
\sum_{\substack{\lambda \in \operatorname{Spec} U \\ \lambda \neq-1}} \arg \lambda=\sum \pm \rho+\sum_{\substack{\lambda \in \operatorname{Spec} R_{+} R_{-} \\ \lambda \neq-1}} \arg \lambda+\pi b=-16 \rho+\pi b
$$

where $b \in \mathbb{Z}$ counts "half branch jumps" between λ and $e^{ \pm i \rho} \lambda$. Then

$$
\widehat{\nu}_{0}=-72 \frac{\rho}{\pi}+3 b
$$

Sketch proof of theorem for $\eta(B)$

Theorem

$$
\eta(B) \rightarrow \frac{1}{\pi} \sum_{\substack{\lambda \in \operatorname{Spec} U \\ \lambda \neq-1}} \arg \lambda
$$

as $T \rightarrow \infty$, for $U:=e^{ \pm i \rho} R_{+} R_{-}$on $H^{2, \pm}(K 3 ; \mathbb{C})$.
The proof relies on
Kirk-Lesch gluing formula:

$$
\eta(B) \rightarrow \eta\left(B_{+}\right)+\eta\left(B_{-}\right)+\text {Maslov index }
$$

as $T \rightarrow \infty$, for $B_{ \pm}$the odd signature operators on manifolds with boundary.
Because $M_{ \pm}$have an S^{1}-factor they have an orientation-reversing isometry. Therefore $B_{ \pm}$has spectral symmetry, so $\eta\left(B_{ \pm}\right)=0$!
Hence it remains only to evaluate the Maslov index.

The Maslov index

Consider $H^{3}\left(T^{2} \times K 3\right)$ as a complex vector space, with complex structure $*$.

$$
\text { Maslov index }:=\frac{1}{\pi} \sum_{\substack{\lambda \in \operatorname{Spec}\left(-\widetilde{R}^{-} \widetilde{R}_{-}\right) \\ \lambda \neq-1}} \arg \lambda
$$

where $\widetilde{R}_{ \pm}$is reflection of $H^{3}\left(T^{2} \times K 3\right)$ in the image of $H^{3}\left(M_{ \pm}\right)$.
Thus it suffices to prove that $-\widetilde{R}_{+} \widetilde{R}_{-}$has the same spectrum as U. $H^{3}\left(T^{2} \times K 3\right) \cong H^{1}\left(T^{2}\right) \otimes H^{2}(K 3) \cong \mathbb{C} \otimes H^{2,+}(K 3) \oplus \overline{\mathbb{C}} \otimes H^{2,-}(K 3)$.
$\widetilde{R}_{ \pm} \cong R_{\partial_{u_{ \pm}}} \otimes R_{ \pm}$, where
$R_{\partial_{u_{ \pm}}}: H^{1}\left(T^{2}\right) \rightarrow H^{1}\left(T^{2}\right)$ is reflection in internal circle direction of $M_{ \pm}$ $R_{ \pm}: H^{2}(K 3) \rightarrow H^{2}(K 3)$ is reflection in $\operatorname{Im}\left(H^{2}\left(V_{ \pm}\right) \rightarrow H^{2}(K 3)\right)$ as before.
$-R_{\partial_{u_{+}}} R_{\partial_{u_{-}}}$is rotation by $\rho=\pi-2 \theta$. Therefore on $H^{2, \pm}(K 3 ; \mathbb{C})$

$$
-\widetilde{R}_{+} \widetilde{R}_{-} \cong e^{ \pm i \rho} R_{+} R_{-}
$$

