Disconnecting the G₂ moduli space

Johannes Nordström

27 June 2017

Joint work in progress with Diarmuid Crowley and Sebastian Goette

C-N, New invariants of G_2 -structures, Geom. Topol. 19 (2015) C-G-N, An analytic invariant of G_2 -manifolds, arXiv:1505.02734

These slides available at http://people.bath.ac.uk/jlpn20/disconnect.pdf

The G₂ moduli space

Let M be a smooth closed 7-manifold admitting metrics with holonomy G_2 . The moduli space

 $\mathcal{M} := \{ \text{Holonomy } G_2 \text{ metrics on } M \} / \text{Diff}(M)$

is an orbifold, locally homeomorphic to finite quotients of $H^3_{dR}(M)$. So far little is known about the *global* properties of \mathcal{M} .

Main results:

Exhibit examples of closed G_2 -manifolds with $\mathcal M$ disconnected, both

- by studying homotopies of G₂-structures, and
- where the G_2 -structures are indistinguishable using homotopy theory

Outline:

- 1. Background and examples
- **2.** Invariants of G_2 -structures
- 3. Constructions
- 4. Computation

1. Background and examples The group *G*₂

 $G_2 := \operatorname{Aut} \mathbb{O}, \quad \mathbb{O} = \text{octonions, normed division algebra of real dimension 8.}$ $G_2 \text{ acts on } \operatorname{Im} \mathbb{O} \cong \mathbb{R}^7$, preserving metric, orientation, cross product

$$a \times b := \mathsf{Im}(ab), \text{ and}$$

 $\varphi_0(a, b, c) := \langle a \times b, c \rangle.$

In terms of basis $e^1, \ldots, e^7 \in (\mathbb{R}^7)^*$

$$arphi_0=e^{123}+e^{145}+e^{167}+e^{246}-e^{257}-e^{347}-e^{356}\in \Lambda^3(\mathbb{R}^7)^*.$$

Peculiar algebra facts:

- G_2 is not just contained in stabiliser of φ_0 in $GL(7, \mathbb{R})$, but equality holds.
- The $GL(7,\mathbb{R})$ -orbit of φ_0 is open in $\Lambda^3(\mathbb{R}^7)^*$.

G₂-structures and holonomy

 G_2 is an exceptional case in Berger's list of Riemannian holonomy groups. A metric with holonomy G_2 is always Ricci-flat.

Parallel tensor fields on Riemannian manifold $M \leftrightarrow$ invariants of Hol(M).

A 3-form $\varphi \in \Omega^3(M^7)$ such that $(T_xM, \varphi) \cong (\mathbb{R}^7, \varphi_0)$ for all $x \in M$ defines a G_2 -structure. (This is an *open* condition on φ) Because $G_2 \subset SO(7)$, this induces a metric and orientation.

 $Hol(M) \subseteq G_2 \Leftrightarrow$ metric induced by some G_2 -structure φ such that $\nabla \varphi = 0$. Then call φ torsion-free. This is equivalent to the first-order non-linear PDE

$$d\varphi = d^*\varphi = 0.$$

Bryant (1985): Local examples Bryant-Salamon (1987): Complete examples Joyce (1994): Examples on closed manifolds

Two perspectives on *G*₂-structures

Spin(7)

The spin representation Δ of Spin(7) is real of rank 8. $G_2 \longrightarrow SO(7)$ Spin(7) acts transitively on $S^7 \subset \Delta$ with stabiliser G_2 .

$$G_2 \qquad \qquad = \qquad \begin{array}{c} \text{stabiliser in } GL(7,\mathbb{R}) \\ \text{of } \varphi_0 \in \Lambda^3(\mathbb{R}^7)^* \end{array} = \qquad \begin{array}{c} \text{stabiliser in } Spin(7) \\ \text{of a unit spinor } s_0 \end{array}$$

metric g G_2 -structure on M^7 \leftrightarrow positive $\varphi \in \Omega^3(M)$ \leftrightarrow + spin structure

+ unit spinor field s

$$\mathsf{Holonomy} \subseteq \mathsf{G}_2 \qquad \Leftrightarrow \qquad d\varphi = \mathsf{d}^* \varphi = \mathsf{0} \qquad \Leftrightarrow \qquad \nabla s = \mathsf{0}$$

Useful for differential geometry homotopy theory Let M be a closed 7-dimensional spin manifold.

Given a metric g, the spinor bundle SM is a real vector bundle of rank 8. Two G_2 -structures inducing the same metric and spin structure are homotopic if the corresponding unit spinors can be connected by a path of non-vanishing spinors.

All metrics on M are homotopic, so if we fix the spin structure

 $\left\{ \begin{array}{l} \mathsf{Homotopy\ classes\ of}\\ \mathsf{G}_2\text{-structures\ on\ } M \end{array} \right\} \leftrightarrow \left\{ \begin{array}{l} \mathsf{Homotopy\ classes\ of\ non-}\\ \mathsf{vanishing\ sections\ of\ } SM \end{array} \right\} \,\leftrightarrow \mathbb{Z}$

by counting (with signs) the zeros of an interpolating section of a rank 8 bundle on $M \times [0, 1]$.

Diff(M) can act by non-trivial translations.

Each component of the G_2 moduli space \mathcal{M} maps to a fixed class of G_2 -structures modulo homotopies *and* diffeomorphisms.

Classification of 2-connected manifolds

Let *M* be a closed smooth 7-manifold with $\pi_1(M) = \pi_2(M) = 0$ and $H^4(M)$ torsion-free. Remaining algebraic topology captured by $b_3(M)$.

Let d(M) := greatest integer dividing $\frac{1}{2}p_1(M) \in H^4(M)$ (d(M) := 0 if $p_1(M) = 0$).

Theorem (Wilkens, 1972)

Such M are classified up to homeomorphism by $(b_3(M), d(M)) \in \mathbb{N} \times 2\mathbb{N}$. The number of inequivalent smooth structures on the topological manifold underlying M is

$$GCD(28, Numerator(\frac{d(M)}{4})).$$

Theorem (C-N)

The number of G_2 -structures up to homotopy+diffeomorphism on such M is

24 Numerator
$$\left(\frac{d(M)}{112}\right)$$
.

A 2-connected example

Example (C-G-N)

Let *M* be the unique smooth closed 2-connected 7-manifold with $H^4(M) = \mathbb{Z}^{97}$ and d = 2.

There are G_2 metrics g_1 , g_2 , g_3 on M such that

- **A** the G_2 -structures φ_1 , φ_2 associated to g_1 and g_2 are not equivalent under homotopies and diffeomorphisms; thus g_1 and g_2 are in different components of the G_2 moduli space \mathcal{M}
- **B** the G_2 -structures φ_1 and φ_3 are homotopic, but nevertheless g_1 and g_3 lie in different components of \mathcal{M} .

So for this manifold, the moduli space $\ensuremath{\mathcal{M}}$ has at least 3 connected components.

Ingredients

Invariants

- A The G₂-structures are distinguished by a homotopy and diffeomorphism invariant $\nu(\varphi) \in \mathbb{Z}/48\mathbb{Z}$.
- **B** An analytic refinement $\hat{\nu}(\varphi) \in \mathbb{Z}$ of $\nu(\varphi)$ is invariant under diffeomorphisms and under deformations through torsion-free G_2 -structures (but not under arbitrary homotopies), and can distinguish components of \mathcal{M} even when the G_2 -structures are homotopic.

Construction

The "twisted connected sum construction" of Kovalev and Corti-Haskins-N-Pacini produces large numbers of 2-connected G_2 -manifolds for which the invariants can be evaluated.

A more complicated version produces some 2-connected examples where $\widehat{\nu}$ takes a range of values.

2. Invariants of *G*₂-structures The homotopy invariant

Let X closed spin 8-manifold, and n(X) the signed count of zeros of a transverse positive spinor field (\Leftrightarrow Euler class of rank 8 bundle S^+X). Atiyah-Singer index theorem + Spin(8) characteristic class computation

$$-48 \operatorname{ind} D_X^+ = \chi(X) - 3\sigma(X) - 2n(X).$$
 (*)

Let W be a compact spin 8-manifold with boundary M, s a transverse positive spinor field on W, and φ the G_2 -structure on M induced by $s_{|M}$. Let $n(W, \varphi)$ be the signed count of zeros of s. (*) implies that

$$u(\varphi) := \chi(W) - 3\sigma(W) - 2n(W, \varphi) \mod 48$$

is independent of choice of coboundary W.

On a fixed *M*, ν takes the 24 values allowed by $\nu(\varphi) = \sum_{i=0}^{3} b_i(M) \mod 2$.

If *M* is 2-connected with $H^4(M)$ torsion-free and *d* a divisor of 112, then ν distinguishes all classes.

Analytic invariant of G₂-structures

Given a metric on a closed spin M^7 , define

 $\begin{array}{l} D = \mbox{Dirac operator} \\ B : \Omega^{ev} \to \Omega^{ev} = \mbox{odd signature operator, } (-1)^k (*d - d*) \mbox{ on } \Omega^{2k} \\ h(D) = \mbox{dim} \mbox{ker}(D) \in \mathbb{Z} \\ \eta(D) := \eta(D,0) \in \mathbb{R}, \mbox{ defined by analytic continuation from} \end{array}$

$$\eta(D,s) := \sum_{\lambda \in \operatorname{Spec} D \setminus \{0\}} (\operatorname{sign} \lambda) |\lambda|^{-s} \quad ext{for } \operatorname{\mathsf{Re}} s \gg 0.$$

For a G_2 -structure φ on M, define $MQ(\varphi) \in \mathbb{R}$ in terms of Mathai-Quillen current.

Definition

$$\begin{split} \widehat{\nu}_0(\varphi) &:= -24\eta(D) + 3\eta(B) + 2MQ(\varphi) \in \mathbb{R} \\ \widehat{\nu}(\varphi) &:= \widehat{\nu}_0(\varphi) - 24h(D) \in \mathbb{R} \end{split}$$

$$\widehat{
u}_0(arphi) := -24\eta(D) + 3\eta(B) + 2MQ(arphi) \in \mathbb{R}$$

Reversing orientation changes the sign of $\hat{\nu}_0$.

All terms are continuous in φ , except that the first jumps by 24 when an eigenvalue of D changes between zero and non-zero.

$$\widehat{\nu}(\varphi) := \widehat{\nu}_0(\varphi) - 24h(D) \in \mathbb{R}$$

 $\widehat{\nu}$ is continuous in φ except for jumps by 48.

Theorem (C-G-N)

Let φ be G_2 -structure on a closed M^7 . Then

$$u(\varphi) = \widehat{\nu}(\varphi) \mod 48.$$

(In particular $\hat{\nu}, \hat{\nu}_0 \in \mathbb{Z}$.)

Analytic invariant as refinement

$$\begin{aligned} \widehat{\nu}(\varphi) &:= -24(\eta + h)(D) + 3\eta(B) + 2MQ(\varphi) \in \mathbb{R} \\ \nu(\varphi) &:= \chi(W) - 3\sigma(W) - 2n(W,\varphi) \in \mathbb{Z}/48\mathbb{Z}. \end{aligned}$$

Proof.

For $\partial W = M$ with metric that is product on collar of M

$$\sigma(W) = \int_{W} L(\nabla) - \eta(B)$$

ind $D_{W}^{+} = \int_{W} \widehat{A}(\nabla) - \frac{1}{2}(\eta + h)(D)$
 $n(W, \varphi) = \int_{W} e_{+}(\nabla) - MQ(\varphi)$
Chern-Weil term boundary correction

Linear combination of Chern-Weil terms gives $\int_W e(\nabla) = \chi(W)$ (essentially by characteristic class formula (*) used to show that ν is well-defined), so

$$\widehat{
u}(arphi) = \chi(W) - 3\sigma(W) - 2n(W, arphi) + 48 ext{ ind } D^+_W \in \mathbb{Z} \;.$$

Analytic invariant of torsion-free G₂-structures

$$egin{aligned} \widehat{
u}_0(arphi) &:= -24\eta(D) + 3\eta(B) + 2MQ(arphi) \in \mathbb{Z} \ \widehat{
u}(arphi) &:= \widehat{
u}_0(arphi) - 24h(D) \in \mathbb{Z} \end{aligned}$$

For torsion-free φ

- $MQ(\varphi) = 0$
- $h(D) = 1 + b_1(M)$ (so 1 when $Hol = G_2$)
- $\eta(D)$ does not jump

Therefore $\hat{\nu}_0$ and $\hat{\nu}$ are constant on connected components of \mathcal{M} , and can distinguish components even when the associated G_2 -structures are homotopic.

Even if we are only interested in ν , it may be easier to evaluate the intrinsic formula for $\hat{\nu}$ than to find a spin coboundary to compute ν .

Similarities with *e.g.* the use of Donnelly's analytic refinement of the Eells-Kuiper invariant by Kreck-Stolz and Goette-Kitchloo-Shankar.

3. Constructions G_2 and SU(3)

The action of SU(3) on $\mathbb{C}^3 \cong \mathbb{R}^6$ preserves

$$egin{aligned} &\omega_0 := rac{i}{2} (dz^1 \wedge dar{z}^1 + dz^2 \wedge dar{z}^2 + dz^3 \wedge dar{z}^3) \in \Lambda^2(\mathbb{R}^6)^* \ &\Omega_0 := dz^1 \wedge dz^2 \wedge dz^3 \in \Lambda^3(\mathbb{R}^6)^* \otimes \mathbb{C} \end{aligned}$$

On $\mathbb{R}^7 = \mathbb{R} \oplus \mathbb{C}^3$,

$$e^1 \wedge \omega_0 + \operatorname{Re}\Omega_0 \;\cong\; e^1 \wedge (e^{23} + e^{45} + e^{67}) + e^{246} - e^{257} - e^{347} - e^{356} \;=\; \varphi_0,$$

the 3-form preserved by G_2 . The stabiliser in G_2 of a non-zero vector is SU(3).

If X is a Calabi-Yau 3-fold (6-manifold with Hol(X) = SU(3)) then $Hol(S^1 \times X) = SU(3) \subset G_2$, so $S^1 \times X$ has a torsion-free G_2 -structure. But we are more interested in manifolds with full holonomy G_2 .

Proposition (Joyce)

If M^7 is closed and $Hol(M) \subseteq G_2$ then

$$Hol(M) = G_2 \Leftrightarrow \pi_1(M)$$
 finite

Twisted connected sums

Donaldson, Kovalev, Corti-Haskins-N-Pacini

- Construct simply-connected, complete Calabi-Yau 3-folds V, with "asymptotically cylindrical end" $\mathbb{R} \times S^1 \times K3$.
- $Hol(S^1 \times V) = SU(3) \subset G_2$, so $S^1 \times V$ has torsion-free G_2 -structure
- Find pairs of such V_{\pm} , with a diffeomorphism F of the cylindrical ends of $S^1 \times V_+$ and $S^1 \times V_-$ ensuring
 - □ Gluing G₂-structures on the halves with "neck length" $T \gg 0$ defines φ_T on M with $\nabla \varphi_T$ exponentially small in T.
 - $\square M = S^1 \times V_+ \cup_F S^1 \times V_- \text{ is simply-connected } (F \text{ is "twisted"})$

• Perturb to φ_T so that $d\varphi_T = d^*\varphi_T = 0$. Then $Hol(M) = G_2$.

Matching

The ACyl end of $S^1 \times V_{\pm}$ is $\mathbb{R} \times S^1 \times S^1 \times K3_+ \cong \mathbb{R} \times T^2_{\pm} \times K3_{\pm}$. Glue the cylindrical ends using a product isometry

 $F := (-1) \times m \times r : \mathbb{R} \times T_+^2 \times K3_+ \to \mathbb{R} \times T_-^2 \times K3_-,$

where $m: T_+^2 \to T_-^2$ is the reflection $S^1 \times S^1 \to S^1 \times S^1$, $(u, v) \mapsto (v, u)$. *m* swaps "internal" and "external" circles $\Rightarrow \pi_1 M = 0$ by van Kampen.

Matching problem: Find pairs V_+ and V_- such that there is an isometry $r: K3_+ \rightarrow K3_-$ making F an isomorphism of the ACyl G_2 -structures.

- Kovalev (2003): Use Fano 3-folds to produce examples of pairs V_+ , V_- with solution to the matching problem.
- Corti-Haskins-N-Pacini (2014): Millions of examples from weak Fano 3-folds. Topological type determined in many cases. Many gluings give same smooth manifold.

Invariants of twisted connected sums

Theorem (C-N)

Any twisted connected sum has $\nu = 24 \in \mathbb{Z}/48\mathbb{Z}$.

Theorem (C-G-N)

Any twisted connected sum has $\hat{\nu} = -24 \in \mathbb{Z}$.

Analytic computation reveals the result to be related to a geometric feature: $m: T^2_+ \rightarrow T^2_-$ aligns "external" circle tangents ∂_v at right angle.

Inevitable, because m is an isometry of rectangular tori, and is not allowed to align the external circles: otherwise M would have an S^1 factor.

Tori with symmetries

Warm-up question:

Let $a: S^1 \to S^1$ be the antipodal map $z \mapsto -z$. Let $T^2 := S^1 \times S^1 / a \times a$ where the S^1 factors have circumference 1 and x. For how many different x does T^2 have rotation symmetries other than ± 1 ?

$$x = 1, \sqrt{3}, \text{ or } \frac{1}{\sqrt{3}}$$

Isometries between tori

Consider a pair of tori that are either rectangular (metric product $S^1 \times S^1$) or quotient of a rectangular one by an involution ($S^1 \times S^1/a \times a$). For isometries between such tori, at what angles θ can the sides of the rectangles be aligned?

Can achieve $\theta = \frac{\pi}{4}$ with an involution on one side.

Isometries between tori

Consider a pair of tori that are either rectangular (metric product $S^1 \times S^1$) or quotient of a rectangular one by an involution ($S^1 \times S^1/a \times a$). For isometries between such tori, at what angles θ can the sides of the rectangles be aligned?

With involutions on both sides, one can achieve $\theta = \frac{\pi}{3}$.

Isometries between tori

Consider a pair of tori that are either rectangular (metric product $S^1 \times S^1$) or quotient of a rectangular one by an involution ($S^1 \times S^1/a \times a$). For isometries between such tori, at what angles θ can the sides of the rectangles be aligned?

With involutions on both sides, one can achieve $\theta = \frac{\pi}{6}$.

Extra-twisted connected sums

Suppose V is an ACyl Calabi-Yau with an involution τ , that acts on the asymptotic cross-section $S^1 \times K3$ by $a \times Id_{K3}$. Then $S^1 \times V / a \times \tau$ is an ACyl G_2 -manifold with cross-section

 $(S^1 \times S^1 / a \times a) \times K3 = T^2 \times K3.$

Let M_{\pm} be a pair of ACyl G_2 -manifolds of this form, or of the form $S^1 \times V$. Let $m: T^2_+ \to T^2_-$ be a reflection. Depending on the circumferences of the circles, m can align the external circle directions at angle $\theta = \frac{\pi}{3}, \frac{\pi}{4}$ or $\frac{\pi}{6}$.

 θ -matching problem: Find pairs V_+ and V_- with involution, and with an isometry $r: K3_+ \to K3_-$ such that $(-1) \times m \times r$ is an isomorphism of the limits of the ACyl G_2 -structures of M_+ and M_- .

Can obtain some ACyl Calabi-Yau manifolds with involution, and solutions to the matching problem, from branched double covers of Fano 3-folds.

Examples from extra-twisted connected sums

For each $\theta \neq \frac{\pi}{2}$, a range of values of $\hat{\nu}$ can be realised by θ -TCSs.

Claim A

For a certain $\frac{\pi}{4}$ -TCS M_2 , compute that $\pi_2 M_2 = 0$, $H^4(M_2) \cong \mathbb{Z}^{97}$, $d(M_2) = 2$, and $\nu(\varphi_2) = 36 \in \mathbb{Z}/48\mathbb{Z}$.

Among the millions of 2-connected ordinary TCS, find one that also has $H^4(M_1) = \mathbb{Z}^{97}$ and $d(M_1) = 2$. By the classification of 2-connected 7-manifolds, it is diffeomorphic to M_2 .

However, the ordinary TCS has $\nu(\varphi_1) = 24 \in \mathbb{Z}/48\mathbb{Z}$, so the G_2 -structures φ_1 and φ_2 are not homotopic (not even after changing the diffeomorphism that identifies M_1 and M_2). Hence the constructed G_2 -metrics g_1 and g_2 lie in different components of the G_2 moduli space on M.

Examples from extra-twisted connected sums

Claim B

For a certain $\frac{\pi}{6}$ -TCS M_3 , compute that $\pi_2 M_3 = 0$, $H^4(M_3) \cong \mathbb{Z}^{97}$, $d(M_3) = 2$, and $\widehat{\nu}(\varphi_3) = -72 \in \mathbb{Z}$.

 M_3 is thus diffeomorphic to M_1 above.

On this manifold, there are precisely 24 Numerator($\frac{d}{112}$) = 24 classes of G_2 -structures modulo homotopy and diffeomorphism, all distinguished by ν . Since $\nu(\varphi_1) = \nu(\varphi_3) = 24 \in \mathbb{Z}/48\mathbb{Z}$, the diffeomorphism $M_1 \cong M_3$ can therefore be chosen so that the torsion-free G_2 -structures are homotopic.

However, the ordinary TCS has $\hat{\nu}(\varphi_1) = -24$, so the two torsion-free G_2 -structures lie in different components of the G_2 moduli space.

 $\frac{\pi}{3}$ -TCSs have 3-torsion in $H^4(M)$, making it harder to apply classification results to find different examples realising the same smooth manifold.

4. Computation Limits of the eta invariants

 $M_{\pm} := S^1 \times V_{\pm}$ or $S^1 \times V_{\pm}/a \times \tau$, with asymptotic limit $\mathbb{R} \times T_{\pm}^2 \times K3$. $m: T_+^2 \to T_-^2$ reflection, aligning external circle factors at angle $\theta \in (0, \frac{\pi}{2}]$. Construct family of torsion-free G_2 -structures φ_T on M the result of gluing M_+ to M_- by $(-1) \times m \times r$ with "neck length" T.

Theorem

Let
$$\rho := \pi - 2\theta$$
. Then $\eta(D) \to \frac{\rho}{\pi}$ as $T \to \infty$.

Let $R_{\pm}: H^2(K3; \mathbb{R}) \to H^2(K3; \mathbb{R})$ be reflection in $Im(H^2(V_{\pm}) \to H^2(K3))$

Theorem

Define a unitary map $U: H^2(K3; \mathbb{C}) \to H^2(K3; \mathbb{C})$ by $e^{\pm i\rho}R_+R_-$ on $H^{2,\pm}(K3; \mathbb{C})$. Then

$$\eta(B)
ightarrow rac{1}{\pi} \sum_{\substack{\lambda \in \operatorname{Spec} U \ \lambda
eq -1}} rg \lambda$$

as $T \to \infty$, where the branch of arg takes values in $(-\pi, \pi)$.

Evaluating $\hat{\nu}$

 $U := e^{\pm i\rho}R_+R_-$ on $H^{2,\pm}(K3;\mathbb{C})$. The theorems imply

$$\widehat{
u}_0 = -24\eta(D) + 3\eta(B) = -24rac{
ho}{\pi} + rac{3}{\pi}\sum_{\substack{\lambda\in \operatorname{Spec} U\\\lambda
eq -1}} rg \lambda.$$

If $\theta = \frac{\pi}{2}$ then $\rho = \pi - 2\theta = 0$, and U is the real orthogonal map R_+R_- . Hence eigenvalues are ± 1 or occur in conjugate pairs, so $\sum \arg \lambda = 0$, and

$$\widehat{\nu}_0 = 0.$$

In general

$$\sum_{\substack{\lambda \in \operatorname{Spec} U\\ \lambda \neq -1}} \arg \lambda = \sum \pm \rho + \sum_{\substack{\lambda \in \operatorname{Spec} R_+ R_-\\ \lambda \neq -1}} \arg \lambda + \pi b = -16\rho + \pi b,$$

where $b \in \mathbb{Z}$ counts "half branch jumps" between λ and $e^{\pm i\rho}\lambda$. Then

$$\widehat{
u}_0 = -72rac{
ho}{\pi} + 3b.$$

Sketch proof of theorem for $\eta(B)$

Theorem

$$\eta(B) o rac{1}{\pi} \sum_{\substack{\lambda \in \operatorname{Spec} U \ \lambda
eq -1}} rg \lambda$$

as $T \to \infty$, for $U := e^{\pm i\rho}R_+R_-$ on $H^{2,\pm}(K3;\mathbb{C})$.

The proof relies on

Kirk-Lesch gluing formula:

$$\eta(B) \rightarrow \eta(B_+) + \eta(B_-) + \text{Maslov index}$$

as $T \to \infty$, for B_{\pm} the odd signature operators on manifolds with boundary.

Because M_{\pm} have an S^1 -factor they have an orientation-reversing isometry. Therefore B_{\pm} has spectral symmetry, so $\eta(B_{\pm}) = 0!$ Hence it remains only to evaluate the Maslov index.

The Maslov index

Consider $H^3(T^2 \times K3)$ as a complex vector space, with complex structure *.

Maslov index :=
$$\frac{1}{\pi} \sum_{\substack{\lambda \in \text{Spec}(-\widetilde{R}_+\widetilde{R}_-)\\\lambda \neq -1}} \arg \lambda$$

where \widetilde{R}_{\pm} is reflection of $H^3(T^2 \times K3)$ in the image of $H^3(M_{\pm})$. Thus it suffices to prove that $-\widetilde{R}_+\widetilde{R}_-$ has the same spectrum as U. $H^3(T^2 \times K3) \cong H^1(T^2) \otimes H^2(K3) \cong \mathbb{C} \otimes H^{2,+}(K3) \oplus \overline{\mathbb{C}} \otimes H^{2,-}(K3)$. $\widetilde{R}_{\pm} \cong R_{\partial_{u_{\pm}}} \otimes R_{\pm}$, where $R_{\partial_{u_{\pm}}} : H^1(T^2) \to H^1(T^2)$ is reflection in internal circle direction of M_{\pm} $R_{\pm} : H^2(K3) \to H^2(K3)$ is reflection in $\operatorname{Im}(H^2(V_{\pm}) \to H^2(K3))$ as before. $-R_{\partial_{u_{\pm}}}R_{\partial_{u_{-}}}$ is rotation by $\rho = \pi - 2\theta$. Therefore on $H^{2,\pm}(K3;\mathbb{C})$ $-\widetilde{R}_+\widetilde{R}_- \cong e^{\pm i\rho}R_+R_-$