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Abstract

Vibration suppression techniques comprise a significant proportion of contemporary rotorcraft re-
search, with much attention devoted to active methodologies. A largely overlooked class is that of
adaptive-passive techniques, where instead of introducing active components to interact with the sys-
tem dynamics, quasi-static adjustments are made to passive components. Such methods have the
advantages of lower power requirements and inherent stability. This thesis seeks to exploit the nonlin-
ear effect of stress stiffening, induced by static structural loading, to produce an adaptive rotorcraft
response suppression system.

The stress stiffening effect is explored using analytical models and experimental results. A significant
finding is that traditional stress stiffening is accompanied by an equally important change in joint
parameters as a structure is loaded. Analytical tools are proposed to incorporate this effect in simple
finite element models.

Parametric studies reveal the importance of a phenomenon known as eigenvalue curve veering. Instead
of crossing at an intersection, two eigenvalue loci may veer abruptly away, swapping trajectories and all
their properties in the transition. An explicit experimental demonstration of the effect is documented
here, and a veering index is derived to provide a definitive criterion for its quantification. The behaviour
is shown to contribute valuable information to finite element model updating methods and a novel
experimental identification approach is developed, permitting the use of eigenvalues instead of the less
reliable eigenvectors in symmetric updating problems.

Consolidating the preceding theory, a proof-of-concept adaptive response suppression system is imple-
mented, demonstrating a reduction in vibrations due to variable narrowband excitation frequencies.

Finite element analyses of a Lynx helicopter lead to the proposition of a stress-based adaptive tuned
vibration absorber. A cable running the length of the tail boom serves as a distributed absorber mass,
and changing the tension in the cable allows tuning of the multiple absorber modes. It is shown that
this configuration uses only a narrow range of cable tensions to realise the cancellation of all of the
critical tail boom modes.
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Nomenclature

Abbreviations

ADC analogue to digital converter

CSQ cross sensitivity quotient

DAC digital to analogue converter

DFT discrete Fourier transform

DOF degree of freedom

FE finite element

FEA finite element analysis

FEM finite element model

FFT fast Fourier transform

FRF frequency response function

IRF impulse response function

LSCE least squares complex exponential

LSFD least squares frequency domain

MAC modal assurance criterion

MDF modal dependence factor

MDOF multiple degree of freedom

NCO normalised cross orthogonality

NR Newton-Raphson

PID proportional-integral-derivative (controller)

PSD power spectral density

SDOF single degree of freedom

TMD tuned mass damper

TVA tuned vibration absorber

VI veering index

Symbols

0 zero matrix

∗ convolution operator

⇐⇒ Fourier function pairing
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∠x argument of x

|x| modulus of x

x+ pseudo-inverse of x

x′ equivalent to property x but for parameter value δj
′ as opposed to δj

x∗ adapted modal property x, defined by Σ∗
j = Λ− 1

2 ΣjΛ
− 3

2 and Λ∗ = Λ−1

x property x for veering datum configuration (overbar denotes veering datum)

E[x] expected value of x

Greek

α angle between two eigenvector sets in the normal basis

β angle between the current eigenvector set and the veering datum set in the normal basis

γ2(ω) coherence

δj jth structural parameter (or updating parameter)

η hysteretic damping loss factor

ε perturbation parameter

ǫx normal strain

ǫxy shear strain

ǫ strain vector

εj updating variable error vector at jth iteration

ε̃j predicted updating variable error vector at jth iteration

κijk modal coupling between ith and kth modes with respect to parameter δj

λr rth eigenvalue

µλ mean eigenvalue in a veering pair

ω frequency (rad·s−1)

ω0 undamped natural frequency (rad·s−1)

ωn natural frequency (rad·s−1), where ωr is rth natural frequency for MDOF system

φrj jth DOF in rth mass-normalised eigenvector

φr rth mass-normalised eigenvector

ψr rth eigenvector, arbitrarily scaled

ρ density

σiji sensitivity of ith eigenvalue to parameter δj

σ stress vector

τ time, often used for delay

θ phase difference

θ0 rotational displacement of beam neutral axis

θi rotational displacement of ith element node
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ζ viscous damping ratio

∆λir eigenvalue separation, λi − λr

∆σkji sensitivity difference, σkKk − σiKi

∆t discrete time step

∆δj updating parameter increment vector from jth iteration

∆zj updating variable increment vector for jth iteration

Λ eigenvalue matrix, diag([ λ1 λ2 . . . λN ])

Φ mass-normalised eigenvector matrix, [ φ1 φ2 . . . φN ]

Ψ eigenvector matrix, [ ψ1 ψ2 . . . ψN ]

Σj modal sensitivity matrix: matrix of eigenvalue sensitivities and modal couplings with respect
to parameter δj

Σijk 2×2 matrix of eigenvalue sensitivities and modal couplings for modes i and k with respect to
parameter δj

Roman

b strain-displacement matrix

c viscous damping constant

d hysteretic damping constant

e 2.71828183

f(t) measured force signal

f elemental force vector

hjk(t) impulse response function for DOFs j and k

ℓhjk h(ℓ∆t)

i imaginary unit (
√
−1)

k spring stiffness

kE elastic stiffness

kG geometric stiffness

kT tangent stiffness

k elemental stiffness matrix

m mass

m elemental mass matrix

n shape function matrix

r mode number

t time

u displacement function in Cartesian x-direction

u0 axial displacement of beam neutral axis

ui displacement of ith element node in Cartesian x-direction
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u elemental displacement vector

v displacement function in Cartesian y-direction

v0 transverse displacement of beam neutral axis

vi displacement of ith element node in Cartesian y-direction

w displacement function in Cartesian z-direction

x displacement or Cartesian x-coordinate

ẋ velocity

ẍ acceleration

x displacement vector

ẋ velocity vector

ẍ acceleration vector

y Cartesian y-coordinate

z Cartesian z-coordinate

zj updating variable vector at jth iteration

zm updating variable vector from measured data

A cross-sectional area

A(ω) inertance / accelerance

rAjk rth modal constant for DOFs j and k

Cr,n value of characteristic polynomial for rth mode at nth frequency interval

C global damping matrix

E Young’s modulus

E material property matrix

F force

F global force vector

G gauge factor

H(ω) receptance

H1(ω) conventional receptance estimator

H2(ω) alternative receptance estimator

Hjk(ω) FRF matrix element: response of DOF j to excitation of DOF k

H(ω) FRF matrix

I second moment of area

I identity matrix

J(•) penalty function

K global stiffness matrix

KE nominal elastic stiffness matrix

K̂G unit stress stiffening matrix (stress stiffening per unit applied force)
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KT tangent stiffness matrix

L element length

M global mass matrix

N number of modes

P static force

Rxx autocorrelation

Rxf cross correlation

R effective independence matrix

Sxx(ω) auto-spectral density

Sxf (ω) cross-spectral density

S updating variable sensitivity matrix

Te kinetic energy

T rotational transform matrix

Ui internal strain energy

V volume

Vr eλr∆t

Wδδ weighting matrix for updating parameters

Wεε weighting matrix for updating variables

X displacement magnitude

Xn Fourier coefficient

Y (ω) mobility

viii



Contents

1 Introduction 1

1.1 Structural Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Response Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Passive Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Active Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Semi-active Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.4 Adaptive-passive Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.5 Ambiguous Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.6 Smart Materials and Technologies . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Rotorcraft Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Scope of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Notes on Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 Publications Arising from Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Supporting Theory and Tools 17

2.1 Structural Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 The Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Background and General Approach . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Stiffness Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Mass Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Spatial Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.5 Beam Element Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.6 Global Matrix Assembly and Dynamic Solution . . . . . . . . . . . . . . . . . . 31

2.3 Modal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 Orthogonality Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.2 MDOF Frequency Response Functions . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Dynamic Characteristics of Loaded Structures . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 Geometric Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.2 Finite Element Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.3 Global Solution Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Modal Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

ix



CONTENTS

2.5.1 Equipment and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5.2 Fourier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5.3 Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5.4 Modal Parameter Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.6 Data comparison and model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.6.1 FRFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.6.2 Natural Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.6.3 Mode Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.7 Model Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.7.1 Eigenstructure Sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.7.2 Updating Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.7.3 Model Updating with ANSYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3 Preliminary Stress Stiffening Investigations 75

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 Validation Test Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 Pin-Jointed Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.1 Experimental Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.2 Preliminary Model Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.3 Load testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4 Welded Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4.1 Nonlinear Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4.2 Investigation of Stress Stiffenening Approximations . . . . . . . . . . . . . . . . 90

3.4.3 Frequency Response Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.4.4 Investigation of the Effect of Damping on Modal Interaction . . . . . . . . . . . 96

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4 Eigenvalue Curve Veering 101

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2.1 Historical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2.2 Contemporary Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2.3 Theoretical Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2.4 Analytical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Experimental Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3.1 Experimental and FE Configuration . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3.3 Modal Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3.4 FE Model Updating Repercussions . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4 Veering Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4.1 Modal Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

x



CONTENTS

4.4.2 Eigenvector Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4.3 Cross-Sensitivity Quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.4.4 Modal Dependence Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.4.5 Veering Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.4.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5 Application of Veering Indices 127

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2 Veering Parameter Datum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3 Eigenvalue Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4 Eigenvalue Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.5 Eigenvalue Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.6 Mass Matrix Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.8 Practical Exposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.8.1 Veering Analysis of a Real Structure . . . . . . . . . . . . . . . . . . . . . . . . 135

5.8.2 Comparison of Veering Quantifiers . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6 Modal Coupling in Model Updating 141

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2.1 Veering Property Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2.2 Choice of Updating Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.2.3 Updating Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.3 Welded Frame Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.3.1 Tangent Stiffness Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.3.2 Veering Property Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3.3 Model Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7 Automated Response Suppression Example 157

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.2 Baseline Test Structure & FE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.3 Introducing Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.4 Actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.5 Frequency Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.6 Preliminary Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.6.1 Control Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.6.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

xi



CONTENTS

7.7 Generalising the Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.8 Follow-Up Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.8.1 Control Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.8.2 Testing and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.9 Frequency Estimation Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8 Lynx Tail Boom Study 189

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.2 Actuator Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.2.1 Stress Stiffening Influence Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.2.2 Modal Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

8.2.3 Inverse Control Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.3 Tail Boom Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.4 Tail Boom Eigenfrequency Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.5 Adaptive Tuned Vibration Absorber . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

8.5.1 Tuned Vibration Absorbers: Principles of Operation . . . . . . . . . . . . . . . 211

8.5.2 Adaptive Load Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

9 Conclusions and Future Work 223

9.1 Stress Stiffening Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

9.2 Eigenvalue Curve Veering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

9.3 Adaptive Response Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

9.4 Rotorcraft Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

9.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

9.5.1 Stressed Joint Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

9.5.2 Veering Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

9.5.3 Modal Coupling in Model Updating . . . . . . . . . . . . . . . . . . . . . . . . 228

9.5.4 Model Updating for Multiply Symmetric Structures . . . . . . . . . . . . . . . 228

9.5.5 Adaptive Response Tuning: Frequency Estimation . . . . . . . . . . . . . . . . 228

9.5.6 Adaptive Response Tuning: Response Profile . . . . . . . . . . . . . . . . . . . 229

9.5.7 Stress Stiffening Influence Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 229

9.5.8 Distributed Loading for Natural Frequency Manipulation . . . . . . . . . . . . 229

9.5.9 Adaptive Tuned Vibration Absorber . . . . . . . . . . . . . . . . . . . . . . . . 229

Appendices 232

A Continuous Analytical Beam Model 233

A.1 Euler Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

A.2 Natural Frequencies of an Unloaded Beam . . . . . . . . . . . . . . . . . . . . . . . . . 235

A.3 Natural Frequencies of a Beam Under Axial Loading . . . . . . . . . . . . . . . . . . . 236

xii



CONTENTS

A.4 End Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

B The Wheatstone Bridge 239

C Experimental Mass Property Determination 241

Bibliography 241

xiii



List of Figures

2.1 One DOF mass-spring-damper system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Bode and Nyquist plots for the one DOF system in figure 2.1, using unity values for k

and m. Markers on the lightly damped Nyquist plot are spaced at constant frequency

intervals for illustrative purposes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Variation of frequency response with increasing excitation force (F) for a system ex-

hibiting a cubic stiffness characteristic. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Shear stresses and normal stresses in three dimensions. . . . . . . . . . . . . . . . . . . 23

2.5 Two dimensional beam (–) deflected from its nominal position (- -). . . . . . . . . . . 26

2.6 Assembly of elemental stiffness matrices into global stiffness matrix. . . . . . . . . . . 31

2.7 A cantilever beam subject to end load F. The linear elastic strain relations are com-

promised for larger forces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8 Two examples of static structural problems, with force plotted against displacement.

The gradient of the graphs represents the stiffness at any given point. . . . . . . . . . 37

2.9 Illustration of nonlinear axial strain with transverse deflection. . . . . . . . . . . . . . 39

2.10 Coordinate systems used in Jennings’ nonlinear beam analysis. . . . . . . . . . . . . . 42

2.11 Incremental load steps in a non-linear static analysis. . . . . . . . . . . . . . . . . . . . 47

2.12 Newton-Raphson iterations over one load step in a non-linear static analysis. . . . . . 48

2.13 Modified Newton-Raphson iterations over one load step in a non-linear static analysis. 49

2.14 An FRF produced from an ideal impulse response for a system with two natural fre-

quencies. The time domain signal has been discretised to 8 bits, and the figures show

the increase in noise levels when only 25% of the 8 bit range is used compared to 100%. 52

2.15 Example of a Hanning window applied to a sine signal to produce a signal with similar

frequency content but that satisfies the conditions for the Fourier transform. . . . . . . 54

2.16 Stabilisation diagram for a simulated two DOF system. . . . . . . . . . . . . . . . . . 65

3.1 The cross-braced rectangular frame exhibiting static redundancy, with two bolts form-

ing a tensioning mechanism in one of the diagonals. . . . . . . . . . . . . . . . . . . . . 76

3.2 Photograph showing the tensioning mechanism in the redundant frame. . . . . . . . . 77

3.3 The pin-jointed members for the rectangular frame, shown separately and assembled. . 77

3.4 Finite element model of the tensioning mechanism. The figure is not to scale; in par-

ticular, nodes 2 and 3 are coincident in the unloaded FE model. . . . . . . . . . . . . . 77

3.5 Corner joint arrangement in the pin-jointed frame. . . . . . . . . . . . . . . . . . . . . 78

xiv



LIST OF FIGURES

3.6 Experimental arrangement for the pinned frame. . . . . . . . . . . . . . . . . . . . . . 79

3.7 Experimental layout for the pin-jointed frame, showing the shaker attachment points

and the accelerometer locations denoted by +. . . . . . . . . . . . . . . . . . . . . . . 79

3.8 The pin-jointed frame with tensioning member removed. . . . . . . . . . . . . . . . . . 79

3.9 Comparison of the experimental and FE results for the frame with tensioning mem-

ber removed, using frequency and Modal Assurance Criterion correlation techniques

described in section 2.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.10 The three sets of joint interfaces in the interleaved corners of the pinned frame. . . . . 82

3.11 Convergence of the first three frequencies and the corresponding spring stiffness param-

eters as the model is updated, with the tensioning member removed. . . . . . . . . . . 82

3.12 Comparison of the experimental and FE results for the frame, complete with tensioning

member. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.13 Convergence of the first four frequencies and the corresponding spring stiffness param-

eters as the model is updated, with the tensioning member included. . . . . . . . . . . 84

3.14 Variation of the natural frequencies with internal loading in the experimental rig and

several FE configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.15 Variation of the parameters with internal loading for several FE configurations. . . . . 86

3.16 Examples of the corner joints in the welded frame. . . . . . . . . . . . . . . . . . . . . 87

3.17 Experimental configuration for the welded frame tests. . . . . . . . . . . . . . . . . . . 88

3.18 Arrangement of the shaker and accelerometers (denoted with +) for the welded frame

experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.19 Frequency loci in the welded frame under loading. . . . . . . . . . . . . . . . . . . . . 89

3.20 Deformation patterns and buckling modes for the welded frame with idealised conditions

compared to those for a frame with initial curvature in the members. . . . . . . . . . . 89

3.21 Load displacement curves comparing buckling in the idealised and perturbed FE models. 89

3.22 Load-displacement plot for the welded frame using linear, incremental, and full Newton-

Raphson solution methods with large load step increments. . . . . . . . . . . . . . . . 91

3.24 Frequency loci for the welded frame obtained using the linear stress stiffening approxi-

mation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.23 Load-displacement plot for the welded frame using incremental and full Newton-Raphson

solution methods with small load step increments. . . . . . . . . . . . . . . . . . . . . 91

3.25 Discrepancies in the natural frequency results obtained using full NR iterations and a

linear stress stiffening approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.26 Arrangement of the response and excitation points for the FRF studies of the welded

frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.27 FRF of the welded frame measured on longitudinally opposite sides for the zero load

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.28 Waterfall plots showing the variation of FRFs for the welded frame with loading. Ex-

perimental and analytic data for two damping cases. . . . . . . . . . . . . . . . . . . . 93

xv



LIST OF FIGURES

3.29 Contour plots comparing the FRFs over the loading regime, compared with the exper-

imental FRF variations across the loading regime. . . . . . . . . . . . . . . . . . . . . 94

3.30 Examples of regions where the dynamic response can be manipulated to produce ben-

eficial results. Labels refer to excitation and response nodes, as seen in figure 3.31. . . 95

3.31 Locations and numbering of nodes in the FE model. . . . . . . . . . . . . . . . . . . . 96

3.32 Real part of the FRF for the welded frame under loading (–); shown here with the two

significant contributions, from modes 5 (- -) and 6 (-.). Modal damping is 1.2 × 10−3. 98

3.33 Real part of the FRF for the welded frame under loading (–); shown here with the two

significant contributions, from modes 5 (- -) and 6 (-.). Modal damping is 1.2 × 10−2. 98

3.34 Experimental configuration for the damped welded frame. . . . . . . . . . . . . . . . . 98

4.1 A representation of a plane or subspace in the normal coordinate system. The mass-

normalised eigenvectors, shown in white, rotate in approximately the same plane through-

out the veering region. After a 90◦ rotation the eigenvectors have swapped positions,

with one eigenvector 180◦ out of phase with its pre-veering equivalent. . . . . . . . . . 106

4.2 The first 12 modes of the welded frame for the zero load case. . . . . . . . . . . . . . . 107

4.3 Modes 5 and 6 of the welded frame for the zero load case. . . . . . . . . . . . . . . . . 107

4.4 Close examination of the interaction between the fifth(–) and sixth(- -) modes. FE

models use adaptive loadsteps, down to 2.25 N at maximum curvature. . . . . . . . . . 109

4.5 Measured damping ratios for the welded frame. . . . . . . . . . . . . . . . . . . . . . . 110

4.6 MAC correlation between consecutive load steps for modes 5 and 6. . . . . . . . . . . 110

4.7 Mode shape variations as modes 5 and 6 veer: (a) FE Model. (b) Experimental Results.111

4.8 FRFs in the veering region. The analytical models both use uniform modal damping

ratios of 1.2 × 10−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.9 Modal parameter sensitivities to load variation: fifth(–) and sixth(- -) eigenvalue sensi-

tivities, and ℓ2-norms of the fifth(-.) and sixth(..) eigenvector sensitivities. . . . . . . . 114

4.10 Eigenvector rotations of the fifth(–) and sixth(- -) modes in the normal coordinate system.114

4.11 A set of veering eigenvalues, plotted for different ranges. . . . . . . . . . . . . . . . . . 115

4.12 Orthogonal mode shape vectors, for jth and kth modes, transforming into new modes

within their subspace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.13 A geometric interpretation of the cross-sensitivity quotient and modal dependence fac-

tors described by CSQijk = cos2(2β), MDFijk = cos(γi) and MDFkji = cos(γk). De-

picted is a plane or subspace in the normal coordinate system containing two eigen-

vectors φi and φk. These vectors are separated from the veering datum vectors for

that subspace, φi and φk, by angle β. The corresponding eigenvector derivatives are

pictured forming angles γi and γk with the subspace. . . . . . . . . . . . . . . . . . . . 121

4.14 Two degree of freedom spring mass system with light spring coupling, s, between the

two masses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.16 Four degree of freedom spring mass system with light spring couplings s1−3 between

the masses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xvi



LIST OF FIGURES

4.15 2 DOF system plotted for k1 = k2 = 3, m1 = 2, s = 0.0625 and m2 = 1...3. Dotted

lines indicate the half-SCQ parameter bandwidth. . . . . . . . . . . . . . . . . . . . . 123

4.17 4 DOF system plotted for m1 = m2 = m3 = m4 = 1, s1 = s2 = 0.6, s3 = 0.05,

k1 = 0.1 + 0.03δj , k2 = 0.75 + 0.03δj , k3 = 2.2, k4 = 3.2 and δj = 1...150. . . . . . . . . 124

4.18 The 4 DOF system plotted for s1 = s2 = s3 = 0.6. . . . . . . . . . . . . . . . . . . . . 125

5.1 Modal properties of the 2-DOF system plotted with veering peak estimates for varying

values of parameter m2. The vertical dotted line denotes the veering datum. . . . . . . 133

5.2 Eigenvalue separation (–) in the 4-DOF system compared to the estimated minimum

(datum) separation (-.-) for variation of parameter δj , using s1 = s2 = 0.6 and s3 = 0.05.134

5.3 Eigenvalue separation (–) in the 4-DOF system compared to the estimated minimum

(datum) separation (-.-) for variation of parameter δj , using s1 = s2 = s3 = 0.6. 134

5.4 Close examination of the veering frequency loci for the 2nd and 4th modes. . . . . . . 135

5.5 Veering index for modes 2 and 4 in the welded frame. . . . . . . . . . . . . . . . . . . 136

5.6 Cross-sensitivity quotient and modal dependence factors for modes 2 and 4 in the welded

frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.7 Eigenvalue separation of the 2nd and 4th modes in the welded frame, along with the

value estimated using veering approximations. . . . . . . . . . . . . . . . . . . . . . . . 136

5.8 Veering indices for mode 2 with respect to modes 1-10. The prominent indices are

labelled in the legend, while the other indices are close to zero and indistinguishable at

the bottom of the plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.9 The first four frequency loci for the welded frame. . . . . . . . . . . . . . . . . . . . . 137

5.10 Modal coupling factors for mode 2 with respect to modes 1 and 3-7 in the welded frame.138

5.11 The ℓ2 norm of the eigenvector sensitivities for the first seven modes of the welded frame.138

5.12 The eigenvalue sensitivities for the first seven modes of the welded frame. . . . . . . . 138

6.1 Experimentally determined eigenvalue separation of modes 5 and 6 in the welded frame,

squared to give ∆λ2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2 Curve fitting the experimental eigenvalue separation using differing numbers of data

points, and viewed at different scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.3 Veering properties extracted from the experimental data using data points from varying

load ranges, centered approximately about the veering datum ( o ), and chosen values

(- -). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.4 Quadratic curves and eigenvalue loci produced by the mathematical veering model (–),

and the experimental data (◦). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.5 Schematic of the welded frame with labels denoting the weld stiffness parameters in

each corner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.6 Parameter values and convergence history for the welded frame, updated using the

eigenvector rotation rate,
(

dβ
dδK

)−1

, and the veering parameter datum, δK . Dotted

lines indicate experimentally obtained values. . . . . . . . . . . . . . . . . . . . . . . . 152

xvii



LIST OF FIGURES

6.7 Welded joints in the corners; these weld stiffnesses are used as parameters in the model

update. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.8 The eigenvalues of the updated FE model compared to those of the experimental data,

before and after updating. This update was based on the eigenvector rotation rate and

the veering parameter datum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.9 Parameter values and convergence history for the welded frame, updated using the

eigenvector rotation rate,
(

dβ
dδK

)−1

, and the mean eigenvalue at the veering datum, µλ.

Dotted lines indicate experimentally obtained values. . . . . . . . . . . . . . . . . . . . 154

6.10 The eigenvalues of the updated FE model compared to those of the experimental data,

before and after updating. This update was based on the eigenvector rotation rate and

the mean eigenvalue at veering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.1 The Meroform M12 components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.2 Baseline space frame configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.3 The sixteen structural nodes of the space frame; accelerometers for the first set of tests

are attached in the x- and y-directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.4 Experimental modal results from the baseline space frame configuration. . . . . . . . . 160

7.5 Frequency correlation between the analytical and measured test data in the baseline

configuration, before and after model updating. . . . . . . . . . . . . . . . . . . . . . . 161

7.6 MAC correlation between the analytical and measured test data in the baseline config-

uration, before and after model updating. . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.7 FE mode shapes and natural frequencies for the baseline configuration after updating. 162

7.8 A cube built up from a simple configuration with only edge members, through a stat-

ically determinate case with square diagonals, to a redundant structure with a cubic

diagonal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.9 The node and end connectors adapted for the cubic diagonal. . . . . . . . . . . . . . . 163

7.10 The redundant space frame configuration, with reinforcing members in the central section.164

7.11 The cubic diagonal end connector broken into sections for the purposes of FE modelling.164

7.12 Frequency correlation between the analytical and measured test data in the redundant

structure, before and after the cubic diagonal connector stiffness is updated. . . . . . . 165

7.13 Mode shape correlation between the analytical and measured test data in the redundant

structure, before and after the cubic diagonal connector stiffness is updated. . . . . . . 165

7.14 The mode shapes for the FE model with the redundant configuration prior to updating.

The fifth mode is unclear from the angle presented, but is dominated by motion of the

cubic diagonal member in the plane perpendicular to the viewing plane. . . . . . . . . 166

7.15 Location chosen for integration of the actuator in the space frame. . . . . . . . . . . . 168

7.16 The load-displacement curve for the redundant structure indicates the onset of buckling

at around 2850N, where the actuator displacement is roughly 7.5mm. . . . . . . . . . 169

7.17 The waisted beam section used to build the loadcell. . . . . . . . . . . . . . . . . . . . 169

7.18 The actuator and loadcell installed in the space frame. . . . . . . . . . . . . . . . . . . 169

xviii



LIST OF FIGURES

7.19 Closed-loop load control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.20 Step response for the actuator, load cell and PID controller. Dashed lines indicate

rise/fall times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.21 The FE model of the actuator and load cell incorporated into the Meroform beam. . . 170

7.22 Simulink implementation of the frequency estimation algorithm. . . . . . . . . . . . . 171

7.23 Frequency response at the centre of the cubic diagonal member. . . . . . . . . . . . . . 172

7.24 Experimental response contour plots: light regions represent high response and dark

regions represent low response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.25 Full adaptive vibration control system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.26 Space frame suspended by bungee cords, with the actuator mounted at the top. . . . . 173

7.27 Time histories of the response measured on the cubic diagonal. The horizontal axis

labels indicate the excitation frequency (found by dividing the time in seconds by 5). . 174

7.28 The response of the adaptive structure compared to that of the passive structure on a

logarithmic scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.29 Frequency loci from the FE model for the redundant frame. . . . . . . . . . . . . . . . 176

7.30 Mode shapes from the FE model of the redundant structure with the actuator included. 177

7.31 The axial load distribution in the space frame under actuation. . . . . . . . . . . . . . 178

7.32 The new stiffer end connector for the cubic diagonal member: similar to the standard

connector but with a small diameter at the contact surface due to space limitations. . 178

7.33 The space frame configurations used in the follow-up study. . . . . . . . . . . . . . . . 178

7.34 Fully redundant space frame, with the shaker attachment seen in the bottom left corner.178

7.35 The timing system for the load demand output, including a disable switch which is

triggered at the end of the test to turn off the test equipment. . . . . . . . . . . . . . 179

7.36 Spectral response of the space frame at response points on the left, central and right

cubic diagonal members as viewed in figure 7.33. Accelerometers are located in the

vertical and horizontal planes, and the plots from left to right represent: left, vertical;

left, horizontal; central, vertical; central, horizontal; right, vertical; right, horizontal. . 180

7.37 Spectral response of the space frame for the final two configurations. Charts represent

response points on the left, central and right cubic diagonal members as viewed in

figure 7.33. Accelerometers are located in the vertical and horizontal planes, and the

plots from left to right represent: left, vertical; left, horizontal; central, vertical; central,

horizontal; right, vertical; right, horizontal. . . . . . . . . . . . . . . . . . . . . . . . . 181

7.38 Passive RMS response measurements for the binary actuation study on the space frame,

measured at the centre of the outboard cubic diagonal member, perpendicular to the

beam in the horizontal and vertical planes. Vertical lines indicate the chosen actuation

change points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.39 RMS response measurements for the binary actuation study on the space frame. Results

with the adaptive control enabled are compared to the passive responses, measured at

the centre of the outboard cubic diagonal member, perpendicular to the beam in the

horizontal and vertical planes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

xix



LIST OF FIGURES

7.40 Passive RMS response measurements for the second binary actuation study on the space

frame. Vertical lines indicate the chosen actuation points. . . . . . . . . . . . . . . . . 184

7.41 RMS response measurements for the second binary actuation study on the space frame. 184

7.42 RMS response measurements for the second binary actuation study on the space frame. 184

7.43 The drive frequency estimation as recorded throughout the final test of the space frame.186

7.44 The load demand throughout the final test. . . . . . . . . . . . . . . . . . . . . . . . . 186

7.45 The spectral response of the space frame throughout the final test. Light regions

represent high response and dark regions low response. Inadequate sampling frequency

in the saved data is responsible for the aliasing in this plot. . . . . . . . . . . . . . . . 186

8.1 Influence of stress stiffening in each of the beam elements on the eigenvalue of each mode.194

8.2 Actuator locations in the spaceframe for the sensitivity studies. (A) is the location

used for previous studies, (B) is the cubic diagonal member and (C) is the horizontal

member at the front centre of the structure. . . . . . . . . . . . . . . . . . . . . . . . . 195

8.3 Photographs of the Lynx Mk 7 used in preliminary experimental tests. . . . . . . . . . 198

8.4 Full model of the lynx helicopter airframe, as imported into ANSYS. . . . . . . . . . . 199

8.5 The FE model of the Lynx tail boom imported into ANSYS. . . . . . . . . . . . . . . 199

8.6 Enlarged view of the RBE3 elements connecting the tailplane and the tail rotor hub

(modelled as a point mass) to the fin. . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

8.7 Comparison of the modal results from the ANSYS and Nastran FE models of the Lynx

tail boom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.8 Comparison of the experimental modal results for the Lynx tail boom with the ANSYS

and Nastran FE models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.9 Modal results from the ANSYS FE model of the Lynx tail boom. . . . . . . . . . . . . 202

8.10 Wireframe view of the tail boom model, showing enlargements of the tensioning wire

attachment points, at the root centre and reinforced aft bulkhead. . . . . . . . . . . . 204

8.11 First buckling mode of the initial tensioning wire configuration. . . . . . . . . . . . . . 205

8.12 First buckling mode of the tail boom with the bulkhead reinforced for the tensioning

wire attachment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8.13 The first 38 frequency loci of the tail boom with the axial tensioning wire, loaded up

to the first buckling load. Mode tracing has not been employed in the production of

this plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

8.14 The 8c struts connecting the fin to the main tail boom in the FE model. . . . . . . . . 207

8.15 Photograph of the 8c struts spanning the corner between the fin and tailboom. . . . . 208

8.16 Attachment points for the tensioning wire in the fin. . . . . . . . . . . . . . . . . . . . 209

8.17 First buckling mode for the fin under compression. . . . . . . . . . . . . . . . . . . . . 210

8.18 First buckling mode with the 8c strut under tension. . . . . . . . . . . . . . . . . . . . 210

8.19 Detailed region of the frequency loci for the main tail boom tensioning wire arrange-

ment, with refined load steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

8.20 Textbook tuned vibration absorber example. . . . . . . . . . . . . . . . . . . . . . . . 212

xx



LIST OF FIGURES

8.21 FRFs for the primary system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

8.22 FRFs for varying TVA stiffness values. . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

8.23 FRFs for varying TVA stiffness values. TVA mass is 0.1. . . . . . . . . . . . . . . . . . 213

8.24 FRFs for varying TVA stiffness values. TVA mass is 0.01. . . . . . . . . . . . . . . . . 213

8.25 Example of three veering frequency loci, using two different tensioning cable profiles. . 214

8.26 Frequency loci of the tail boom with the eccentric tensioning wire. . . . . . . . . . . . 215

8.27 The excitation point for the response plots on the lynx tail boom. . . . . . . . . . . . 215

8.28 Waterfall plots showing the variation of the FRFs with load, up to 30% of the first

buckling load. Captions indicate excitation-response. . . . . . . . . . . . . . . . . . . . 218

8.29 Response contours for the tail boom for loads spanning 30% of the first buckling load.

Light regions denote high response. Captions indicate excitation-response. . . . . . . . 219

8.30 Waterfall plots for the 18 Hz mode. Captions indicate excitation-response. . . . . . . . 220

8.31 Response contours for the 18 Hz mode. Light regions denote high response. Captions

indicate excitation-response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

8.32 Illustration of the 18 Hz modal interactions mimicking a traditional TVA. Captions

indicate excitation-response points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

8.33 Examples of suitable response regions for TVA implementation. Antiresonances bisect

the natural frequencies in the highlighted regions. . . . . . . . . . . . . . . . . . . . . . 221

8.34 Response contours for the 0–5 kN range. . . . . . . . . . . . . . . . . . . . . . . . . . . 222

A.1 Slender beam with pin jointed end constraints, subject to an axial compressive load . 234

B.1 Wheatstone Bridge configurations. In all cases the bottom right resistor is an an active

strain gauge, while the plain boxes represent ordinary dummy resistors. . . . . . . . . 240

C.1 Two of the configurations used for determining the location of the centre of mass for

the actuator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

C.2 Illustration of the quantities used in the centre of mass calculation for the actuator. . 242

C.3 The actuator sitting on the trifilar plate in the arrangement used for determining the

mass moment of inertia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

C.4 The coordinate system used for the actuator when defining the inertial properties. . . 242

xxi



List of Tables

7.1 Properties used in the FE model of the Meroform space frame, including the updated

properties denoted by ∗. (Starting values for the updated properties are indicated in

brackets.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.2 Actuator inertial properties and coordinate system definition. . . . . . . . . . . . . . . 170

8.1 The first nine frequency sensitivities for the actuator configurations shown in figure 8.2 195

8.2 The first twenty frequency sensitivities for the Lynx tail boom with axial tensioning wire.204

8.3 The frequency sensitivities for the first nine tail boom modes, along with the corre-

sponding loads required to produce 1% and 2% changes in each of the frequencies. . . 207

8.4 The buckling loads and frequency sensitivities for the first nine tail boom modes, with

three different loading configurations. The nominal frequencies listed are those for the

baseline tail boom configuration, before adaptation for the attachment of tensioning

wires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

xxii



Chapter 1

Introduction

1.1 Structural Dynamics

In modern engineering the dynamic properties of a structure are every bit as important as its static

characteristics and often more so. Where once the design process might only have been concerned

with the primary load bearing function and static failure loads, contemporary projects must take into

consideration the vibrational characteristics with regard to both function and failure. This trend is

only increasing with the development of stronger, more lightweight materials, and with the higher

demands of state-of-the-art constructions.

The need for dynamic analyses is prevalent across engineering disciplines. For example, traditional

civil structures are faced with the potentially catastrophic effects of wind [1–3], waves [4–7] and seismic

activity [8–11]. People-carrying structures such as bridges [12–14] and stadia [15–18] can even suffer

from the unpredictable syncronicity of human interactions.

Fundamentally, the problem is one of resonance: all structures have natural frequencies, and if an

external forcing is applied that coincides with a natural frequency then the structure will experience

exceptionally high magnitudes of vibration as it resonates. These large displacements and forces can

cause discomfort (in the case of people-carrying structures or vehicles), produce operational errors,

and lead to structural failure either directly or through fatigue.

In many cases the dynamics of the structure will be coupled with the excitation force, further compli-

cating the analysis. Examples can be found in the literature cited above with relation to wind, oceanic,

and human excitation. One of the best known examples of this phenomenon is that of aeroelasticity

in aerofoils. In this case the coupling between aerodynamic, elastic and inertial forces in wings and

rotor blades can lead to oscillatory instabilities known as flutter [19–21].

In fact, aircraft are particularly susceptible to vibration problems in general. They are necessarily

lightweight and flexible structures, and subject to draconian design constraints which limit the avail-

able mitigation strategies. The difficulties are compounded in rotorcraft by the disagreeable nature
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of their operation: helicopters don’t fly, they beat the air into submission. Whilst the former is not

strictly true, the latter offers a fair appraisal; helicopters seem to fly not because of the laws of physics

but despite them. In contrast to aeroplane wings, which generally encounter a steady stream of clean

laminar airflow, helicopter rotor blades are constantly travelling in the wake of the preceding blade,

and interacting with the trailing vortices [22]. It has been shown that this blade-vortex interaction

is responsible for the majority of cabin noise created by a helicopter in descent or manouevering

flight [23, 24]. Even in the absence of vortices and blade wake, a helicopter in forward flight will

experience periodic airflow variation over the blades as they regularly advance into the oncoming air

then retreat away from it. Supplement this environment with higher harmonic and unsteady aerody-

namic excitations, and out-of-balance forces, and the scale of the difficulties to be surmounted becomes

apparent.

The importance of overcoming vibration problems in rotorcraft is twofold: firstly, the large number of

safety-critical parts must be protected from failure. It has been demonstrated that helicopter reliability

can be directly linked with vibration levels [25]. Secondly, passengers must be kept comfortable and,

more importantly, pilots must be protected from fatigue and injury [26]. A third consideration is the

growing significance being attached to the adverse effects of helicopter acoustic noise levels on the

spotted owl population of Mexico [27].

This thesis is concerned with the suppression of fuselage vibrations in rotorcraft. In support of these

endeavours, this chapter first reviews the state of the art in general response suppression methods

and discusses new avenues being opened up by smart materials before focusing on rotorcraft vibration

mitigation strategies. The remaining sections of the chapter explore the open problems suitable for

further investigation, detail the path taken in this thesis, and offer some comments on the work

contained herein.

1.2 Response Suppression

By far the most straightforward method of vibration suppression is to avoid exciting the structure in

the first place: either by eliminating the source or by ensuring its frequency does not coincide with

structural resonances. In rotorcraft applications, neither of these options is available: the source of

the vibration is also the thing that keeps it in the air, and the rotor frequency is fixed according to

blade stressing and modal response criteria. The excitation is therefore predetermined, occurring at

the rotor frequency, the blade pass frequency, and multiples thereof.

It thus falls to structural modifications and enhancements to reduce the vibration levels experienced.

Vibration control methods fall under three broad headings: passive, active, and semi-active. In

addition, all three may be tuned using adaptive techniques. Adaptive-passive methods will be singled

out as a distinct approach in the discussions that follow, because of the fundamentally different

configuration they demand compared with purely passive implementations.
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1.2.1 Passive Methods

Passive methods are the simplest and generally the most robust. They can be further divided into

four categories: design, damping, isolation, and undamped vibration absorption.

The first of these is seemingly trivial yet immensely important. One of the oldest tactics for redressing

vibration problems is to design the structure such that the natural frequencies lie outside the range

of typical excitation frequencies, and to ensure that sensitive parts are not subjected to the worst of

the vibrations by careful consideration of the node locations.

Where the problem is not easily solved with such an approach, the most ubiquitous solution is to

add damping. Hydraulic dampers, sometimes known as shock absorbers, are in widespread use.

The damping force provided by these devices depends upon the piston configuration and the fluid

velocity. More specifically, it depends upon the Reynolds number of the fluid flow: laminar flows are

associated with linear force-velocity relationships, while turbulent flows tend to produce quadratic

relationships [28]. As a sweeping generalisation, the former is produced by fit clearance between

cylinder and piston, representing the textbook viscous dashpot, while the latter is characteristic of a

piston orifice.

Another approach to damping is through the use of viscoelastic (VE) materials. Examples are given

by Shen et al. [29], who use experimental data to model VE dampers in the form of a VE material

bonded with steel plates. An obvious advantage of these dampers is their practical simplicity, although

the analysis is far from simple; their mechanical properties are strongly dependent on both frequency

and temperature. Two application methods are favoured: free-layer and constrained-layer damping

(CLD) [30]. The former consists of a single layer of VE material bonded to a surface; energy is

dissipated through the extension and compression of the VE layer as the surface bends. CLD, referred

to in these circumstances as passive CLD (PCLD), is comprised of a layer of VE material sandwiched

between the structural surface and a third constraining layer. In this case energy is dissipated through

shear strains in the VE layer, producing higher damping levels than the free-layer configuration.

If the source of the vibrations and the structure to be protected lie in distinct regions, it may be more

effective to isolate one or the other. In this way vibrations are not necessarily reduced overall but

are instead confined to an acceptable locale. Examples of this approach can be seen in car engine

mounts [31], industrial turbomachinery [32] and on a larger scale in buildings subject to seismic

excitation [33]. This is typically achieved with elastomeric supports, although Buckle [33] discusses

other options for isolating bridges and buildings including air cushions, coil springs, and mechanical

configurations such as rollers, sliding plates and cable suspensions.

The undamped vibration absorber (UDVA) is alternatively refered to as a tuned vibration absorber

(TVA), a dynamic vibration absorber (DVA), or a tuned vibration neutraliser (TVN). It was first

patented in 1911 by Hermann Frahm [34], and its operation is outlined by Ormondroyd and Den

Hartog [35]. Ozer and Royston [36] explain how the method is extended from single- to multi-degree-
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of-freedom systems. In their simplest form the devices are comprised of a mass which is attached by

a spring to the component to be “damped”. The spring-mass arrangement can be tuned such that

the resonant response peak of the component will be replaced by an antiresonance at the point of

attachment, so that in theory all response will be cancelled at that frequency. The trade-off is that

the vibration is transferred to the TVA. Contrary to popular misconception, however, the response

of the TVA is not a resonant response and is far less severe than the component response that it

suppresses. In practice, instead of using a spring the restoring force is sometimes provided by gravity,

centrifugal force, or any other available method.

Tuned mass dampers (TMDs), as discussed by Sadek et al. [37] in the context of seismic excitation,

incorporate damping in a modified TVA arrangement, offering an improved response to wideband

excitation at the expense of narrowband performance. Tuned liquid column dampers (TLCDs) [38]

operate on a similar principle but use a liquid for both the mass and damping element, with gravity

providing the restorative force.

Other passive methods may not fall neatly into any of the above categories; for example the moment-

cancelling device proposed by Nagaya et al. for tackling seismic vibration reduction in multistory

buildings [39], which uses gearing to apply appropriate cancellation forces in response to excitations.

1.2.2 Active Methods

The drawback of passive methods is that they all involve a compromise. For example, damping re-

duces the resonant response at the expense of increased response away from the natural frequencies.

Isolation reduces structural rigidity and strength. TVAs produce favourable results at a given excita-

tion frequency but replace the original resonant peak with two distinct peaks either side. In summary,

passive methods can only be optimised for a single set of operational conditions. Under variable

excitation conditions, or changing configurations, active solutions provide unique benefits over their

passive counterparts. The general principle is that, based upon some form of state feedback (usually

force, acceleration or displacement), forces are fed into the system to counteract the vibrations. Wagg

et al. [40] devote a chapter to active vibration control strategies.

There are three main configurations for the application of control forces: they can be applied between

the structure and a separate, nominally rigid structure; they can be applied between two points of the

structure itself; or they can be applied between the structure and a supplementary inertial element.

The latter is a similar concept to that of the tuned mass dampers, and it turns out to be the most

convenient to implement in many cases.

Active tuned mass dampers (ATMDs), or active mass dampers (AMDs), were first proposed by Chang

and Soong [41], who placed an actuator between the mass and the structure to improve the results

from a non-optimal TMD using velocity feedback. Chang and Yang [42] later showed that the results

could be further improved using complete feedback (displacement, velocity and acceleration), and that
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this method also demands a lesser control force of the actuator. The devices are sometimes referred to

as hybrid DVAs as they will continue to function as DVAs when the actuator is inactive. Burdisso and

Heilmann [43] discuss a variation on this arrangement, consisting of two parallel DVAs connected to

one another via an actuator. They compare theoretical results with experiments and conclude that the

modified arrangement approximately halves the control effort required to achieve a similar vibration

attenuation. Olgac and Holm-Hansen [44, 45] take another novel approach, using delay and gain on a

positional feedback to cancel the damping effects in an AMD, thus improving on the tuned response.

In civil applications, Lee-Glauser et al. [46] propose a combination of passive base isolation, in the

form of a laminated rubber bearing (LRB), and active forcing using a counterweight on the roof of a

multistory building to reduce base displacements in response to representative seismic motion. Okada

and Okashita [47] investigate the use of adaptive parameters in an active TMD to suppress elevator

vibrations, and perform experimental tests of the scheme on a 1 DOF system. Gu and Peng [48]

describe analytic and experimental investigations into the use of adaptive feedforward controllers in

conjunction with active mass dampers on a building subject to aeroelastic wind excitation.

Placing actuators within a structure allows the manipulation of the poles to lie anywhere in the

complex plane, within reason, thus determining the behaviour of the system. In this case inverse

eigenvalue methods can provide an analytical framework for determining an appropriate controller.

Mottershead and Ram [49] give a review of the topic with respect to both active and passive systems.

Pole assignment, or eigenvalue assignment (EVA) algorithms are described in early papers by Miminis

and Paige [50] and Patel and Misra [51], and numerous adaptations and improvements on the methods

have been offered in the interim, including full eigenstructure assigment techniques, for example that

of Inman and Kress [52]. An example of their implementation is given by Tang and Wang [53], who

use active elements to provide vibration confinement. Kerber et al. [54] discuss other control strategies

for active vibration suppression with respect to a six degree of freedom analytical model, and conclude

that the H∞ controller produces excellent results.

Using actuators as connectors between substructures presents the possibility of active vibration isola-

tion. Bohn et al. [55] successfully apply active isolation to car engine and drive train mounts, using a

single sensor, a state observer, a disturbance model and pre-computed observer gains. Daley et al. [56]

use electromagnetic actuation in an active isolation scheme to prevent marine machinery from exciting

hull resonances. Karnopp [57] discusses vibration isolation using both active and semi-active meth-

ods, focusing on a popular analysis method known as the skyhook damper. In an earlier paper [58], he

considers the advantages of semi-active methods and reviews the design principles for this approach.

1.2.3 Semi-active Methods

An unappealing facet of active control systems is that the addition of forces to the system creates

the possibility of negative damping and dynamic instability. This point is clearly illustrated by the

ability of EVA methods to place the poles anywhere in the complex plane, including both sides of
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the imaginary axis. An alternative option which has received much attention in recent years is that

of semi-active methods. These do not directly apply forces to the structure but induce forces by

modifying the behaviour of structural components: generally the damping and stiffness elements.

They have more modest power requirements than active methods, and because they do not add

energy to the system the techniques can guarantee stability. Jalili [59] explores the theory behind

semi-active vibration control and compares some different systems. Symans and Constantinou [60]

give a summary of passive, active and semi-active ideals as a background to a thorough review of

semi-active control systems, with particular regard to protecting civil structures.

The tools of the trade for these methods include: variable stiffness elements, such as the variable

fulcrum device proposed by Margolis and Baker [61], and the leaf spring and lead screw arrangement

of Walsh and Lamancusa [62]; variable damping elements, such as variable orifice dampers [63]; and

variable mass arrangements such as that employed in the adjustable inertia absorber of Jalili and

Fallahi [64].

Haroun et al. [65] implement semi-active damping control in TLCDs using variable orifices, augmented

with pressure control, to produce hybrid liquid column dampers (HLCDs). They cite numerical results

showing that the HLCDs provide a marked improvement in building response suppression over TLCDs

over a range of response conditions. Stammers and Sireteanu [66] demonstrate the application of a

controlled friction device in vibration attenuation and consider its advantages over a variable viscous

damper, including higher achievable forces at low velocities and zero forces at any velocity. Liu et

al. [67] compare four different semi-active contol methods to an adaptive-passive damping scheme

and review their performance. Their results favour the skyhook damper concept over the others

presented. Some intricacies of such isolation schemes are explored by Ahmadian [68], in particular the

question of how semi-active methods can achieve isolation below the passive
√

2ω0 limit. Returning

to civil applications, Wongprasert and Symans [69] give experimental and analytical evaluations of a

semi-active building base isolation system combining LRBs and variable-orifice fluid dampers.

Although limited in the range of forces they can apply, in many situations semi-active methods are

capable of matching the performance of their fully active counterparts.

1.2.4 Adaptive-passive Methods

Adaptive-passive methods take advantage of the same physical devices used for semi-active control.

While semi-active methods operate on similar principles to active methods, however, reacting with

similar bandwidth to the vibrations they intend to suppress, adaptive-passive methods vary the struc-

tural configuration at a much slower rate, simply tuning it to the optimal parameter values for the

prevaling excitation conditions. These have the most humble energy requirements of all three ap-

proaches, and produce a well-conditioned response. The majority of the literature on adaptive-passive

methods focuses on their application to TVAs and TMDs.
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Franchek et al. [70] present a black-box control strategy for adaptive tuning of a TVA using a variable

stiffness component. Buhr et al. [71] extend this to a non-collocated vibration control problem. Liu

and Liu [72] perform experimental studies of an online-adjustable TVA, using an electromagnet acting

as a variable spring stiffness. They use frequency spectral analyses to track the excitation frequency

and adaptively tune the TVA accordingly. Liu et al. [73] use a cantilever beam as the spring in a TVA,

and vary its stiffness by positioning a support with a lead screw actuation system. They investigate

two autotuning methods, differing in their excitation frequency identification approach. Bonello et

al. [74] create a TVA using curved plates as the spring elements; the stiffness of these plates in the

direction of motion is tuned by adjusting their curvature. Varadarajan and Nagarajaiah [75] create a

semi-active variable stiffness device comprised of four springs in a plane rhombus configuration, where

mechanically changing the aspect ratio of the rhombus varies the effective stiffness of the device. They

use this to implement an adaptive-passive TVA capable of tracking the dominant response frequency

of a high-rise building and present analytical results. Brennan and Dayou [76] discuss TVAs with

focus on the benefits of tuned and detuned absorbers on local and global vibrations. They consider

the ramifications of their findings with respect to adaptive absorbers and compare the expected results

with those of an active absorber. In an aerospace application, Smith et al. [77] discuss the testing

of adaptive stiffness floor mounts for the attenuation of general vibrations in cargo aircraft. Their

method is akin to using the cargo as the reactive mass in an adaptive TMD.

Some examples of adaptive isolation can also be found in the literature. Khorrami et al. [78] propose

an isolation system for launch vehicle payload supports, optimising the vibration isolation for varying

quasi-static accelerations in different launch stages. Kim and Singh [79] discuss adaptive-passive engine

mounts for automobiles and compare analytical performances with purely passive mounts. Addressing

a less familiar application, Li et al. [80] give an analytical and experimental treatment to an adaptive

method of isolating vibrations in travelling belts by means of controlling the force on a tensioning

wheel.

1.2.5 Ambiguous Methods

Some vibration control methods are difficult to properly classify. A good example is that of active

constained layer damping (ACLD) [81–83]. The technology is similar to standard PCLD but with the

passive constraining layer replaced by an active piezoelectric element. The combination provides both

passive and active vibration suppression. Although the use of the actuator in this manner technically

qualifies the technique as active, its effectiveness is reduced by the VE layer. The real advantage of

the method is that the actuation can increase the shear strains in the material and thus augment the

damping. In this regard it bears more similarity to a semi-active method.

Another ambiguous case is proposed by Chawla et al. [84], in the form of axially-actuated members

in truss structures. It is suggested that these are used to limit the maximum axial loads, increasing

damping by simulating perfect plastic deformation above a given load. Although the devices are

7



1.2. RESPONSE SUPPRESSION

capable of dynamic actuation, thus constituting an active method, Chawla et al. assert that no

energy need be supplied by the actuators as the forces are all attributable to the structural motion. In

this mode the actuators could be considered to be variable stiffness elements, resembling semi-active

control methods.

Nakano et al. [85] investigate the possibility of creating a self-powered active vibration control device,

where instead of merely dissipating vibration energy, the actuator stores any surplus energy and uses

it in the parts of the cycle where power is required. Although based on active techniques, the device

they construct cannot contribute energy to the system and thus is strictly speaking only semi-active.

As an analogy, a spring functions in a similar manner, storing energy in one part of a cycle and

releasing it in another. The experiments employ an electromechanical device which converts kinetic

energy to electrical for storage. Scruggs and Iwan [86] describe a comparable device but instead of

storing energy for use in active techniques, they suggest that the equipment can be switched between

active and semi-active modes of operation, dependent on the availability of external power.

1.2.6 Smart Materials and Technologies

New materials and technologies are paving the way for advanced control methodologies. These devel-

opments are providing opportunies for exploiting vibration control in novel applications, such as the

snowboard and mountain bike implementations of pasive piezo-electric damping and adaptive orifice

hydraulic dampers discussed by Yoshikawa et al. [87]. Spencer and Nagarajaiah [88] review many of

the available smart technolgies with regard to semi-active control.

Solid-state actuators have gained popularity in recent years due to their simplicity, light weight, low

power consumption and high force capabilities. Because they contain no moving parts the devices are

easily scaled, have minimal space requirements, and exhibit high reliability. Piezo-electric elements

can produce extremely high forces, although only with small displacements [89]. Magnetostrictive

alloys can achieve strains of 10–15 times those of piezoelectric elements [90]. Shape memory alloys

(SMAs) can achieve much larger displacements, up to 50 times those of piezoelectrics [91], albeit under

smaller loads. Their operation is also based upon temperature cycling, and is thus heavily dependent

on external temperatures and unsuitable for high frequency applications.

Burke and Hubbard [92] demonstrated the active control of a distributed piezo-polymeric actuator

layer applied to the surface of a flexible beam, improving the effective damping by varying the voltage

in both the time and spatial domains. Baz et al. [93] perform a simlar study by attaching SMA wires

to a polymethyl methacrylate sheet, and Zhang et al. [94] detail the fabrication and stiffness testing

of composite plates with embedded SMAs. Using a comparable setup, Han et al. [95] employ piezo-

ceramic actuators and piezo-film sensors and report improved dynamic response of the first bending

and torsional modes. This is achieved with a linear quadratic Gaussian controller using a Kalman

filter as observer. A less academic demonstration is provided by Guan et al [96], who use piezo-

electric stack actuators acting on a shaft bearing in a transmission housing to reduce gearbox noise by
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as much as 8dB. Demonstrating an application of magnetostrictive materials, Geng and Haynes [90]

employ Terfenol-D linear actuators to create a six degree of freedom active vibration isolation device

based on Stewart platforms. Using a feedforward controller in conjunction with an adaptive finite

impulse response filter (FIR) and least mean squares (LMS) algorithm they report 30dB of vibration

attenuation.

Focusing now on semi-active techniques, variable damping can be provided by electrorheological (ER)

and magnetorheological (MR) fluid dampers, where the viscosity of the fluid may be adjusted by

applying electric or magnetic fields respectively. The latter is favoured due to its superior performance

in light of the limitation imposed by the electric field breakdown in ER dampers [91]. Dyke et al. [97]

discuss the use of semi-active MR dampers in seismic response suppression in buildings. Ok et al. [98]

incorporate MR dampers in a cable-stayed bridge simulation and use historic seismic data to test a

fuzzy logic controller, obviating the need for separate adaptive and primary force controllers. Tackling

some practical considerations, Sodeyama et al. [99] describe the development and testing of a large-

scale MR damper for use in general civil structures. Another experimental demonstration is given

by Christenson et al. [100], who use real time hybrid numerical-physical testing techniques to apply

semi-active control of MR fluid dampers to a three-story steel frame structure. Opting instead for

electrorheological fluid dampers, Choi and Kim demonstrate their capabilities with regard to a semi-

active skyhook car damping configuration, both analytically [101] and experimentally [102].

Smart materials are equally well suited to adaptive-passive implementations. Williams et al. [103]

describe the modelling of an adaptive TVA using the variable elastic modulus of SMAs to adjust the

absorber parameters, and Rustighi et al. [104] present an experimental demonstration of the same.

Flatau et al. [105] use a similar idea, this time in experimental testing of a magnetostrictive material

based adaptive TVA. Taking another approach, Ketema [106] provides analytic studies to endorse the

use of the temperature dependence of viscoelastic materials to create an adaptive TMD device.

1.3 Rotorcraft Implementations

Jackson and Grimster [107] give an overview of the sources of vibration and noise in helicopters. As

touched upon in section 1.1, the primary source of vibration in rotorcraft comes from the main rotor

assembly. The blades are subject to complex aeroelastic forces [108, 109] which are transmitted via the

hub to the fuselage. The primary concern is in reducing the levels of vibration that reach the cabin.

As mentioned at the outset, an obvious solution is to vary the rotor speed to achieve the best response

characteristics. This is currently not an option, however, so to this end one of three methodologies

can be adopted: the source of vibration can be addressed by controlling the aerodynamic forces on the

blades, the vibration can be isolated at the blade root or rotor hub, or vibration control techniques

can be applied in the fuselage itself.

To this day, the majority of helicopters use only passive response suppression methods. The hub
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excitation is dominated by the rotor and blade pass frequencies, so the fuselage is designed with no

resonances in these ranges. This alone, however, is not enough. Some efforts have been made to

tackle the issue in the design of the blade assembly, for example the blade-to-blade dissimilarity ap-

proach of Tauszig and Gandhi [110]. Other passive vibration control methods include lag dampers

(hydraulic [111] or elastomeric [112]) to solve the problem of ground resonance [113], bifilar vibration

absorbers [25, 114, 115] to mitigate in-flight vibrations, and rotor isolation systems using traditional

flexible supports [116] and more sophisticated inertial force-cancelling antiresonant suspension de-

vices [117, 118]. TVAs are also employed in aircraft, and Fuller et al. [119] perform an analytical

study of aircraft cabin noise to show that detuned absorbers give better noise reduction performance

than tuned absorbers do in terms of reducing the propeller noise.

Pearson et al. [120] give a comprehensive overview of both the passive and active rotorcraft vibration

suppression methods available towards the end of the twentieth century. They highlight the drawbacks

of passive devices, such as their high weight penalties and performance limitations. In particular they

are only capable of responding to local response conditions, and even when tuned their frequency

response is usually a compromise. Active devices offer the promise of improvements over these con-

figurations. Yu et al. [121] offer a review of active technologies with a focus on noise attenuation,

and Fuller and von Flotow [122] give a broad perspective on the field of active noise and vibration

suppression.

In rotorcraft the vibration control problem is somewhat simplified by the nature of the force generation.

For steady flight conditions the predominant aerodynamic loads will be periodic at harmonics of the

rotor frequency. This facilitates adaptive schemes which first measure the disturbances and then

adjust to compensate. In this manner, after a brief adjustment period the controller can compensate

with relative certainty, and may take advantage of methods which are not available in unpredictable

transient conditions. Bittanti and Cuzzola [123] discuss this model and go one step further, introducing

a gain scheduling controller to select known control parameters based on forward flight velocity.

Daley et al. [124] also discuss an implementation of these so-called repetitive control approaches, and

introduce an innovative use of piezo-electric actuators to create a device with variable stiffness and

damping. They refer to the mechanism as a smart spring.

Much of the early active vibration research concentrated on controlling the aerodynamic forces on

the blades. These are controllable in the flap direction by means of blade pitch variation. Helicopter

flight is governed by means of collective (constant) and cyclic (once per revolution, or 1R) pitch

manipulations, in addition to the yaw control which is usually achieved with tail rotor thrust. Active

pitch control focuses on the vibrations above the 1R frequency, and thus should not interfere with the

pilot controls.

The pilot instructions are most commonly conveyed to the rotating blade assembly by means of a

swash plate. One of two schemes may be employed, applying the active control above or below the

swash plate. The latter applies a proportional adjustment to each blade simultaneously and operates

at harmonics of the fundamental rotor frequency. It is known as higher harmonic control (HHC).

10



CHAPTER 1. INTRODUCTION

An example is given by Nguyen and Chopra [125] who present an analytical investigation of HHC in

hingeless rotors. Lovera et al. [126] and Patt et al. [127] discuss different HHC algorithms. Applying

the active control above the swash plate provides the freedom to vary each blade’s pitch individually,

and is known as individual blade control (IBC). An advantage of IBC is that it can tackle broadband

vibration problems and not just rotor harmonics. Norman et al. [128] and Jacklin et al. [129] detail

wind tunnel tests of a UH-60 blackhawk rotor system with IBC actuators replacing the pitch links.

Bittanti and Cuzzola [123] discuss another candidate control system for IBC.

Both HHC and IBC methods are intended to augment the main controls, although HHC may be

implemented using the same actuators that apply the main control forces. Despite the theoretical

separation of flight and vibration control forces, however, both systems lie in the primary control path

and have the capacity to interfere with the primary control functions; if the active system were to fail or

malfunction then the helicopter may become uncontrollable. This generates significant airworthiness

concerns. For this reason a lot of interest has been generated by the prospect of trailing edge flaps, or

flaperons, on the rotor blades. These alter the dynamics of the aerofoil enough to generate oscillatory

force cancellation but without direct interference with the primary controls. They can be used to

apply control as per HHC or IBC methodologies. Nixon et al. [130] tested HHC on a tiltrotor model

in a windtunnel to demonstrate the attenuation of vibrations at the 1R and 3R frequencies (rotor

frequency and blade pass frequency) using a combination of active flaps and full swash plate control.

Koratkar and Chopra [131] perform open- and closed-loop wind tunnel tests on a rotor assembly

with piezo-electric bender trailing edge flaps and a neural-network contol algorithm. Modern smart

materials also present opportunites for morphing blades; Wilbur et al. [132] conduct wind tunnel

experiments on rotors with embedded piezo-electric active fibre composite actuators providing blade

twist. They use both collective and IBC control methodologies and report improvements in dynamic

response.

Another approach which can be applied to the rotor blades is that of semi-active control. Chen et

al. [133] implement a smart spring in a helicopter blade root and use a filtered-x LMS algorithm

to test the effects of semi-active control on the torsional (pitch) response to mechanical excitation.

Anusontri-Inthra and Gandhi [134] show that reductions in response levels can be achieved with

semi-active stiffness elements at the blade root in both the flap and lag directions.

The discussion thus far has concentrated on rotor flap motion, with little regard for lead/lag motion.

Lag dampers are included on articulated rotors with more than two blades, primarily to inhibit ground

resonance. They are not helpful in general flight conditions however, and can lead to unnecessary peri-

odic forcing. This arises mainly from the Coriolis forces that couple the flap and lag motions. Gandhi

et al. [135] investigate a semi-active treatment using magnetorheological (MR) dampers to improve

the response while maintaining the necessary damping for ground and flight transition conditions.

Wei and Pinqi [136] also use MR dampers but they focus on improving ground resonance attenuation

with an adaptive feedforward controller in the form of a neural network adaptive filter and adaptive

inverse control [137]. A practical demonstration is provided by Hu and Wereley [138], who detail the

11



1.4. OPEN PROBLEMS

laboratory implementation of a hybrid MR-elastomeric damper designed for rotorcraft deployment.

Isolation methods have received less attention than the technologies described above. An early patent

for an active isolation device between the rotor shaft and the fuselage was filed by Scharton and

Bies [139]. Due to actuator limitations of the era they cite a need for a hybrid active-passive system

with the passive system compensating for actuator deficiencies. Modern actuators, smart materials

and semi-active approaches could eliminate the need for passive elements. Choi et al. [140] implement

a semi-active MR vibration isolator and report marked response attenuation at resonant frequencies.

Hiemenz et al. [141] again use semi-active MR dampers to provide vibration isolation in helicopter

crew seats. Sutton et al. [142] attach magnetostrictive actuators to a helicopter gearbox support

strut and give a laboratory demonstration of active isolation, achieving up to 40dB attenuation in the

250-1250Hz range. Despite the success demonstrated in these publications, isolation methods remain

unpopular. In practice, even with active control, it is difficult to fully isolate the fuselage; to do so

necessitates the isolation of the rotor shaft, gearbox, engines and drive train. Each of these elements

demands isolation in six degrees of freedom such that even where the design permits the space for the

components, the weight penalty is prohibitive.

All of the above methods attempt to mitigate vibrations at the source or in the transmission path. In

contrast, the method that follows takes advantage of superposition principles in linearised systems to

cancel the vibrations within the fuselage. Known as active control of structural response (ACSR) [143],

the technique uses actuators in the fuselage to create forces and displacements which, when summed

with the rotor excitation, reduce the cabin vibrations. Because the actuators are housed in the fuseage

and are not directly connected to the flight systems the airworthiness concerns are much lower than in

the other technologies described. The method is typically implemented with the actuators connected

to a rigid platform, but another system known as active vibration reduction (AVR) [144, 145] instead

reacts against the gearbox mass. Chiu and Friedmann [146] describe simulations of a standard ACSR

configuration in a coupled rotor-flexible fuselage aeroelastic response model: one of few in existence

at the time. Mathews et al. [147] present a more recent reduced-order model, and offer comments on

the choice of sensor locations for the ACSR controller. A comparison of frequency- and time-domain

control methods is offered by Pearson and Goodall [148]: they assert that the former performs well

in steady flight conditions while the latter performs better in transient manouevers, and proceed to

develop a hybrid method to produce good steady-state and transient attenuation. Huggin et al. [149]

report analytic studies to determine optimal actuator placements in a Lynx airframe using an FE

model and mathematical models based on modal test data. They also report an ACSR experiment

conducted on the airframe using a filtered-x LMS algorithm.

1.4 Open Problems

Despite the myriad strategies that have been tested for the mitigation of rotorcraft vibrations,

adaptive-passive methods are all but overlooked. While local suppression may be achieved with con-
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ventional adaptive TVAs there is little mention in the literature of globally applicable adaptive-passive

vibration control in rotorcraft. The advantages of such an approach are several:

• Adaptive-passive control offers an improvement over standard passive control in changeable

operating conditions.

• The power consumption is minimal, even compared to semi-active methods.

• As with semi-active control there is no possibility of inducing instabilities.

• The method would not suffer the same difficulties encountered by active and semi-active methods

in transient flight conditions.

Many avenues have been explored for inducing the variable stiffness and damping required for adaptive-

passive control; these range from geometry and orifice manipulations to smart materials. A common

drawback of the devices reviewed here is that they are only capable of producing local changes in

stiffness and damping. There is a well-known but rarely-exploited effect which can alter the global

stiffness characteristics of any structure using quasi-static actuation, and that effect is stress stiffening.

Stress stiffening effects are a subset of the geometric nonlinearity observed in thin or slender structures

subject to loading, whereby the transverse stiffness is effectively reduced by compressive in-plane or

axial loading. It is expected that careful actuator placement will facilitate the transmission of load

throughout an airframe, which is expected to have a significant effect on the many slender members

employed in such structures. This approach appears to be undocumented in the literature.

1.5 Scope of Thesis

The focus of the research covered in this manuscript is to investigate the potential of structural loading

as a means of adaptive response tuning in rotorcraft fuselages. The task is split into three key stages:

general investigations of stress stiffening behaviour, proof-of-concept demonstrations of automated

response suppression, and development of rotorcraft-specific response suppression strategies. The

general stress stiffening investigations also prompt some new lines of inquiry regarding eigenstructure

response under parametric variation, which are given due attention.

Before tackling the specifics of these tasks, chapter 2 undertakes a thorough discussion of the back-

ground theory supporting the work. Starting from fundamental physics, a concise coverage of the field

progresses quickly to describe all of the techniques drawn upon in the course of these studies. Both

analytical and experimental considerations are reviewed.

Chapter 3 begins the narration of the new work, describing a set of experiments to investigate stress

stiffening effects and the correlation of analytical methods. Features of the behaviour are highlighted

as potential exploitation routes, and curiosities are noted for the refinement of later studies.
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One such curiosity is the phenomenon of eigenvalue curve veering. This ostensibly bizarre feature of

parametric eigenstructure variation is investigated further in chapter 4, where it is found to be an

inevitable consequence of converging modes in a wide class of systems, and surprisingly commonplace.

Experimental results are shown, and a novel method for quantifying the behaviour is derived.

The approach offered by chapter 4 gives insight into previously tenebrous characteristics of a system

subject to parameter changes, and the techniques permit new and computationally efficient means

for calculating the extremums of modal properties over a parameter range. These are detailed in

chapter 5, along with a practical demonstration of the advantages offered by the tools developed in

these two chapters.

The fresh insight into system properties has an immediate application in finite element model updating,

and chapter 6 takes the opportunity to describe a practical implementation of the ideas developed in

the preceding chapters. The new theory required to conduct such a scheme is outlined, including an

innovative experimental identification method. The technique is used to identify joint characteristics

in one of the early experimental configurations.

Chapter 7 covers the implementation of the proof-of-concept adaptive response suppression system.

Here a new structure is introduced, an FE model presented, and the practical considerations attended

to. The approach taken is that of adaptively tuning the natural frequencies in response to a given

external drive frequency, using an embedded electromechanical actuator. Test results are given and

the system is refined to present improved and more general results.

With a solid grounding firmly established, the problem of repsonse tuning in rotorcraft is addressed

in chapter 8. The chapter starts with a discussion of acutator locations, developing methods for

optimising the placement. Finite element studies investigate the potential for simple tuning of the

natural frequencies in a helicopter tail boom, as well as more sophisticated attenuation methods based

on adaptive tuned vibration absorber principles.

Chapter 9 concludes with a summary of the new findings and suggestions for future developments.

1.6 Notes on Thesis

As far as possible, the supporting theory from existing work is all confined to chapter 2, leaving

the remaining chapters free to discuss the author’s own work. All of the theory outlined in chapter

2 appears there because it has been applied directly by the author, usually in the form of code or

computations. Although there is nothing novel in the application of these methods themselves, it is a

non-trivial task which is belied by the brevity of the descriptions in the later chapters.

Several commercial hardware and software suites were employed to facilitate the studies described

herein. The most important of these is the matrix algebra oriented programing language MAT-
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LAB [150]. An LMS modal testing suite [151] was employed extensively, although all of the software

functionality contributed by this package was also duplicated in the author’s MATLAB code. While

the early finite element models were constructed in MATLAB using a purpose-built FE package cre-

ated by the author, the larger finite element models were processed using the ANSYS [152] finite

element code, using custom scripting to facilitate the parametric analyses and model updating.

The penultimate chapter of the thesis explores ideas for vibration suppression in rotorcraft. It was

always the intention to perform tests on physical rotorcraft hardware: a lynx helicopter tail boom was

earmarked as the test subject [153]. Unfortunately the tail, along with the rest of the helicopter, was

required for testing at another facility and it was not possible to perform the anticipated experiments.

As a result the final chapter of the thesis is limited to finite element analyses of the structure, validated

only in part by comparisons with preliminary experimental data obtained from the tail boom.

1.7 Publications Arising from Thesis

To date, two refereed journal papers and five conference papers have been published based on work

carried out in the course of this thesis. A third journal paper is currently under review.

The first of the journal papers investigates the propagation of measurement errors in trifilar inertia

determination techniques, in particular highlighting the insensitivity of the results to exact alignment

of the centre of mass of the test specimen [154].

The second journal paper details an explicit experimental demonstration of the effect of eigenvalue

curve veering and the associated mode shape transformations, and compares the results with those

from a numerical study [155].

Four of the five conference papers are once more concerned with frequency veering and the related

manifestations, the first providing a broad overview of the behaviour [156], the second offering an

objective method of quantifying the effects [157], the third discussing the exploitation of these ideas

in finite element model updating [158], and the fourth addressing the practical considerations in the

planning of suitable modal tests [159].

The remaining conference paper presents the proof-of-concept demonstration of an adaptive stress-

stiffening based response suppression system [160]. Experimental results are presented along with a

general discussion of the subject.
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Chapter 2

Supporting Theory and Tools

The chapters that follow are built upon a body of research stretching back to the beginnings of natural

philosophy. They use myriad theories and techniques developed over the history of structural analysis;

some of these are well known textbook approaches and others are more recent developments. This

chapter does not provide an exhaustive foundation in structural dynamics, but outlines the background

theory and describes the methods used in this manuscript.

The chapter is intended as a reference covering the existing body of research, leaving the remainder

of the thesis free to discuss the new contributions to the field. All of the techniques elaborated below

appear here because they have been directly applied in code or computations in the course of the

present work.

2.1 Structural Dynamics

The study of structural dynamics in academic pursuits is usually referred to some form of analytical

model. The problem is formulated using the equations of motion. Newton’s Second Law of Motion

balances the structural and inertial forces of a body so that

F = mẍ (2.1)

where the body’s displacement is represented by x and the velocity and acceleration are given by the

first and second derivatives ẋ and ẍ. The structural forces are generally a function of the displacement

and velocity so that F = F (x, ẋ). For example, Hooke’s law gives a linear relationship between force

and displacement for elastic materials and is typified by a spring. Damping is commonly modelled

using a linear variation of force with velocity, as would be seen in an ideal viscous dashpot. Thus the

simple one degree of freedom (DOF) system seen in figure 2.1, consisting of a mass, a spring and a

damper, is described by

mẍ+ cẋ+ kx = 0 (2.2)
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Figure 2.1: One DOF mass-spring-damper system.

where m is the mass, k is the spring stiffness and c is the viscous damping constant. A harmonic

motion is assumed such that

x = Xeiωt (2.3)

and thus

ẋ = iωXeiωt and ẍ = −ω2Xeiωt. (2.4)

Substituting eqns. (2.3) and (2.4) into eqn. (2.2) and dividing by Xeiωt, the natural frequency is found

as the roots of the equation

− ω2m+ iωc+ k = 0. (2.5)

The undamped natural frequency, found by setting c = 0 in eqn. (2.5), is

ω0 =

√

k

m
. (2.6)

Solving eqn. (2.5) for non-zero values of c gives complex roots, and it is useful at this stage to define

the damping ratio as

ζ =
c

2
√
mk

. (2.7)

The damping ratio is unity for critical damping such that values above one produce an overdamped

response represented by purely imaginary roots. Values below one produce an oscillatory response

whose frequency is described by the real part of the roots as

ωn = ω0

√

1 − ζ2 (2.8)

and whose decay rate is determined by the imaginary part of the roots, giving

|x| = Xe−ζω0t. (2.9)

Considering the case of external harmonic excitation, eqn. (2.2) becomes

mẍ+ cẋ+ kx = Fei(ωt+θ) (2.10)

where F is a real constant representing the magnitude of the force, analogous to the real constant X

representing the displacement amplitude, and the value of θ determines the phase difference between
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Figure 2.2: Bode and Nyquist plots for the one DOF system in figure 2.1, using unity values for k
and m. Markers on the lightly damped Nyquist plot are spaced at constant frequency intervals for
illustrative purposes.

the two. Once more substituting eqns. (2.3) and (2.4) yields

X

Feiθ
= H(ω) =

1

−ω2m+ iωc+ k
. (2.11)

This ratio of response amplitude to excitation force is given in terms of the frequency and is called

the frequency response function (FRF). In fact, there are three variations on the FRF, describing the

response in terms of the displacement, velocity and acceleration. The former is called the receptance

H(ω) and is described by eqn. (2.11) whilst equivalent velocity and acceleration terms are called the

mobility Y (ω) and inertance, or accelerance, A(ω); these may be derived from the relationships in

eqns. (2.4) as

Y (ω) =
iω

−ω2m+ iωc+ k
(2.12)

and

A(ω) =
−ω2

−ω2m+ iωc+ k
. (2.13)

The values obtained from the FRF are complex and convey both the magnitude and phase of the

response. These are commonly depicted using Bode (figure 2.2(a)) or Nyquist (figure 2.2(b)) plots.

The former gives a clear representation of the response variation with frequency while the latter gives

an appreciation of the variation in the complex plane, particularly useful in curve-fitting procedures.

Two damping cases have been illustrated; for lightly-damped structures the FRF is approximately real

everywhere except in the close vicinity of resonance, where extremely high amplitudes are encountered

and the phase shifts through 180◦ in a short frequency interval. Heavier damping produces smaller

resonant responses, lowers the natural frequency and produces a more gradual phase variation.

This example has been confined to viscous damping but many and varied damping models exist.

Common representations are Coulomb damping, or dry damping, where the magnitude of the force

is constant but its direction always opposes the motion, and hysteretic damping: similar to viscous
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damping in that the force is in phase with the velocity but with the magnitude proportional to the

displacement. In the latter case, eqn. (2.5) is usually written

− ω2m+ id+ k = 0 (2.14)

or

− ω2m+ k(1 + iη) = 0 (2.15)

where d is the hysteretic damping constant and η is called the damping loss factor, given by η = d/k.

Noting that eqn. (2.14) is equivalent to setting c = d/ω in the viscous damping model, the damping

ratio is seen to be related to the loss factor by

η = 2ζ
ω

ω0
(2.16)

so that near resonance

η ≈ 2ζ (2.17)

Further reading on the subject of damping may be found in texts such as Meirovitch [161].

The discussion above has also assumed linear relationships between the structural forces, the displace-

ment and its derivatives. In practice this assumption is not always valid, however, and it is prudent to

be aware of the manifestations as they will corrupt computational results depending on linear theory.

Typical hydraulic orifice dampers, for example, produce a force proportional to the square of the

velocity, and cubic stiffness characteristics are also common in real-world engineering. Furthermore,

at sufficient response magnitudes almost every structure will exhibit non-linear behaviour. This thesis

does not deal explicitly with nonlinearities, so only a brief description follows:

The consequence of nonlinearities with regard to dynamic analyses is that the frequency response

functions will vary with the response amplitude. To illustrate this concept, figure 2.3 shows the

variation of an FRF for a system with cubic stiffness properties, plotted using an approximate solution

to Duffing’s equation. With increasing excitation amplitudes the resonant peak is seen to ‘lean over’ to

the right. Further increases in amplitude lead to multiple solutions to the response equation for some

frequencies, and the observed response will be path dependent. It should be noted that, unlike linear

systems, the response spectrum of a nonlinear system subjected to a harmonic excitation will not be

confined to the excitation frequency. In addition to these peculiarities, nonlinearity invalidates the

principle of superposition and requires different experimental and analytical methodologies to those

used with linear systems. In particular, modal analysis (discussed below and used extensively in this

thesis) is rendered largely redundant in the presence of nonlinearity. Once again Meirovitch [161]

provides an in-depth discussion on this subject, and Ewins [162] considers the behaviour from an

experimental perspective.
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Figure 2.3: Variation of frequency response with increasing excitation force (F) for a system exhibiting
a cubic stiffness characteristic.

2.2 The Finite Element Method

2.2.1 Background and General Approach

Thus far, vibrations have been considered only for single degree of freedom (DOF) systems. Such

systems have just one natural frequency and their movement is easily described in terms of a simple

sinusoid. In practice, structures are comprised of a collection of parts, and these parts themselves

are formed of a continuum. For simple configurations it is possible to formulate expressions for the

continuous forces and displacements, and obtain an exact solution for the dynamic response; the

example of a single beam is examined in appendix A. In general, however, exact solutions are difficult

to obtain and some form of discretisation must be applied. Perhaps the most famous technique is

the Rayleigh-Ritz method, where the exact differential eigenproblem is reformed as an approximate

algebraic eigenproblem by expressing the displacement function in terms of a series of trial functions.

The coefficients of these trial functions become the discrete DOFs to be solved for. One of the primary

attractions of this method is the mathematical rigour on which it is based, providing an unequivocal

upper bound on the natural frequency estimates. Meirovitch [161] provides a full description of the

method, as well as the related assumed-modes, Galerkin and collocation methods.

A different approach lies in the more intuitive spatial discretisation of a structure. The premise is

to represent the structure with a set of simple elements, and the motion of the structure is then

described in terms of the displacements at the element interfaces. This approach is referred to as the

Finite Element (FE) method. It is widely used due to its general applicability, and its suitability for

automated computations.

The number of degrees of freedom at each element interface depends upon the nature of the element

and the spatial dimensionality of the analysis. Typically a three dimensional model will have six

degrees of freedom at each point, or node: three translational and three rotational displacements.

Common elements used in FE models include rods, beams, plates, shells and solid elements. Rods

and beams are associated with only two nodes, although some formulations allow for the definition of

intermediate stations where the material properties and beam section vary along the length. These are
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not used directly in the structural computations but forces and displacements for these locations may

be derived in the postprocessing analysis. Plates and shells typically employ triangular or quadrilateral

geometries; it’s usual to have one node for each vertex in the geometry but nodes are also sometimes

positioned along edges to provide a better description of the element’s distortion. Popular solid

geometries are cuboids and tetrahedra.

To employ the FE method it is necessary to reduce the distributed mass and stiffness properties (and

where appropriate the damping properties) to discrete quantities for each DOF. The problem is then

formulated as a set of simultaneous equations, each equation describing the forces for one DOF. The

solution is obtained using linear algebraic methods, most commonly expressed in the form of matrix

manipulations. The simplest means of achieving this is to ‘lump’ the parameters. This process is

most commonly adopted for the mass, dividing each element’s mass and distributing it amongst the

constituent nodes. The accuracy of the method is heavily dependent upon the degree of discretisation

and thus the number of elements employed. Acceptable results may demand prohibitive computational

effort.

A more rigorous approach is to derive consistent mass and stiffness parameters, where the elastic

and inertial forces are balanced. This derivation is achieved by effectively applying the Rayleigh-Ritz

procedure locally to each element, as described by Cook [163]. While the trial functions used in

the classical Rayleigh-Ritz method are intended to mimic the true displacement with a great deal of

accuracy, those used in the finite element method serve mainly as interpolation functions for the spatial

discretisation. As such it is common to apply the simplest permissible functions, in the form of low

order polynomials. It is considered sufficient that these functions satisfy the boundary conditions for

the element. The polynomial coefficients are then transformed into nodal displacements through the

stress-strain relationships, allowing for intuitive coupling of the elemental functions at their interfaces.

The result is a series of elemental stiffness matrices, k, satisfying the static equilibrium equation

f = ku (2.18)

and a series of elemental mass matrices, m, satisfying the inertia equation

f = mü (2.19)

where f is the vector of forces, u is the vector of displacements and ü is the vector of accelerations for

the elemental DOFs. The derivation of these matrices will be described in the sections that follow. To

begin with the analysis will be given in terms of generalised stress, strain and displacement vectors:

σ, ǫ and d, constituting multidimensional functions throughout the spatial domain of the element.

A discussion of the common coordinate systems and corresponding spatial functions is then given in

section 2.2.4 to provide a more physical understanding of the technique. Finally a two-dimensional

beam is used as an example, demonstrating the derivation of the polynomial shape functions and the

computation of the system matrices.
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Figure 2.4: Shear stresses and normal stresses in three dimensions.

2.2.2 Stiffness Matrices

Przemieniecki [164] develops the stiffness matrices in a structural mechanics context. He uses Cas-

tigliano’s theorem (closely related to the principle of virtual work) to express the external forces on

an element in terms of the derivative of the internal strain energy:

f =
∂

∂u
Ui (2.20)

where Ui is the internal strain energy, u is the elemental DOF displacement vector and f is the force

vector for the n elemental DOFs. The strain energy is given by

Ui =
1

2

∫

ǫTσdV (2.21)

where V is the element volume, σ is the stress vector and ǫ is the strain vector. From Hooke’s Law,

σ = Eǫ (2.22)

where E is the material property matrix. The strain vector is related to the elemental DOF displace-

ments by

ǫ = bu. (2.23)

where b is the strain-displacement matrix, the derivation of which will be discussed presently. Com-

bining eqns. (2.21), (2.22) and (2.23),

Ui =
1

2

∫

uTbTEbu dV . (2.24)

Putting this result back into eqn. (2.20), it is found that

f =

∫

bTEb dV u. (2.25)
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Thus, by analogy with eqn. (2.18), the stiffness matrix is given by

k =

∫

bTEb dV . (2.26)

2.2.3 Mass Matrices

Analogous to the stiffness matrices, an energy method is used to deduce the appropriate mass matrix.

Recasting Castigliano’s theorem,

f =
∂

∂u
Te (2.27)

where Te is the kinetic energy. This can be expressed in terms of the velocity by

f =
∂

∂t

∂

∂u̇
Te (2.28)

where t is time. The kinetic energy is given by

Te =
1

2
ρ

∫

ḋT ḋ dV (2.29)

where ρ is the density and ḋ is the general velocity vector. A shape function n is used to relate the

general displacement to the element DOF displacements

d = nu (2.30)

where n and thus d are spatial functions. Differentiating with respect to time,

ḋ = nu̇. (2.31)

Accordingly, the kinetic energy is given by

Te =
1

2
ρ

∫

u̇TnTnu̇ dV. (2.32)

Putting this into eqn. (2.28) produces

f =
∂

∂t
ρ

∫

nTn dV u̇

= ρ

∫

nTn dV ü. (2.33)

Thus the mass matrix is given by

m = ρ

∫

nTn dV. (2.34)
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2.2.4 Spatial Functions

If a three-dimensional Cartesian coordinate system is employed with the three axes denoted by x, y,

and z, the displacement vector is defined as

d =
{

u(x, y, z) v(x, y, z) w(x, y, z)
}T

(2.35)

where u, v, and w are functions of x, y, and z. The stress and strain vectors are

ǫ =
{

ǫx ǫy ǫz ǫxy ǫyz ǫzx

}T

(2.36)

σ =
{

σx σy σz σxy σyz σzx

}T

. (2.37)

These vectors are each comprised of three normal quantities followed by three shear quantities, as

illustrated in figure 2.4. In such a system, for an isotropic material, the material property matrix is

given by

E =
E

(1 + ν)(1 − 2ν)





























1 − ν ν ν 0 0 0

ν 1 − ν ν 0 0 0

ν ν 1 − ν 0 0 0

0 0 0 1−2ν
2 0 0

0 0 0 0 1−2ν
2 0

0 0 0 0 0 1−2ν
2





























(2.38)

where E is the Young’s modulus and ν is the Poisson’s ratio.

The derivation of the shape function, n, is where the main differences between element formulations

are introduced. The key step is in deciding on a function relating the displacements at a general

point to those of the elemental DOFs; the strain-displacement matrix then follows on using partial

derivatives of the shape function:

b =





























∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x





























n. (2.39)

If the dimensionality of the system being considered is restricted to two, then the equations may be
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Figure 2.5: Two dimensional beam (–) deflected from its nominal position (- -).

abbreviated to

d =
{

u v
}T

(2.40)

ǫ =
{

ǫx ǫy ǫxy

}T

(2.41)

σ =
{

σx σy σxy

}T

(2.42)

E =
E

(1 + ν)(1 − 2ν)











1 − ν ν 0

ν 1 − ν 0

0 0 1−2ν
2











(2.43)

b =











∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x











n. (2.44)

2.2.5 Beam Element Derivation

Shape Function

A two dimensional beam is shown in figure 2.5. The deflection is described in terms of the neutral axis

displacement, represented at any point along its length by three displacements: two translational and

one rotational. These are denoted u0(x), v0(x), and θ0(x), where x is the position along the element

length and 0 ≤ x ≤ L. The element has two nodes, one at each end, giving a total of six DOFS,

collected together in vector form as

u =
{

u1 v1 θ1 u2 v2 θ2

}T

. (2.45)

These form the boundary conditions for the generation of the shape function. Assuming small rota-

tions, θ0, the neutral axis displacements are related to the general displacements by

u = u0 − θ0y (2.46)

v = v0 (2.47)
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or

d =





1 0 −y
0 1 0























u0

v0

θ0



















(2.48)

For simplicity the axial and transverse neutral axis displacements are assumed to be uncoupled. This

allows the shape functions to be condsidered separately. Addressing first the axial displacement, u0,

a suitable shape function need only satisfy two boundary conditions, so a linear function is employed:

u0 =
[

1 x
]







a1

a2







(2.49)

where a1 and a2 are coefficients to be determined. Applying the boundary conditions u0(0) = u1 and

u0(L) = u2 produces






u1

u2







=





1 0

1 L











a1

a2







. (2.50)

Inverting eqn. (2.50) gives the coefficients as







a1

a2







=





1 0

−1/L 1/L











u1

u2







. (2.51)

so from eqns. (2.49) and (2.51) the axial displacement is

u0 =
[

1 x
]





1 0

−1/L 1/L











u1

u2







=
[

(1 − ξ) ξ
]







u1

u2







(2.52)

where ξ = x/L. Now addressing the transverse displacement, four boundary conditions must be met:

v0(0) = v1, v0(L) = v2, θ0(0) = θ1 and θ0(L) = θ2. Accordingly, a cubic equation is applied so that

v0 =
[

1 x x2 x3
]































a1

a2

a3

a4































. (2.53)

Differentiating gives

θ0 =
[

0 1 2x 3x2
]































a1

a2

a3

a4































(2.54)
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and with the boundary conditions this produces































v1

θ1

v2

θ2































=

















1 0 0 0

0 1 0 0

1 L L2 L3

0 1 2L 3L2















































a1

a2

a3

a4































. (2.55)

As before, inverting the transform yields































a1

a2

a3

a4































=

















1 0 0 0

0 1 0 0

−3/L2 −2/L 3/L2 −1/L

2/L3 1/L2 −2/L3 1/L2















































v1

θ1

v2

θ2































(2.56)

and combining with eqns. (2.53) and (2.54),







v0

θ0







=





1 − 3ξ2 + 2ξ3
(

ξ − 2ξ2 + ξ3
)

L 3ξ2 − 2ξ3
(

−ξ2 + ξ3
)

L

6(−ξ + ξ2)L
(

1 − 4ξ + 3ξ2
)

L2 6(ξ − ξ2)L
(

−2ξ + 3ξ2
)

L2



































v1

θ1

v2

θ2































. (2.57)

Amalgamating eqns. (2.52) and (2.57) yields



















u0

v0

θ0



















=





























(1 − ξ) 0 0

0 1 − 3ξ2 + 2ξ3 6(−ξ + ξ2)L

0
(

ξ − 2ξ2 + ξ3
)

L
(

1 − 4ξ + 3ξ2
)

L2

ξ 0 0

0 3ξ2 − 2ξ3 6(ξ − ξ2)L

0
(

−ξ2 + ξ3
)

L
(

−2ξ + 3ξ2
)

L2





























T 





















































u1

v1

θ1

u2

v2

θ2























































. (2.58)

and putting this into eqn. (2.48) gives

d =





























1 − ξ 0

6(ξ − ξ2)ς 1 − 3ξ2 + 2ξ3

(−1 + 4ξ − 3ξ2)Lς (ξ − 2ξ2 + ξ3)L

ξ 0

6(−ξ + ξ2)ς 3ξ2 − 2ξ3

(2ξ − 3ξ2)Lς (−ξ2 + ξ3)L





























T 





















































u1

v1

θ1

u2

v2

θ2























































(2.59)

where once again ξ = x/L, and ς = y/L. This can be recognised as eqn. (2.30) so the shape function
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is

n =





























1 − ξ 0

6(ξ − ξ2)ς 1 − 3ξ2 + 2ξ3

(−1 + 4ξ − 3ξ2)Lς (ξ − 2ξ2 + ξ3)L

ξ 0

6(−ξ + ξ2)ς 3ξ2 − 2ξ3

(2ξ − 3ξ2)Lς (−ξ2 + ξ3)L





























T

(2.60)

Strain-Displacement Matrix

In the derivation of the shape function, transverse strain (ǫy) has been neglected; this is because it

is unconstrained. A further approximation will now be made by omitting the shear strain. All that

remains is the normal strain, so the strain-displacement matrix in eqn. (2.44) is reduced to

b =
[

∂
∂x 0

]

n. (2.61)

Applying this to eqn. (2.60) produces

b =
[

− 1
L (−6 + 12ξ)ς/L (−4 + 6ξ)ς 1

L (6 − 12ξ)ς/L (−2 + 6ξ)ς
]

. (2.62)

Stiffness Matrix

The material property matrix for a pure normal strain expression is simply the Young’s modulus, E,

so in this case eqn. (2.26) becomes

k = E

∫

bTb dV = E

∫ L

0

∫

bTb dAdx. (2.63)

At this point it is convenient to express the strain-displacement matrix as

b = b0 + byy (2.64)

b0 =
[

− 1
L 0 0 1

L 0 0
]

(2.65)

by =
[

0 (−6 + 12ξ)/L2 (−4 + 6ξ)/L 0 (6 − 12ξ)/L2 (−2 + 6ξ)/L
]

(2.66)

so that

k = E

∫ L

0

∫

(b0 + yby)T (b0 + yby) dAdx. (2.67)

= E

∫ L

0

∫

(b0
Tb0 + y(by

Tb0 + b0
Tby) + y2by

Tby) dAdx. (2.68)

= EA

∫ L

0

b0
Tb0 dx+ EI

∫ L

0

by
Tby dx. (2.69)
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where A is the cross-sectional area of the beam and I is the second moment of inertia. Performing

the matrix multiplication and integrating yields

k =
EI

L





























A
I 0 0 −A

I 0 0

0 12
L2

6
L 0 −12

L2
6
L

0 6
L 4 0 −6

L 2

−A
I 0 0 A

I 0 0

0 −12
L2

−6
L 0 12

L2
−6
L

0 6
L 2 0 −6

L 4





























(2.70)

The stiffness matrix can be recognised as the well-known Euler-Bernoulli beam element.

Mass Matrix

Following the same methodology as for the stiffness matrix, the shape function is expressed

n = n0 + nyy (2.71)

n0 =





























1 − ξ 0

0 1 − 3ξ2 + 2ξ3

0 (ξ − 2ξ2 + ξ3)L

ξ 0

0 3ξ2 − 2ξ3

0 (−ξ2 + ξ3)L





























T

ny =





























0 0

6(ξ − ξ2)ς 0

(−1 + 4ξ − 3ξ2)Lς 0

0 0

6(−ξ + ξ2)ς 0

(2ξ − 3ξ2)Lς 0





























T

(2.72)

Here the second matrix gives the inertial effects of a rotation of the beam cross-section about its

neutral axis. It is often assumed that the beam is sufficiently slender that y will be negligible in this

context, and the mass matrix is taken to be (from eqn. (2.34))

m = ρ

∫

n0
Tn0 dV (2.73)

= ρA

∫ L

0

n0
Tn0 dx. (2.74)

This evaluates to

m = ρAL





























1
3 0 0 1

6 0 0

0 13
35

11
210L 0 9

70
−13
420 L

0 11
210L

1
105L

2 0 13
420L

−1
140L

2

1
6 0 0 1

3 0 0

0 9
70

13
420L 0 13

35
−11
210 L

0 −13
420 L

−1
140L

2 0 −11
210 L

1
105L

2





























(2.75)
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Figure 2.6: Assembly of elemental stiffness matrices into global stiffness matrix.

2.2.6 Global Matrix Assembly and Dynamic Solution

Once the individual mass, stiffness and damping matrices are obtained for each element, they may be

transformed to the global coordinate system and assembled into global matrices as shown in figure 2.6.

The overlapping sections of the matrices are summed together, representing common DOFs at the

elemental interfaces. The global matrix equations of motion are then

Mẍ + Cẋ + Kx = 0 (2.76)

where x = [x1 x2 . . . xn]
T is the displacement vector for the n global DOFs and M, C and K

are respectively the mass, damping and stiffness matrices. The general solution to this problem is

found by using the state space representation

q =







x

ẋ







. (2.77)

The matrices are rearranged to form

Aq̇ + Bq = 0 (2.78)

where

A =





C M

I 0



 B =





K 0

0 −I



 (2.79)

and I is the identity matrix. The solution is assumed to take the form

q = ψeλt (2.80)

where ψ describes the deflection shape of the structure as it oscillates. As with the single DOF

example this is differentiated and substituted into eqn. (2.78) to give

(λA + B)ψ = 0. (2.81)
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Eqn. (2.81) is a generalised eigenproblem, the solution to which can be obtained using any of a number

of numerical procedures described by Golub and Van Loan [165]. First the eigenvalues are computed

from the determinant of the eigenvalue problem

|λA + B| = 0. (2.82)

Substituting the eigenvalues into eqn. (2.81) allows the calculation of the eigenvectors, noting that the

scaling of the eigenvectors is arbitrary and thus a further constraint must be imposed on the solution,

such as setting the first element of the eigenvector to unity.

As with the single DOF frequency solution obtained before, the eigenvalues may be complex, where

in this case the imaginary eigenvalue component represents the oscillatory frequency and the real

component represents the rate of decay. The eigenvectors may also be complex, with the argument of

each DOF describing the phase of its motion.

Once more, a variety of damping models exist, including the common Coulomb, viscous, and hysteretic

models discussed in section 2.1. It is often reasonable to neglect damping, permitting a much simplified

analysis; in this case the equation of motion is

Mẍ + Kx = 0 (2.83)

and the eigenproblem is simply

(K − λM)ψ = 0. (2.84)

The eigenvalue is now the square of the natural frequency, λ = ω2
n, and will be a positive real number.

The eigenvectors will also be real, corresponding with the fact that the nodal displacements are all in

phase or antiphase with one another in the absence of damping.

Where damping can not be neglected, one of two approaches can be taken: generalised damping

or proportional damping. A popular practice is to assume that the damping matrix is a linear

combination of the mass and stiffness matrices. This proportional damping affords great simplification,

and has some physical basis as the source of material damping is often linked to the presence of mass

and stiffness. Using this method the damping matrix becomes

C = αM + βK. (2.85)

It can be shown that the eigenvectors for this system are the same as those for the undamped system

and each natural frequency is related to the undamped natural frequency by

ωn = ω0

√

1 − ζ2 (2.86)

where

η =
1

2

(

βω0 +
α

ω0

)

. (2.87)
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The foregoing equations apply to proportional viscous damping; proportional hysteretic damping is

described by

Mẍ + (K + iD)x = 0 (2.88)

D = αM + βK (2.89)

ω2
n = ω2

0(1 + iη) (2.90)

η = β +
α

ω2
0

. (2.91)

2.3 Modal Analysis

A notable facet of the foregoing discussion is that the eigenproblems in eqns. (2.81) and (2.84) yield not

just one but many solutions. In contrast to the single degree of freedom (SDOF) systems considered

in section 2.1, multiple degree of freedom (MDOF) systems have a number of resonant frequencies,

equal to the number of DOFs. Each of these vibration modes has a corresponding damping ratio

and a unique mode shape defined by the eigenvector. For the linear systems considered here, the

principle of superposition dictates that the vibration of an MDOF structure can be described by a

linear combination of these modes. The modes of a structure are thus assumed to form a complete

description of its dynamics, and this premise forms the backbone for the field of modal analysis. Brown

and Allemang provide an historical overview of the development of the field [166].

2.3.1 Orthogonality Conditions

Some important relationships in the derivation of modal results are examined here. The discussion

will be limited to undamped systems but could equally be applied to proportionally damped systems.

First, an eigenvector matrix is defined with each eigenvector forming a column of that matrix:

Ψ = [ ψ1 ψ2 . . . ψn ]. (2.92)

The eigenvectors are orthogonal with respect to the mass and stiffness matrices, so pre- and post-

multiplying by ΨT and Ψ diagonalises both matrices to give

ΨTMΨ =

















m1 0 . . . 0

0 m2 . . . 0
...

...
. . .

...

0 0 . . . mn

















and ΨTKΨ =

















k1 0 . . . 0

0 k2 . . . 0
...

...
. . .

...

0 0 . . . kn

















. (2.93)

The diagonal elements of these matrices are the modal masses and modal stiffnesses, giving the natural

frequencies as ωi =
√

ki/mi. It is common to normalise the eigenvectors with respect to the mass

33



2.3. MODAL ANALYSIS

matrix so that the ith mass-normalised eigenvector is given by

φi =
ψi√
mi

. (2.94)

Eqn. (2.84) can then be written

KΦ − MΦΛ = 0 (2.95)

where the eigenvector matrix is now

Φ = [ φ1 φ2 . . . φn ] (2.96)

and the corresponding eigenvalue matrix is

Λ =

















λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

















. (2.97)

The mass-normalised eigenvectors give

ΦTMΦ = I (2.98)

and pre-multiplying eqn. (2.95) by ΦT produces

ΦTKΦ = Λ. (2.99)

These are the orthogonality conditions. The mass-normalised eigenvectors are orthonormal with re-

spect to the mass matrix, defining an orthonormal basis in the modal, or normal coordinate sys-

tem [167, 168].

2.3.2 MDOF Frequency Response Functions

The remainder of this section will examine how the modes contribute to the frequency response of the

system. The matrix equation of motion for an undamped system subject to periodic excitation is

Kx − Mẍ = f (2.100)

where x is the displacement vector and f is the forcing vector: x = Xeiωt and f = Feiωt. This

equation has a solution of the form

(K − ω2M)X = F (2.101)

or

X = (K − ω2M)−1F (2.102)

34



CHAPTER 2. SUPPORTING THEORY AND TOOLS

where the inverted matrix on the right is the FRF matrix

H(ω) = (K − ω2M)−1. (2.103)

An element Hjk(ω) from this matrix gives the response at the jth DOF produced by a unit excitation

of frequency ω at the kth DOF. A more useful formulation is produced by inverting eqn. (2.103),

pre-multiplying by ΦT , postmultiplying by Φ and using the orthogonality conditions to get

ΦTH−1Φ = Λ − ω2I. (2.104)

Pre-multiplying and post-multiplying again, this time by (ΦT )−1 and Φ−1, gives

H−1 = (ΦT )−1(Λ − ω2I)Φ−1 (2.105)

so that

H(ω) = Φ(Λ − ω2I)−1ΦT . (2.106)

The response of DOF j to a unit excitation at DOF k is thus

Hjk(ω) =

N
∑

r=1

φjrφkr
ω2
r − ω2

=

N
∑

r=1

rAjk
ω2
r − ω2

(2.107)

and the numerator is referred to as the modal constant, or sometimes the residue. Evidently, the

response goes to infinity at the natural frequencies for an undamped system; the damped equivalent of

eqn. (2.107) does not suffer the same numerical problems, and is derived in the standard texts [162, 169]

using the same approach to give

Hjk(ω) =

N
∑

r=1

rAjk
ω2
r − ω2 + iηrω2

r

. (2.108)

From these expressions, the FRF is seen to be composed of a linear summation of SDOF response

curves: one for each mode.

2.4 Dynamic Characteristics of Loaded Structures

It has long been established that stressing a structure induces changes in the natural frequencies.

Stringed musical instruments have taken advantage of this for millennia, altering pitch by changing

the tension of the strings [170]. It was apparently first exploited in an engineering context in 1936,

when Stephens [171] explained how the natural frequencies of a structure can be used to determine

the loads carried in its members. His derivation was later corrected by Lurie [172]. Many variations

on this theme have since been reported; for example, Greening and Lieven [173] include axial loading

effects in a model updating scheme for a redundant frame, and Tullini and Laudiero [174] cite further
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(a) Linear elastic response (b) Nonlinear elemental strain (c) Linear elemental strain with non-
linear elemental rotations

Figure 2.7: A cantilever beam subject to end load F. The linear elastic strain relations are compromised
for larger forces.

examples in the context of their own scheme, which uses both frequency and mode shape data to

identify axial loads and end fixity of a column. Greening’s thesis [175] offers an extensive background

on the topic.

2.4.1 Geometric Nonlinearity

The observed variations in dynamic response are caused by geometric nonlinearities. In a static

context, the term encompasses any change resulting from spatial distortions of the structure. This

includes follower forces, where the force vector is dictated by the structural alignment (for example,

normal forces such as pressure can be sensitive to surface deflections), and the stiffness reconfigurations

associated with changing geometries. The latter is characterised by large deformations of the structure,

creating a qualitatively different topology. From an FE perspective, the deformations can be divided

into two categories:

• Large elemental rotation

• Large elemental strain

As an illustration, consider the cantilever beam in figure 2.7. A linear beam element has no coupling

between the axial and bending degrees of freedom (DOFs). Thus a vertical force on a horizontal

cantilever will produce only vertical displacement at the end of the beam. For small forces and

displacements this produces accurate results, as seen in figure 2.7(a). Larger forces, however, produce

both transverse and axial displacements. In figure 2.7(b) the beam is still modelled as a single element,

but with nonlinear strain relations. An alternative is to refine the element mesh, splitting the beam up

into a series of smaller elements as in figure 2.7(c). In this case the elastic behaviour of each element

is approximately linear and may be modelled as such, but each element is rotated to a new coordinate

system. This can be accomplished fairly efficiently through linear matrix transforms, and avoids the

need for computationally expensive nonlinear strain equations. In many situations, however, sufficient

mesh refinement is impractical and engineering judgement must always be exercised as to whether to

use large rotation, large strain, or a combination of the two.
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(a) Linear; the elastic stiffness is constant (b) Nonlinear; the tangent stiffness varies with
load

Figure 2.8: Two examples of static structural problems, with force plotted against displacement. The
gradient of the graphs represents the stiffness at any given point.

A related effect is seen where slender beams or thin plates are subjected to axial or in-plane loading.

In these cases, force coupling leads to effective transverse stiffness modifications. Compressive axial

loads produce softening effects, while tensile loading results in apparent stiffening. Accordingly, the

behaviour is known as stress stiffening. Of course, the stiffness of the member does not actually

change; the effect is seen because, for small transverse deflections, the coupling between the axial and

transverse forces is proportional to the displacement. Thus, the contribution of the axial load to the

restorative force varies with the displacement, augmenting the restorative stiffness force in a manner

consistent with an actual stiffness modification. Stress stiffening differs from the large deformation

effects discussed above in that it can produce changes in the effective stiffness even when there is no

significant structural displacement.

A simple example is shown in figure 2.8. Often it is useful and justifiable to make linear assumptions

such that the displacements vary linearly with force. This is seen in figure 2.8(a). The gradient of

the line on the force-displacement plot is the elastic stiffness, kE , and this stays constant through-

out the loading regime. In nonlinear systems the stiffness will vary with force or displacement as

in figure 2.8(b). In this example the stiffness of the structure increases with loading, such that pro-

gressively greater force increments are required to produce uniform displacement intervals, and the

force-displacement plot produces a curve instead of a line. The stiffness is still represented by the

gradient of the curve but this now changes with load, and the stiffness at a given point is referred to

as the tangent stiffness, kT .

It is this tangent stiffness that is to be used in the dynamic analyses of this thesis. The dynamic

loading is assumed to be small enough to satisfy linear stiffness approximations, with the geometric

nonlinearities only being exhibited for the much higher static forces. The procedure is therefore firstly

to determine the tangent stiffness from a nonlinear static solution, and then to employ that stiffness

in a linear dynamic analysis. The first stage is usually tackled with iterative methods, discussed in
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section 2.4.3. The dynamic solution follows the methods set out in section 2.2.6.

It is prudent to note that in static analyses, large deformation approaches are commonly employed

without taking the stress stiffening into account. The displacement solutions obtained are still accu-

rate, as the model will converge on a state where the forces are balanced, but the tangent stiffness

will be incomplete. Where stress stiffening is included in the tangent stiffness, it serves to accelerate

the solution convergence. In contrast, the dynamic solutions rely explicitly on the accuracy of the

tangent stiffness, and must take stress stiffening into account. In fact, stress stiffening is expected

to be the dominant effect in the work conducted here, where significant structural deformation is

not anticipated. Ryu et al. [176] offer a criterion for quantifying the influence of stress stiffening on

dynamic simulations.

2.4.2 Finite Element Formulation

A continuous two-dimensional beam model is presented in appendix A, where a general expression

is derived to show the relationship between the static buckling load and the natural frequency un-

der loading. In this section, finite element representations of beam elements under loading will be

considered.

Mayo et al. [177] offer a review of the different formulations for geometric stiffening, covering the

differing orders of approximation. Two derivations for the stress stiffening matrices will be examined

here: The first uses energy methods, following a similar approach to that given in section 2.2 for a

regular finite element. The second uses coordinate transformations; its advantage over the energy

method is that it is more easily applied to gross deformations.

Energy Method

Adopting the approach of section 2.2, shear strains are neglected for the beam element, and only

normal strains are accounted for. Thus,

ǫ = ǫx =
∂u

∂x
. (2.109)

In eqn. (2.46) the axial displacement is related to the neutral axis displacement by

u = u0 − θ0y (2.110)

so

ǫx =
∂u0

∂x
− ∂θ0
∂x

y. (2.111)
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Figure 2.9: Illustration of nonlinear axial strain with transverse deflection.

The strain energy is given by

Ui =
1

2
E

∫

ǫ2x dV (2.112)

=
1

2
E

∫ (

∂u0

∂x
− ∂θ0
∂x

y

)2

dV. (2.113)

Multiplying out the brackets and integrating over the cross-section produces

Ui =
EA

2

∫ L

0

(

∂u0

∂x

)2

dx+
EI

2

∫ L

0

(

∂θ0
∂x

)2

dx. (2.114)

This expression is clearly analogous to eqn. (2.69). Evaluating it with the help of eqn. (2.58) gives

Ui =
EA

2L
(u2

1 − 2u1u2 + u2
2)

+
2EI

L3
(3v2

1 + L2θ21 + 3v2
2 + L2θ22 + 3Lv1θ1 − 6v1v2 + 3Lv1θ2 − 3Lθ1v2 + L2vθ1θ2 − 3Lv2θ2)

(2.115)

and applying Castigliano’s theorem gives
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. (2.116)

The matrix produced here is identical to the stiffness matrix obtained in section 2.2.

For a nonlinear model, it is necessary to take account of the coupling between the axial and transverse

displacements. This is illustrated for an infinitesimal beam segment in figure 2.9. If the length of the

segment is δx then the geometric strain, ǫg, caused by the coupling can be calculated using Pythagoras’

theorem with the triangle in figure 2.9:
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ǫg =

√

δx2 +
(

∂v0
∂x δx

)2

δx
− 1 (2.117)

=

√

1 +

(

∂v0
∂x

)2

− 1. (2.118)

A Taylor series expansion leads to

ǫg =
1

2

(

∂v0
∂x

)2

+O

(

(

∂v0
∂x

)4
)

(2.119)

and the supplemented strain equation is

ǫ = ǫx + ǫg

=
∂u0

∂x
− ∂θ0
∂x

y +
1

2

(

∂v0
∂x

)2

. (2.120)

Putting this new expression into eqn. (2.112) yields

Ui =
1

2
E

∫

(

∂u0

∂x
− ∂θ0
∂x

y +
1

2

(

∂v0
∂x

)2
)2

dV. (2.121)

Expanding, neglecting high order terms, and integrating over the cross sectional area while noting

that integrals of the form
∫

y dV vanish gives

Ui =
EA

2

∫ L

0

(

∂u0

∂x

)2

dx+
EI

2

∫ L

0

(

∂θ

∂x

)2

dx+
EA

2

∫ L

0

∂u0

∂x

(

∂v0
∂x

)2

dx. (2.122)

Contrasting this with eqn. (2.114) shows the only difference to be the final, nonlinear integral. From

eqn. (2.58) the axial displacement derivative, ∂u0/∂x, is found to be independent of the position, x,

so can be taken outside the integral. The axial load in the member can be approximated by

P = EA
∂u0

∂x
(2.123)

so that

Ui =
EA

2

∫ L

0

(

∂u0

∂x

)2

dx+
EI

2

∫ L

0

(

∂θ

∂x

)2

dx+
P

2

∫ L

0

(

∂v0
∂x

)2

dx. (2.124)

Evaluating the strain energy using eqn. (2.58) and applying Castigliano’s theorem produces

f =
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(2.125)

The stiffness derived here can be seen to be comprised of two components: these are the elastic and
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geometric stiffness matrices,

k = ke + kg (2.126)

where

ke =
EI

L
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(2.127)

Coordinate Transformation Method

The problem with the energy method given above is that it exploits the assumption of small angular

displacements, so that ∂v0/∂x ≈ θ0. Where gross deformations occur, either at an elemental level or

at a global level, this assumption is invalidated and another approach must be taken.

Jennings [178] uses coordinate transforms to break the problem down into discrete steps. He adopts

three coordinate systems: the joint displacements, which correspond to the global DOF displacements;

the member intermediate displacements, relating the displacements to the elemental coordinate system;

and the member basic displacements, which describe the beam deformation in terms of its axial exten-

sion and the two end rotations. These coordinate systems are pictured in figure 2.10 and, adopting

the notation of the original paper, the displacements are given by

X =
{

xA yA θA xB yB θB

}T

(joint displacements)

U =
{

u v θAB θBA

}T

(intermediate displacements)

E =
{

e φAB φBA

}T

(basic displacements)

(2.128)

Transformations between these coordinate systems are defined so that

U = TX (2.129)

E = AU (2.130)

where

T =

















− cosα − sinα 0 cosα sinα 0

sinα − cosα 0 − sinα cosα 0

0 0 1 0 0 0

0 0 0 0 0 1

















(2.131)
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(a) Joint displacements and forces.

(b) Member intermediate displacements and forces.

(c) Member basic displacements and forces.

Figure 2.10: Coordinate systems used in Jennings’ nonlinear beam analysis.
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and

A =











1 0 0 0

0 −1/L 1 0

0 −1/L 0 1











(2.132)

The corresponding force vectors are given as

L =
{

HAB VAB MAB HBA VBA MBA

}T

(joint forces)

R =
{

R S MAB MBA

}T

(intermediate forces)

P =
{

P MAB MBA

}T

(basic forces)

(2.133)

and these are related by the same transforms:

L = T TR (2.134)

R = ATP . (2.135)

Defining a linear elastic stiffness matrix for the member basic displacements,

k =











EA
L 0 0

0 4EI
L

2EI
L

0 2EI
L

4EI
L











. (2.136)

and

P = kE. (2.137)

Combining eqns. (2.129), (2.130), (2.134), (2.135) and (2.137) yields

L = T TATkATX (2.138)

which implies a stiffness matrix of

K = T TATkAT . (2.139)

Evaluating the stiffness in this manner produces exactly the same result as the previous methods

discussed. The flexibility of this method, however, and the reason it was selected for the analyses in

this thesis, is the ease with which differing levels of nonlinearity may be accommodated. For example,

if nonlinear elemental strains are important, the linear elastic relationship in eqn. (2.136) can be

replaced with a full nonlinear elastic stiffness, and this is derived by Jennings. More commonly, it

is sufficient to consider only nonlinear elemental rotations, and this is done by replacing the linear

transform A with a nonlinear function fA(U). Once again, Jennings derives an exact solution, but
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here only a second order approximation will be discussed. This is defined by

e = u+ v2

2L

φAB = θAB − v
L

φBA = θBA − v
L



















E = fA(U) (2.140)

and the joint forces (needed for iterative methods) are determined from

L = T TATkfA(TX). (2.141)

Incremental displacements and forces are now considered so that

x =
{

δxA δyA δθA δxB δyB δθB

}T

(joint displacements)

u =
{

δu δv δθAB δθBA

}T

(intermediate displacements)

e =
{

δe δφAB δφBA

}T

(basic displacements)

ℓ =
{

δHAB δVAB δMAB δHBA δVBA δMBA

}T

(joint forces)

r =
{

δR δS δMAB δMBA

}T

(intermediate forces)

p =
{

δP δMAB δMBA

}T

(basic forces)

(2.142)

The incremental intermediate displacements are related to the incremental basic displacements by

differentiating eqns. (2.140) to give
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(2.143)

or

e = Au. (2.144)

Jennings uses the principle of virtual work to show that in this case,

R = AL (2.145)

and taking the partial derivative with respect to first the forces then the displacements gives the

incremental intermediate forces as

r = A
T
p+Du (2.146)

where

D =

















0 0 0 0

0 P/L 0 0

0 0 0 0

0 0 0 0

















. (2.147)
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Applying the linear stiffness relationship, p = ke, the incremental joint forces are determined as

ℓ = T T (A
T
kA+D)Tx. (2.148)

From this equation the tangent stiffness is taken to be

KT = T T (A
T
kA+D)T . (2.149)

For comparison with the other techniques, the above equation is multiplied out assuming a nominal

element rotation of α = 0 and the force P is substituted with u+ v2

2L (from eqn. (2.140)), giving

KT = KE +KG (2.150)

where KE is the standard linear elastic stiffness matrix derived in eqns. (2.70) and (2.116), and the

stress stiffness matrix is

KG =
EA

L
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(2.151)

with

εx =
xB − xA

L
and εy =

yB − yA
L

. (2.152)

This same result is derived by Cook [163] using energy methods with bar elements, and a similar

derivation is provided by Murray and Wilson [179] for the case of plate elements.

2.4.3 Global Solution Procedures

Unlike the beam examples considered above, general nonlinear structural problems do not have closed

form analytic solutions. Instead, numerical methods must be employed. NAFEMS provide guidance

on the implementation of nonlinear FE simulations [180], and some of the methods are explored below.

They can all be categorised as either single pass or iterative methods.

Single Pass Methods

A common approach is to make a single static loading pass to determine the load distribution through-

out the structure. This loading is used to compute the stress stiffening, which can be used in a variety

of applications. An example which has been discussed for a simple beam is Euler buckling prediction.

Assuming the stress distribution remains constant, the structural stiffness can be written in matrix
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form as

KT = KE + pK̂G (2.153)

where KT is the tangent stiffness matrix, KE is the nominal elastic stiffness matrix, K̂G is the unit

stress stiffening matrix, and p is the magnitude of the applied force. A force perturbation vector, δF,

can then be written in terms of a displacement perturbation vector, δu, as

δF =
(

KE + pK̂G

)

δu. (2.154)

Buckling occurs at a point of neutral stability, where δF = 0. The critical buckling loads are thus

obtained from the eigenvalues, p, and the failure load is the lowest eigenvalue.

For some examples, in particular those involving pin-jointed trusses, loading below the first buckling

load will produce no transverse deformations in thin or slender members. In these cases, the eigen-

buckling solution is theoretically exact. Similarly, the exact dynamic behaviour of the structure at

a range of loads can be determined from a single stress stiffening calculation, simply by scaling the

geometric stiffness matrix appropriately for each new load. Many practical problems will approximate

to this behaviour, and it can be a useful simplification.

More commonly, however, structures will deform steadily with loading, producing nonlinear stiffness

variation (nonlinear nonlinearity, if you will). Even the real-world incarnations of the pinned trusses

described above can never reproduce the ideal conditions of the theoretical models. Consequently,

single pass solutions will generally overestimate buckling loads and underestimate geometric stiffening.

A full iterative nonlinear analysis is required to obtain more accurate solutions.

Iterative Methods

Geometric nonlinearity is usually prescribed as a function of the displacements. Even where it is

written in terms of the forces, these are elemental forces and are always computed from the elemental

displacements. Given a displacement vector, it is thus a trivial matter to calculate the corresponding

force vector from a nonlinear stiffness function:

P = fK(u). (2.155)

The inverse problem, however, is considerably more difficult and does not generally permit a closed

form solution.

The most common approach is to apply small load increments to the model using linear stiffness

approximations, re-evaluating the tangent stiffness at each step. Such a procedure is detailed by

Turner et al. [181]. Figure 2.11 shows an illustration of this technique. The zero-load tangent stiffness

is the nominal elastic stiffness KE. At each step, the tangent stiffness is used in a linear solution to

determine the displacements over the course of that load step, such that
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Figure 2.11: Incremental load steps in a non-linear static analysis.

∆u(n) = KT(n)
−1∆P(n) (2.156)

where ∆u(n) = u(n+1) − u(n), ∆P(n) = P(n+1) − P(n), and the subscript (n) denotes the nth load

step. The global displacements are then converted to elemental displacements and used to compute

the elemental stresses. These in turn lead to new stress stiffening matrices and a new global tangent

stiffness, and the process is repeated for the next load step.

The disadvantage of this technique is that the incremental displacements obtained from eqn. (2.156) are

not exact. Accordingly, the elemental stresses determined from these displacements are not compatible

with the prescribed external loading and the tangent stiffness derived for the next load step will be

inaccurate. For mild nonlinearity the discrepancies will generally be acceptably small, but even then

it is necessary to use small load steps to avoid severe divergence of the solution such as that seen in

figure 2.11.

One solution to this problem is to perform iterations at each load step to converge on the correct dis-

placement for the applied load. A common choice is the Newton-Raphson scheme. Having computed

an approximate displacement solution in the manner already described, the corresponding forces are

determined from the nonlinear stiffness function:

∆u(n,i) = KT(n,i)
−1∆P(n,i) (2.157)

P(n,i+1) = fK(u(n,i+1)). (2.158)

where the subscript (n, i) denotes the ith iteration at the nth load step. This gives a new estimate of

the force error for this load step, so instead of moving on to the next load step, another iteration is
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Figure 2.12: Newton-Raphson iterations over one load step in a non-linear static analysis.

performed at this load step using

∆P(n,i+1) = P(n+1,0) − P(n,i+1). (2.159)

Two versions of the technique can be used: the standard Newton-Raphson approach is to re-evaluate

the tangent stiffness at each iteration. This method is seen in figure 2.12. Another option is to retain

the same tangent stiffness over the course of one load step, referred to as the modified Newton-Raphson

method, and illustrated in figure 2.13. The convergence of the solution is judged on the size of the

residual displacements, ∆u, the residual forces, ∆P, or a combination of the two. One these are

deemed small enough, the next load step is initiated by

u(n,0) = u(n−1,I) (2.160)

∆P(n,0) = P(n+1,0) − P(n,0) (2.161)

where I is the final iteration from the previous load step and the target force vectors P(n,0) are

predefined by the load steps.

At first glance the incremental method would seem the least demanding scheme, but in order to

achieve accurate results it is necessary to perform many small load steps to get to the desired load.

In contrast, the Newton-Raphson schemes can use much larger (and thus fewer) load steps but need

to perform successive iterations at each step. Similarly, the modified Newton-Raphson method offers

the benefit of fewer stiffness matrix assembly operations (including the demanding inversion process),

but this comes at the cost of a greater number of iterations for a given load step increment. All of

these factors need to be balanced to determine the most effective approach. Cook [163] considers all

of the methods described here along with a few other variants, as well as touching on the problems of
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Figure 2.13: Modified Newton-Raphson iterations over one load step in a non-linear static analysis.

post-buckling behaviour and path dependancy.

Initial Perturbations

As mentioned already there are some structures, notably pinned trusses, which will theoretically show

no transverse deflections in their members until the buckling load is reached. This behaviour is non-

physical as imperfections, residual stresses, and misalignments of joints and loading will produce more

gradual buckling characteristics, deforming the structure at forces below the Euler buckling load.

When performing a full analytical nonlinear analysis, Zienkiewicz [182, p. 514] discusses the common

practice of introducing small perturbations to beams and shells to initiate the deformations.

2.5 Modal Testing

This section will examine a variety of experimental approaches with a strong emphasis on modal

parameter extraction. The hardware and general approach are described first, before detailing the

mathematical postprocessing of the measured data.

2.5.1 Equipment and Methodology

All of the methods employed herein rely on some form of external excitation applied at one or more

locations around the structure. One set of tests in this thesis uses hammer excitation. For the

remainder of the tests the excitation is applied by means of a shaker. This electromechanical apparatus

provides a uniaxial translational excitation prescribed by the supply from a power amplifier. This in
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turn is controlled by a signal from a hardware signal generator or an analogue output from a digital

computer. The shaker is connected to the test rig using a thin push rod called a stinger. At the

attachment point, a force transducer is employed to measure the forces input to the structure. The

stinger is designed to be stiff along its axis, allowing the transmission of loads from the shaker,

but flexible in transverse directions, so as to minimise the effects from unmeasured external forcing.

When using a hammer as excitation, the main consideration is the choice of tip. A force transducer

is integrated into the hammer or connected between the hammer and the tip, and this can measure

the excitation spectrum. The flexibility of the tip will influence the energies input to the structure at

different frequencies and it is important that the frequency band of interest is covered by the excitation

and that there are no ‘dead spots’.

Measurements of the structural response can be made with a variety of equipment. Strain gauges

are popular for their simplicity and low cost. In their most common form these are metal foils which

must be bonded to a surface. The resistance of the gauge changes with the strain of the surface,

making them suitable for measuring bending and axial or in-plane vibrations. Measurements of the

resistance are usually made with a Wheatstone Bridge, and some common configurations are discussed

in appendix B.

Another popular sensor is the accelerometer; these typically incorporate piezo-ceramic elements where

the voltage across the crystals varies according to their compression. Small masses connected to the

piezoelectric element cause compression and tension as the base undergoes acceleration. Piezo-ceramic

force transducers operate in a similar manner. Accelerometers must be chosen according to the desired

frequency measurement range as the masses and crystals are tuned to respond well within certain

frequency bands. The output of an accelerometer can take one of four common forms:

• charge output

• IEPE output

• voltage output

• current output

Charge output accelerometers directly output the charge generated by the piezoelectric crystal. A

charge amplifier is required to measure this output and the wiring connecting the sensor to the amplifier

should be kept to a minimum due to the high output impedance.

Integrated Electronics Piezo Electric (IEPE) accelerometers, also known by the trade-name ICP, are

a class of accelerometers that have built in electronics. Specifically, they use a two-wire system

with a DC bias from which the electronics draw their power. The output is low-impedance and IEPE

accelerometers are suited to uses where long cabling is required. Presently they are prevalent wherever

high temperatures and low frequencies are not a concern. The DC bias must be filtered out of the

signal, and this job is typically performed by the same hardware that supplies the power. Often this

hardware also performs signal conditioning in the form of bandpass filtering and amplification.
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Voltage and current output accelerometers also contain integrated electronics but these have separate

power supply lines. It is common for current outputs to span a range of 4-20mA where 4mA is the zero

reading; this serves as a safeguard against broken connections, which would produce a conspicuous

lack of current. Current output sensors are commonly used in the process industry, where the 4-20mA

output forms a standard interface.

The mounting of accelerometers should be given some attention, as the rigidity of the attachment

affects the response of the accelerometer. While these sensors are designed to have a flat response

within their operating range, their response inevitably drops off for low frequencies and reaches a reso-

nance at high frequencies. A flexible mounting lowers the resonant frequency of the accelerometer and

narrows its effective bandwidth. In particular, magnetic attachments allow a great deal of flexibility

while threaded stud fittings provide the stiffest possible mounting.

Non-intrusive response measurements can also be made: laser doppler vibrometry provides velocity

measurements and laser interferometry and stereoscopic imaging both provide displacement measure-

ments. The latter captures high speed video frames from two separate cameras, the positions of which

have been carefully calibrated. These images may be used to triangulate the position of recognisable

features on a surface. Often the surface is sprayed with mottled colours to provide texture for the

image processing algorithms to work with. There is no theoretical limit to the spatial discretisation

of the measurements provided the points may be distinguished from the images. In contrast, the laser

methods require that the lasers be directed at the point of measurement. Multiple measurements

require multiple lasers or a scanning laser which can be programmed to target a set of measure-

ment points in sequence. Continuous scanning methods are now also being developed where the laser

measures a complete path rather than a set of points [183].

Nowadays the data processing is almost always performed on a digital computer. The analogue mea-

surements are fed into an analogue-to-digital converter (ADC) and recorded in the computer. In these

cases, it is critical that the pre-ADC amplification is adjusted correctly. Too much amplification will

saturate the ADC and thus clip the measured response. Too little amplification results in unnecessary

discretisation of the signal level. While this may seem insignificant on modern ADCs which often

exceed 16 bits (65536 discrete points), figure 2.14 shows the dramatic effect of a fourfold decrase in

the number of discretisation points on an FRF produced with an 8 bit ADC.

The purpose of testing is to identify the response of the test rig to a given excitation. Usually the

desired result is the harmonic frequency response in a given range. Many different experimental

approaches are available, characterised by their excitation patterns. They can be classified according

to the processing methodology they demand as periodic, transient, or random. Countless variations

on these are considered in the modal analysis textbooks [162, 169] but this thesis uses only three:

hammer tests (transient), stepped sinusoidal (periodic) and broadband random excitation. Stepped

sinusoidal excitation is the odd one out, in that it aims to excite a single frequency at a time, settling

on steady response conditions before measuring the response. The other two both excite the full test

frequency range at once, processing the response to give a frequency curve. In terms of processing,
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Figure 2.14: An FRF produced from an ideal impulse response for a system with two natural frequen-
cies. The time domain signal has been discretised to 8 bits, and the figures show the increase in noise
levels when only 25% of the 8 bit range is used compared to 100%.

however, the sinusoidal method is closely related to the transient hammer test, with the random

excitation requiring special consideration.

If the ultimate purpose of the test is to estimate modal characteristics, they can be estimated either

from the frequency response curves described above or from time domain data. Both methods are

discussed in section 2.5.4.

2.5.2 Fourier Analysis

Fourier transforms are used to convert time-domain data to the frequency domain and vice versa. As

such they are pervasive in vibration studies. The principle is outlined in many text books, for example

refereces [162, 169, 184, 161], and is based on the premise that any periodic signal x(t) may be split

into an infinite series of harmonic components. It can then be represented as

x(t) =
∞
∑

n=−∞

Xne
iωnt (2.162)

where Xn are the complex Fourier coefficients given by

Xn =
1

T

∫ T

0

x(t)e−iωntdt (2.163)

and ωn are the frequencies of the harmonic components with common period T . The technique may

be generalised to non-periodic signals provided the condition

∫ ∞

−∞

|x(t)|dt <∞ (2.164)
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is satisfied. The Fourier transform and its inverse can then be defined respectively as

x(t) =

∫ ∞

−∞

X(ω)eiωtdω (2.165)

and

X(ω) =
1

2π

∫ ∞

−∞

x(t)e−iωtdt. (2.166)

The function pairings will be indicated with the shorthand notation

x(t) ⇐⇒ X(ω). (2.167)

One property of the transform will be examined here, partly as it is used later in this chapter, but

maily because its derivation in many textbooks is either incomplete or entirely absent. To compound

these problems, many of the Fourier integral tables encountered by the author misquote the formula.

The property is that of scaling. If a function f(t) is scaled time-wise by factor a, so that g(t) = f(at),

the Fourier transform is given by

G(ω) =
1

2π

∫ ∞

−∞

f(at)e−iωtdt. (2.168)

Substituting u = at for positive a yields

G(ω) =
1

a

1

2π

∫ ∞

−∞

f(u)e−i(ω/a)u du (2.169)

=
1

a
F
(ω

a

)

(2.170)

but, when a < 0, the sign of the limits on the integral are reversed so that

G(ω) =
−1

a
F
(ω

a

)

. (2.171)

Thus it should be written

G(ω) =
1

|a|F
(ω

a

)

(2.172)

and this means that

f(at) ⇐⇒ 1

|a|F
(ω

a

)

. (2.173)

For experimentally aquired data it is often not possible to obtain a signal satisfying eqn. (2.164).

Frequently the data will simply be a sample of fixed period from a continuous stream of data. In these

circumstances the raw data will produce an effect known as leakage where the signal is clipped at

either end. This leakage manifests itself as a distortion of the true frequency content of the signal. A

common technique is to window the data before appling the Fourier transform, multiplying the signal
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x

=

Figure 2.15: Example of a Hanning window applied to a sine signal to produce a signal with similar
frequency content but that satisfies the conditions for the Fourier transform.

by a windowing function such as a Hanning window, shown in figure 2.15. The results from windowed

data such as these are more representative of the true frequency content of the signal, particularly

where the data are collected over short time periods. The results must, however, be rescaled to

compensate for the windowing except where the frequency data is intended soley for comparison with

another signal undergoing the same windowing, for example in the FRF computations described later.

Another form of conditioning which must be applied prior to the Fourier transform is filtering. The

reason for this is an effect known as aliasing, where the computed response curve is comprised of the

sum of the true curve and its reflection about the centre of the sampled frequency range. A low pass

analogue filter applied before the sampling stage will remedy this artefact.

For more details on the Fourier transform and the appropriate signal conditioning, the reader is re-

ferred once again to texts such as Ewins [162], Maia et al. [169] and Lathi [184] for a fuller description.

Noteworthy variations on the Fourier transform include the discrete Fourier transform (DFT), where

the continuous functions above are adapted for use with discrete data samples, and the fast Fourier

transform (FFT), which employs a more efficient algorithm for fast computation of the Fourier co-

efficients. The latter has an interesting history of discovery and re-discovery in various scientific

fields [185–187]. The application of the FFT in conjuction with a windowing function is often referred

to as the short-time fast Fourier transform (ST-FFT).

2.5.3 Signal Processing

Of the three test methods discussed, the stepped sinusoidal is the most intuitive. The structure is

excited at a series of single harmonic frequencies in turn and the response allowed to settle to a steady

state before measuring each response. At its simplest the analysis could proceed by measuring the
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ratio of the peak amplitudes but a slightly more sophisticated approach is usually taken. Knowing

the excitation period at each step, an integer number of periods are recorded for the excitation

and response. The latter is also assumed to consist solely of a single frequency harmonic signal

corresponding with a linear response to the excitation. A straightforward DFT may then be applied

to both datasets without windowing, where only the complex coefficient of the Fourier series that

corresponds with the excitation frequency need be derived (strictly this is a Fourier series expansion

and not a Fourier transform). This coefficient conveys both the magnitude and phase of the frequency

response. Each frequency is tested and processed in turn, providing the complete frequency response

curve.

The test parameters that must be considered for a stepped sine test are the frequency range and the

spectral resolution. The corresponding sinusoids are used as excitation signals. The test operator must

also decide on the settling time to be allowed after each frequency step, the length of the samples (or

the number of periods) to be captured, and an appropriate sampling frequency. When using Fourier

transforms, the sampling frequency must be greater than the Nyquist frequency: twice the frequency

of the signal to be measured. For a manual peak ratio comparison a much finer resolution will be

necessary to identify the true magnitude of the signals.

Impact tests follow a similar procedure but with some important differences. Firstly, and fundamen-

tally, the excitation of all frequencies of interest is performed simultaneously. The conversion from

the time to frequency domains is made using the full DFT and in this case the Fourier transform

dictates that the two signals should go to zero as t → ±∞. This is more or less true for a transient

hammer blow but often an exponentially decaying window is employed to reduce the sample time.

Because of the variable nature of hammer impacts, particularly those administered by hand, it is

good practice to average the frequency domain data over several runs. The operator should select

an appropriate number of averages according to the test conditions; the coherence, discussed later, is

a useful indicator of the quality of the results. Similarly, individual runs may be excluded from the

average if they are inferior. This rejection could be based on a poor coherence or inadequate coverage

of the frequency band of interest by the excitation signal. The latter can be determined by the input

power spectral density, also discussed later.

Parameters that must be considered prior to a hammer test, in addition to the number of averages and

the windowing function, are once again the frequency band and the spectral resolution. Generally

speaking, the the highest measurable frequency will be half the sampling frequency. In practice,

aliasing effects will corrupt the signal at the high end of this range due to the imperfect nature of the

pre-transform filtering. The spectral resolution determines the sample length: the frequency interval

will be inversely proportional to the sampling time.

The random excitation method is rendered more complicated as this type of excitation violates the

requirements of the Fourier transform: the measured response is not due entirely to the measured

excitation but also to that which has gone before. The redress to this obstacle is detailed in the data

processing sections below, but despite the added computational complexity the method is the fastest
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and most versatile of the three described. It is also well suited to automated testing as will prove useful

in chapter 7. As with the hammer test, the sampling frequency and sample length must be chosen

to match the frequency band and spectral resolution. Once again it is common to use the average of

several runs but now there is also the option of allowing the sample sets to overlap, reducing the time

taken and the data storage required.

With all of the above methods, the FRFs may be determined for various combinations of excitation

and response points. Where mode shape data is needed, it is not merely possible: it is essential that a

distribution of FRFs are available. Because of the symmetrical nature of the FRF matrix, it is equally

viable to use a single excitation point with multiple measurement points or multiple excitation points

with a single measurement point. The latter option is particularly useful where equipment is limited

and a hammer test is to be performed.

Correlation Functions

Recognising that random excitation data can not be used directly in the Fourier transform, there is

a need for signals with the same spectral content but which satisfy the conditions of the DFT. Such

signals are found in the correlation functions. The autocorrelation gives the expected value of the

product of the signal and one leading it by time τ :

Rff (τ) = E[f(t) · f(t+ τ)] (2.174)

where f(t) is the excitation force signal and the subscript ff indicates the force autocorrelation. The

corresponding equation for the displacement signal is

Rxx(τ) = E[x(t) · x(t+ τ)] (2.175)

and the cross correlations can be defined

Rxf (τ) = E[x(t) · f(t+ τ)] (2.176)

Rfx(τ) = E[f(t) · x(t+ τ)]. (2.177)

If the signals and their associated processes are assumed to be ergodic then eqns. (2.174–2.177) can

be written

Rff = lim
T→∞

1

T − τ

∫ T−τ

0

f(t) · f(t+ τ) dt (2.178)

Rxx = lim
T→∞

1

T − τ

∫ T−τ

0

x(t) · x(t+ τ) dt (2.179)

Rxf = lim
T→∞

1

T − τ

∫ T−τ

0

x(t) · f(t+ τ) dt (2.180)

Rfx = lim
T→∞

1

T − τ

∫ T−τ

0

f(t) · x(t+ τ) dt. (2.181)
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In practice only short time signals are available and as the sample time, T , is reduced from infinity

the results obtained with the above equations become estimates of the correlations. As with the

Fourier transform itself, windowing can improve the accuracy of the correlation functions on short

samples. Most commonly, the windowing is applied to the output of the functions instead of the input,

weighting the most accurate high-frequency information at the start of the data stream and discarding

the less accurate low-frequency information towards the end. In either case, the importance is that

the results can now be processed with the Fourier transform.

Power Spectral Densities

Taking the Fourier transform of the autocorrelation functions produces an indication of the spectral

content of the original signals, much as the Fourier transform does on its own for periodic signals.

The resultant function is called the auto-spectral density, or power-spectral density (PSD):

Sxx(ω) =
1

2π

∫ ∞

−∞

Rxx(τ)e
−iωτ dτ (2.182)

Sff (ω) =
1

2π

∫ ∞

−∞

Rff (τ)e
−iωτ dτ. (2.183)

Lathi [184] describes how an autocorrelation is equivalent to a convolution with one of the time

sequences negated:

Rxx(τ) = x(τ) ∗ x(−τ) (2.184)

where ∗ is the convolution operator. He shows that a convolution in the time domain corresponds

with a multiplication in the frequency domain, and the scaling property gives x(−t) ⇐⇒ X(−ω) so

that

Sxx(ω) = X(ω) ·X(−ω) (2.185)

= X(ω) ·X∗(ω) (2.186)

= |X(ω)|2. (2.187)

From this equation the nomenclature of the PSD is explained: it gives the spectral breakdown of the

power in the signal. It is also conspicuous that the autocorrelation operation has removed the phase

information from the original data. The texts by Inman [188], Meirovitch [161] and Maia et al. [169]

express the displacement in terms of the convolution of the impulse response and the excitation force,

x(t) = h(t) ∗ f(t) (2.188)

so that

Rxx(τ) = h(τ) ∗ f(τ) ∗ h(−τ) ∗ f(−τ) (2.189)

= h(τ) ∗ h(−τ) ∗ f(τ) ∗ f(−τ). (2.190)
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Noting that the Fourier transform of the impulse response is the FRF, h(t) ⇐⇒ H(ω),

Sxx(ω) = H(ω) ·H∗(ω) · Sff (ω)

= |H(ω)|2 · Sff (ω). (2.191)

Using this equation the magnitude of the response function can be reconstructed from the PSDs of

the excitation and response signals. To determine the phase, further quantities are needed and these

are provided in the form of the cross-spectral densities (CSDs):

Sxf (ω) =
1

2π

∫ ∞

−∞

Rxf (τ)e
−iωτ dτ (2.192)

Sfx(ω) =
1

2π

∫ ∞

−∞

Rfx(τ)e
−iωτ dτ. (2.193)

Following an analogous procedure to that of the auto-spectral densities above, it can be shown that

Sfx(ω) = H(ω) · Sff (ω) (2.194)

Sxx(ω) = H(ω) · Sxf (ω). (2.195)

FRFs

From eqns. (2.191), (2.194) and (2.195) it is possible to produce two estimates of the receptance,

referred to as H1 and H2. The first of these is the most widely adopted1, given by

H1(ω) =
Sfx(ω)

Sff (ω)
. (2.196)

The second estimate is

H2(ω) =
Sxx(ω)

Sxf (ω)
. (2.197)

Where the measurement signals are contaminated, the two estimates are affected in different manners:

close to resonance the input forces are low and the force autocorrelation Sff is susceptible to noise.

Thus, H1 estimates will be less accurate at resonance. In contrast, at antiresonance the displacements

will be small and the displacement autocorrelation Sxx will suffer. Consequently, H2 produces inferior

estimates at antiresonance. In any case, the agreement between the two estimates provides a useful

measure of their accuracy. Specifically, disagreement will provide a definitive indicator of inaccuracies

in at least one of the estimates, while agreement serves to improve confidence in the results. The ratio

of the two functions is called the coherence,

γ2(ω) =
H1(ω)

H2(ω)
(2.198)

and values of unity are desirable. Values significantly below zero indicate one of two things: either

there is noise on the measurement signals, or one or more of the assumptions made above is inadequate.

1Ewins [162] suggests the popularity of H1 over H2 is due to its marginal advantage with respect to computability.
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The exception to this rule is at the poles and zeros of the system, where one or other of the estimates

will always tend to exhibit inaccuracies, even with high fidelity data.

2.5.4 Modal Parameter Extraction

Many and varied techniques exist for estimating the modal properties of a system based on vibration

test data. Some of these analyses are based in the frequency domain, using the FRFs derived in

the previous section, while others use time domain data; this takes the form of the impulse response

functions, obtained from the inverse Fourier transforms of the FRFs. In this section a few of the

most intuitive methods, based on single degree of freedom (SDOF) assumptions, are reviewed before

examining some more sophisticated multiple degree of freedom (MDOF) methods. Allemang and

Brown present an analysis of the similarities and differences between many of the techniques [189].

SDOF methods

Single degree of freedom methods rely on the assumption that, at resonance, the behaviour of the

structure is dominated by a single mode. Thus the properties of that mode may be estimated by

neglecting the influence of the other modes and performing the analysis as per a single DOF system in

that locality. The obvious drawback of this approach is its difficulty in processing data from systems

with closely spaced modes. Two methods are described here: peak picking and circle fitting, both of

which are based on frequency domain data.

Peak picking involves locating the resonant frequencies of the system using the peaks in the FRF

magnitude. This step is often performed using the sum of a series of FRFs for response and excitation

points located around a structure. For a given mode the peak magnitude, |Hjk|max, is determined,

locating the natural frequency ωr. The half-power points are then established as the two points either

side of the peak where the magnitude is |Hjk|max/
√

2. Their separation gives an indication of the

damping. If the frequencies at these points are denoted ωa and ωb, then the damping ratio is given by

η =
ω2
b − ω2

a

2ωr
(2.199)

ζ =
η

2
. (2.200)

Finally, the mode shapes are defined by the modal constants. From eqn. (2.108) these can be calculated

for each FRF as

rAjk = ω2
rη|Hjk|max. (2.201)

The method assumes proportional damping and thus the computed mode shapes will always be real;

this result is inevitable because the phase of the FRF is not used in the analysis. A further drawback

is that there is no curve-fitting, so an accurate estimate of the natural frequency is dependent upon

good spectral resolution in the frequency domain. More importantly, the measured peak amplitude
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for lightly damped systems will be particularly sensitive to the spectral alignment.

The next method considered is a curve-fitting technique performed in the Nyquist, or complex, plane.

As seen in figure 2.2(b), the FRF for a single DOF system forms a circle passing through the origin

in the Nyquist plane. The first step in the process is to obtain the circular least squares fit for

the measured data. Once this is found the path is characterised by the circle’s diameter, the polar

coordinates of its centre with respect to the origin, and the sweep rate dθ/dω which varies along the

arc. The natural frequency is located as the point of maximum sweep rate. The modal damping ratio

may be estimated from the maximum sweep rate but this can be inaccurate. A preferred method is to

chose two points either side of the natural frequency and apply a generalised version of eqn. (2.199),

η =
ω2
b − ω2

a

ω2
n (tan(θa/2) + tan(θb/2))

(2.202)

where ωa and ωb are now any sensible choice of frequencies either side of the natural frequency, and

θa and θb are the angles subtended in going from ωa to ωn and ωn to ωb respectively. Finally, the

magnitude and argument of the complex modal constant can be identified from the diameter and

orientation of the circle:

|Ajk| = Dω2
nη (2.203)

∠Ajk = ∠C0 (2.204)

where D is the diameter and C0 is the centre of the circle. Evaluation of the modal constants for a

range of FRFs allows the determination of the complex mode shapes. In practice, the circumference of

the circle may be offset from the origin, indicating the influence of other modes. The above procedure

may be adapted to account for this offset while broadly following the same steps.

A more in-depth explanation of these techniques is given in references [162, 169, 188], along with the

derivations of the damping formulae stated above.

MDOF methods

Multiple degree of freedom methods attempt to account for the influence of all the modes simulta-

neously, producing estimates of each of their properties with a single (albeit sometimes protracted)

computation. Methods in both the time and frequency domain are common.

For examples of frequency domain methods a reader could consult Ewins [162] about the non-linear

least squares (NLLS) and rational fraction polynomial (RFP) methods [190], the latter of which

formed something of a benchmark for MDOF methods, as well as what has become known as the

Ewins-Gleeson method [191] for lightly damped structures. Maia et al. [169] build on this selection

with the complex exponential frequency domain (CEFD) method [192] and a wide range of variations

on these schemes. Peeters et al. discuss an extension of the CEFD method which has found recent
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popularity, known as PolyMAX [193].

The above methods are referred to as single input single output (SISO) methods, as they can be

applied to single FRFs. Where multiple FRFs are available, it is often desirable to incorporate them

all into the analysis to average out any errors in the data. The resultant procedures are categorised

as either single input multi output (SIMO), multi input single output (MISO) or multi input multi

output (MIMO). Where modes are extremely closely spaced, or even coincident, it is impossible to

determine the modal characteristics from SISO methods and one of the aforementioned categories

must be employed; these are known collectively as global methods. The CEFD and RFP methods

cited above may be extended to global methods in the form of the polyreference frequency domain

(PRFD) and global rational fraction polynomial (GRFP) methods [194, 195].

Time domain techniques are equally numerous, and the modal analysis texts describe the Ibrahim

time domain (ITD) method [196], the eigensystem realisation algorithm (ERA) [197], the complex

exponential (CE) method [198] and its global extensions in the form of the least-squares complex

exponential (LSCE) and polyreference complex exponential (PRCE) methods [199, 200]. Only one of

these methods will be discussed here, as it is the one used for all of the modal identification in this

thesis. It is the technique adopted by the proprietary LMS software, and it is the algorithm that has

been incorporated into the author’s own MATLAB code. It is the LSCE method, and its description

here mirrors that found in the standard texts.

The explanation will begin with the simple CE method, as the extension to the LSCE is trivial. The

first step in the process is to formulate the impulse response function (IRF) as the inverse Fourier

transform (IFT) of the FRF. A fundamental premise behind modal analysis is that the principle of

superposition holds true. As such, the impulse response may be expressed as a summation of the

individual modal responses. Taking the IFT of eqn. (2.108) yields

hjk(t) =

2N
∑

r=1

rAjke
λrt. (2.205)

Substituting t = ℓ∆t, h
(ℓ)
jk = hjk(ℓ∆t) and Vr = eλr∆t produces

h
(0)
jk =

2N
∑

r=1

rAjk

h
(1)
jk =

2N
∑

r=1

rAjkVr

h
(2)
jk =

2N
∑

r=1

rAjkV
2
r (2.206)

...
...

h
(L)
jk =

2N
∑

r=1

rAjkV
L
r .

This set of equations can be solved using Prony’s method [201]. First, a polnomial equation is defined
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as

β0 + β1Vr + β2V
2
r + ...+ βLV

L
r = 0 (2.207)

where it can be shown that constant real coefficients β0..βL can be found to satisfy any Vr. Next,

eqns. (2.206) are multiplied by the coefficients and summed to produce

L
∑

a=0

βah
(a)
jk =

L
∑

a=0

(

βa

2N
∑

r=1

rAjkV
a
r

)

. (2.208)

Rearranging gives
L
∑

a=0

βah
(a)
jk =

2N
∑

r=1

rAjk

(

L
∑

a=0

βaV
a
r

)

(2.209)

and recognising that the rightmost sum is the polynomial from eqn. (2.207),

L
∑

a=0

βah
(a)
jk = 0. (2.210)

Setting L = 2N and using (2N − 1) consecutive overlapping datasets from the IRF, a set of si-

multaneous equations are formulated from eqn. (2.210) and these can be expressed in matrix form

as
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Arbitrarily setting β2N = 1 produces
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(2.212)

which can be solved for the coefficients βa by inverting the IRF matrix:
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Once the coefficients are known, a polynomial solver may be used to obtain the values for Vr from

eqn. (2.207) and hence λr. Note that the datasets need not necessarily overlap, and need not possess
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any particular relationship with respect to one another. It is sufficient that each dataset shares a

common time step. It is also not necessary to limit the number of datasets to (2N − 1); this number

is simply the lower bound and in fact the inclusion of more data sets improves the results to some

extent by averaging out noisy data. Furthermore, it is noted that every FRF from the system should

share common poles, and thus common values for Vr and common coefficients βa. Thus datasets from

different IRFs may be combined in eqn. (2.213) to obtain the poles and modal damping ratios. The

only change in methodology is that now instead of an ordinary matrix inversion as used in eqn (2.213),

a pseudoinverse must be performed to fit the solution to the redundant data sets. This variation on

the technique is what is referred to as the least squares complex exponential method, so called because

the pseudo-inverse produces a least-squares approximation to the solution.

The real and imaginary parts of the complex values λr determine the damping ratios and natural

frequencies of the modes respectively. With knowledge of the values Vr, the mode shapes may be

computed as follows. Putting eqn. (2.206) in matrix form gives
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and inverting the problem gives the modal constants as
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Repeating the procedure with IRFs for different response or excitation points, j or k, allows determina-

tion of the mode shapes using eqn. (2.107). Another popular technique is, once the poles and damping

loss factors are derived with the LSCE method, to apply a least squares frequency domain (LSFD)

method to determine the modal constants. The LSFD method is cursorily described by Peeters et

al. [193]. It is done by adapting eqn. (2.108) to matrix format for discrete frequency intervals ∆ω so

that
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where the C is the characteristic polynomial

Cr,n = ω2
r − (n∆ω)2 + iηrω

2
r . (2.217)

Using a pseudo inverse (denoted by +) gives the least squares solution to the modal constants as
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The LSCE method is almost entirely automated, and only two aspects of the procedure may be

tailored by the analyst:

• which data to use from the IRFs, and how much of it to include (typically the solution will be

overdetermined by the measured data)

• how many modes the algorithm should attempt to fit to the data; in other words the order of

analytic model that should be generated.

The first item is not usually critical to the solution, and while larger quantities of data help to

compensate for noisy measurements, including all the data can produce an ill-conditioned inversion

problem. The second item, on the other hand, is important. If too few modes are included then

the results will be inaccurate, with some modes omitted from the solution and others distorted to

compensate. Attempting to identify too many modes will produce non-existent computational modes

which may confuse the results.

There are several possibilities for estimating the most appropriate model order. The first is to deter-

mine the rank of the IRF matrix in eqn. (2.213). This will directly give an indication of the model

order. Another approach is to reconstruct the IRF from the computed modal properties and integrate

the square of the error over the signal length. If this is repeated for increasing model orders then the

error should be seen to drop off sharply as the correct order is reached.

Another method that has proved popular is to evaluate the modal properties using a range of model

orders, and compare the positions of the poles on a stabilisation diagram. The physical modes should

be identified at the same frequencies every time, provided the model order is high enough, but com-

putational modes will tend to wander over the diagram. To give further confidence in the physical

modes, the damping ratios and mode shapes are compared as well, and only when these stay within

defined tolerances from one order to the next are they deemed to have stabilised. The operator may

then identify the physical modes from the diagram, where high fidelity data should produce clear lines

of stabilised modes, corresponding with the peaks in the overlaid FRF. An example of a stabilisation
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Figure 2.16: Stabilisation diagram for a simulated two DOF system.

diagram for a 2 mode system is seen in figure 2.16, produced using the author’s own code. For this

demonstration only a single FRF was processed so the stabilisation is based on the frequency and

damping but not the mode shape vectors. Nonetheless, the identification of the modes from this

simulated response data is unambiguous.

2.6 Data comparison and model validation

Once the analytical model has been computed and the experimental data processed, a means of

comparing the two is needed. In fact, the techniques described below will prove useful not only in

comparing numerical and physical results but also in comparing different sets of results from the same

experiment or model. Three types of data are considered below: FRFs, natural frequencies, and mode

shapes.

2.6.1 FRFs

The frequency response functions are perhaps the most obvious candidate for comparisons. Aside

from the raw time history data, which is hard to replicate in an analytical model, the FRFs require

the least processing of all the results presented above. In this regard, there is the least possibility

of computational errors muddling the correlation. The trouble, however, lies in the damping. In

analytical models of all but the simplest structures it is difficult to provide sound estimates of the

damping. For this reason it is common practice to neglect damping in the creation of analytical models.

The utility of an FRF computed without damping is highly questionable in these circumstances, not

least because the curve would go to infinity at the resonances. For these reasons, this manuscript
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will concern itself only with qualitative FRF comparisons, leaving the rigorous numerical validation

of results to the modal data.

2.6.2 Natural Frequencies

The first port of call in results correlation is to compare the natural frequencies. On first inspection this

is a trivial matter. Tabulating the results provides an easy comparison of the two mode sets. The two

sets of frequencies may be plotted against one another, examples of which are seen in figure 3.9, and

good correlation will produce points lying close to a line passing through the origin at 45◦. Random

deviations from the line are indicative of a poor model or inaccurate measured data. Systematic

discrepancies may help to diagnose the problem: for example, if all the points lie on a line passing

through the origin at an angle other than 45◦, this may be indicative of a global density or Young’s

modulus error.

A difficulty with this approach is encountered in systems with closely spaced modes. In this case the

order of the modes may vary in the two data sets. While the ordering may be easy to determine by

inspection of the frequencies alone, it is more usual to correlate the two sets of modes using mode

shape comparisons.

2.6.3 Mode Shapes

Realisation

The first thing to be considered in the analysis of experimental mode shapes is how to deal with their

complexity. It has already been expalined that analytical models are, generally speaking, undamped.

Even where damping is included, the prevalent model is that of proportional damping, producing

real mode shapes. In reality all modes will exhibit some level of non-proportional damping and the

elements of the experimental mode shape vectors will have differing phases, represented by imaginary

components in the mode shapes. If these are to be compared to real analytic modes, they will need

to be converted into their real equivalents. Several methods exist, none of which will be discussed

in great depth here. This is because the structures considered in this manuscript possess very low

and approximately uniform damping, so the phases of the mode shape components do not stray far

from one another. The simplest method in this case is to retain only the magnitude and sign of each

component and discard the phase information.

Model Expansion and Reduction

The next step in comparing analytic and experimental data is to correlate the DOFs. It is likely that

the FE model will be comprised of a large number of DOFs. In contrast, practical considerations tend
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to limit the number of DOFs that are measured on a physical specimen. In order to contrast the two

result sets, it is necessary to adjust one or other so as to reflect the same information. This is done

either by expanding the smaller set or reducing the larger set. Both techniques are based on the same

principles.

Historically, model reduction was devised not as a means of comparing disparate data sets, but of

distilling large analytic matrices to a more manageable size for eigensolution computation on the

limited microprocessors of the time. The aim was to represent the stiffness and inertia characteristics

of the structure with as few DOFs as possible. Guyan [202] proposed partitioning the eigenvectors

into master and slave degrees of freedom denoted by the subscripts m and s, and partitioning the

mass and stiffness matrices accordingly:

φi =







φmi

φsi







M =





Mmm Mms

Msm Mss



 K =





Kmm Kms

Ksm Kss



 . (2.219)

Using these in eqn. (2.84) produces
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= 0 (2.220)

and making the assumption that the inertial effects at the slave DOFs are negligible compared to the

elastic forces, the bottom half of the matrix equation gives

Ksmφmi + Kssφsi = 0 (2.221)

so that

φsi = −Kss
−1Ksmφmi. (2.222)

The full eigenvector is thus given by







φmi

φsi







=







I

−Kss
−1Ksm







φmi (2.223)

or

φi = Tφmi T =







I

−Kss
−1Ksm







. (2.224)

Putting eqn. (2.224) into the orthogonality conditions gives

φTmiT
TMTφmi = I φTmiT

TKTφmi = Λ (2.225)

so that the reduced mass and stiffness matrices are given by

MR = TTMT KR = TTKT. (2.226)

67



2.6. DATA COMPARISON AND MODEL VALIDATION

The solution obtained with these matrices is exact only where ω = 0 so that the technique is often

referred to as static reduction. The approximation works well for low frequency modes where inertial

effects are less significant, but the inaccuracies increase with the frequency. This problem is tackled

in an extension to Guyan’s method, called dynamic reduction, where instead of neglecting the inertial

effects they are included for a single frequency, ωDR. Eqn. (2.220) becomes

− ω2
DR
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Ksm Kss











φmi

φsi







= 0 (2.227)

and taking the bottom half of the equation again gives

(Ksm − ω2
DRMsm)φmi + (Kss − ω2

DRMss)φsi = 0 (2.228)

and the slave degrees of freedom are related to the measured degrees of freedom using

φsi = −
(

Kss − ω2
DRMss

)−1 (
Ksm − ω2

DRMsm

)

φmi. (2.229)

In this case the transform for the matrix reduction is given by

T =







I

−
(

Kss − ω2
DRMss

)−1 (
Ksm − ω2

DRMsm

)







. (2.230)

The reduced matrices give an exact solution at ωDR but moving away from this frequency in either

direction reduces the accuracy in the same way as with the static reduction. In fact, static reduction

is simply a special case of dynamic reduction, with ωDR = 0.

Having derived the reduced matrices, the expansion and reduction of the eigenvectors is a trivial task.

Reduction of the analytic eigenvectors is the simplest option; all that is needed is to omit the slave

DOFs from the vector. Expansion of the experimental eigenvectors is known as Kidder’s method [203]

and involves reconstructing the slave DOFs from the measured (master) DOFs by putting ω2
DR = λi

into eqn. (2.229) for each mode, i. The problem with this technique as a validation tool is that the

expanded DOFs are based on the analytic mass and stiffness matrices. As such, they will exhibit a

biased correlation with the numerical model. Used appropriately, however, they can provide improved

visualisation and allow for further manipulation in advanced analyses.

Master DOFs

The model reduction techniques raise an interesting question: which DOFs provide the best representa-

tion of a structure? This is particularly important when selecting attachment points for measurement

devices. Bearing in mind the premise behind Guyan reduction, that the inertia forces are negligible,

the DOFs to be discarded should be those with low mass to stiffness ratios. A popular technique is to

compare the diagonal mass and stiffness matrix entries and discard the DOFs with the lowest mii/kii
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values. They should not be discarded all at once, but one at a time, computing the new reduced mass

and stiffness matrices at each step.

Another approach is called the effective independence distribution vector method and relies on the

computation of the full analytical eigenvectors. In a modal analysis context, the question of which

DOFs are most important becomes one of determining which DOFs produce a linearly indepedent

representation of all the modes being studied. If Φ is taken to be the analytic eigenvector matrix

containing only the modes of interest then the matrix

R = ΦΦ+ = Φ(ΦTΦ)−1ΦT (2.231)

will be full rank only while all the mode vectors are linearly independent [204]. Furthermore, the

diagonal elements of R give the fractional contribution of each DOF to its rank, and thus the smaller

values indicate the DOFs that should be eliminated. Once again, the DOFs should be removed one

at a time, with the reduced matrices recomputed after each cull.

Mode Correlation

Once all of the modes are represented in a format suitable for comparison, there are a choice of meth-

ods. One method is to plot, for each mode, a graph of the mode vector elements, with the experimental

values on one axis and the analytical values on the other. This is similar to the frequency comparison

and good correlation will produce points lying on a straight line. This method is particularly useful

for detecting systematic errors, but requires a lot of plots to represent the full modal model.

A better choice for assessing the correlation at a glance is the Modal Assurance Criterion (MAC),

MACjk =

(

ψj
Tψk

)2

(

ψj
Tψj

)(

ψk
Tψk

) (2.232)

The criterion produces, for any mode pair, a single value between zero and unity, where the former

indicates no correlation and the latter attests an exact match. More precisely, the MAC is the inner

product of the normalised eigenvectors. As such it affords a geometric interpretation: it is the square

of the angle between the two vectors in the physical coordinate system defined by the eigenvector

DOFs,

MACjk = cos2αjk. (2.233)

Usually, the MAC is evaluated for every pair within two sets of modes, and the results displayed in

a table. It can be presented graphically by replacing the cells in the table with coloured squares,

the size of which are proportional to the corresponding MAC entry. Examples are seen in figure 3.9,

where in addition to the size variation, the colour of the squares ranges from dark blue (representing

zero) through green to deep red (representing unity). This representation is consistent throughout

the thesis. A perfect correlation between two sets is indicated by ones on the diagonal elements, with

69



2.7. MODEL UPDATING

the off-diagonal elements taking arbitrary values but usually close to zero.

Another common technique is to use a weighted MAC, referred to as a Normalised Cross Orthogonality

(NCO). If the mass matrix is used as the weighting matrix then the NCO gives a measure of the angle,

α, between the two eigenvectors in the normal coordinate system defined by the mass-normalised mode

vectors[168]:

NCOjk = cos2βjk =

(

ψj
TMψk

)2

(

ψj
TMψj

)(

ψk
TMψk

) . (2.234)

The vectors should all be orthogonal in this coordinate system, so a perfect correlation will exhibit

ones on the diagonals and zeros on the off-diagonals of the NCO matrix.

If the MAC is used to compare a mode set to itself then it is referred to as the autoMAC, and it is a

useful measure of the linear independence of the eigenvectors. Applied to a reduced analytical mode

set it will highlight a deficient DOF selection with large off-diagonal values.

Automated Mode Tracing

With the quantitative assessment provided by the MAC it is possible to automate the pairing of modes

between two sets. This is useful in an array of situations; the two examples that will be explored in

this thesis are parametric studies and model updating, as discussed below. Ideally, there will be a

one-to-one correspondence between the two sets and the highest MAC value can be chosen for each

row in turn. In practice this is rarely the case and the highest MACs for several rows may lie in the

same column. The algorithm used in the code of this thesis is as follows: For any conflicts in the mode

pairing, the pair with the highest MAC is kept, and the other rows must be re-evaluated without the

contested column. This procedure is applied iteratively until all the modes are uniquely assigned.

2.7 Model Updating

Model updating is the process of adjusting parameters in a numerical model to bring the results in

line with those of a physical test. Various approaches are reviewed by Mottershead and Friswell [205].

For the technique to be useful it is critical that the parameters are chosen wisely: given enough

parameters it is a trivial matter to produce an analytic system which will match experimental data.

The purpose of the task, however, is to produce a model which bears more physical resemblance to

the real structure, such that identical alterations in the two systems produce corresponding changes

in the dynamic response.

Choosing sensible parameters is a matter of engineering judgement. For example, solid structural

members are generally well understood, whereas joints introduce uncertainties. The dynamic prop-

erties will be influenced by the tightness of bolts, friction in pinned connections, the strength or

porosity of a weld, etcetera. The detail in intricate parts is often overlooked, lumping their composi-
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tion into a few characteristic parameters which must be chosen carefully to reflect the behaviour of

the component.

It is also important that the updating problem is well conditioned: the dynamic properties must

be sensitive to the chosen parameters, and each parameter should affect the response in a different

manner. This is represented by the conditioning of the sensitivity matrix described below, which

should be comprised of linearly independent rows and columns.

2.7.1 Eigenstructure Sensitivities

The updating procedures employed in this thesis are concerned primarily with correcting the modal

properties, characterised by the eigenstructure of the analytical problem. The approach focuses on a

linearisation of the eigenstructure variation with respect to the parameters, reflected in the eigenvalue

and eigenvector sensitivities.

Fox and Kapoor [206] derive the eigenvalue sensitivity to a parameter δj as

dλi
dδj

= φTi

(

dK

dδj
− λi

dM

dδj

)

φi. (2.235)

They derive the corresponding eigenvector sensitivity as a linear combination of the eigenvectors

themselves (which, as an orthogonal set, can reproduce any vector within the eigenspace):

dφi
dδj

= −
φTi

dM
dδj
φi

2
φi +

∑

r 6=i

φTr

(

dK
dδj

− λi
dM
dδj

)

φi

∆λir
φr. (2.236)

where ∆λir = λi − λr. A drawback of using eqn. (2.236) to compute the eigenvector sensitivities

is that knowledge of all the eigenvectors is needed for an accurate calculation. It is desireable to

be able to compute the vector sensitivity from the modal properties of only the mode in question,

and this can be accomplished using Nelson’s method [207]. The procedure described by Friswell

and Mottershead [204] starts by defining the ith eigenvector sensitivity as the sum of the scaled ith

eigenvector and another vector representing the contribution of the remaining modes:

dφi
dδj

= ciφi + di. (2.237)

The vector di is determined first, by differentiating eqn. (2.84), substituting eqn. (2.235) and putting

dφi

dδj
= di into the result so that

[K − λiM]di = −
[

dK

dδj
− λi

dM

dδj
− φTi

[

dK

dδj
− λi

dM

dδj

]

φiM

]

φi. (2.238)

To tackle the problem of inverting [K − λiM], which will be rank deficient, the kth element of di is

set to zero and the corresponding rows and columns are removed from eqn. (2.238). After solving for

the remaining elements of di, the zero is reinserted in the kth position. Usually the index k is chosen
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as the location of the maximum eigenvector element but the selection is not important provided the

inversion procedure is well conditioned. Once di is determined, the mass orthogonality from eqn. (2.99)

is differentiated and combined with eqn. (2.237) to produce

ci = −φTi Mdi −
1

2
φTi

dM

dδj
φi. (2.239)

To conclude, di and ci are inserted into eqn. (2.237) to obtain the eigenvector sensitivity. Whilst

awkward to explain, this scheme is computationally efficient, particularly where only one mode is

being investigated.

2.7.2 Updating Schemes

Many different methods exist for model updating: Friswell and Mottershead [204] discuss direct

methods using modal data, iterative methods using modal data and methods using frequency domain

data.

The latter technique seeks to match the analytical FRFs to the measured FRFs, with no modal

parameter extraction necessary. While this simplifies the measurement data processing, it introduces

the question of how to model the damping, which can be difficult as discussed in section 2.6.1.

The direct methods involve a one step procedure which modifies the structural matrices directly to

reproduce the experimentally determined modal properties. The results are matched exactly, but the

adjustments to the structural matrices have little physical basis. In general the nodal connectivity of

the updated model is not consistent with the initial model and does not correspond with the physical

connectivity. Some studies [208, 209] have placed additional constraints on the solution to try to

improve the physicality, but these still represent a compromise.

An interesting development is that of generic elements [210], where similar techniques are applied but

to single elements. Once again, the changes may be constrained to allow preservation of the physical

connectivity [211]. Generic elements have the advantage that they can be localised, permitting greater

control of the structural modifications.

Friswell and Mottershead discuss several iterative methods. This thesis confines itself to the use

of penalty function methods. Like the direct methods they attempt to match the numerical and

experimental modal results. As the name implies, in this case the approach is iterative. At each step

a linearisation of the modal sensitivities is used to estimate the parameter values which will minimise

the errors in the updating variables. Convergence is assessed based on the change in parameter values;

once the change falls below a given value the solution is deemed to have converged.

The data available as updating variables are the eigenvalues and the eigenvectors. The eigenvectors

are widely thought to provide inferior updating variables when compared to the eigenvalues. The

eigenvalues are generously overdetermined by the measurement data, and they are insensitive to
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calibration errors on the measurement equipment. In contrast, the eigenvector elements each rely

on a single measurement transducer and will be sensitive to both noise and calibration errors. It

is generally preferred, therefore, to use only the eigenvalues in the updating process where feasible.

Despite this preference, the eigenvectors sometimes contain unique information about the structure

and chapter 6 discusses an alternative method to exploit this information without the need for the

direct inclusion of the eigenvectors.

For every iteration, j, a sensitivity matrix is constructed with the elements of each row giving the

sensitivity of the updating variables, z, to the parameters, δ:

Sj =
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. . . ∂z1
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(2.240)

The estimated change, ∆zj , in the analytic updating variables is then given in terms of the parameter

change vector, ∆δj , by

∆zj = Sj∆δj . (2.241)

An updating variable error vector is defined as the difference between the measured data, zm, and

the data from the current iteration zj:

εj = zm − zj (2.242)

and the estimated error at the end of the iteration is given by

ε̃j+1 = εj − ∆zj

= εj − Sj∆δj . (2.243)

The objective is to minimise the estimated error at the end of the iteration and this is achieved in the

least squares sense by minimising the penalty function

J(∆δj) = ε̃j+1
T ε̃j+1. (2.244)

A weighting matrix is often included to attach differing importance to the updating variables. This

is usually used where some measured data are considered more reliable than others. The penalty

function then becomes

J(∆δj) = ε̃j+1
TWεεε̃j+1. (2.245)

It may also be desireable to attach a weighting matrix to the updating parameters; in addition to

shaping the levels of variation applied to each parameter this serves as a regularisation method [212],

with smaller values reducing the changes at each iteration. This is particularly useful if the scheme
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exhibits convergence instablities. A new term is added to the penalty function to give

J(∆δj) = ε̃j+1
TWεεε̃j+1 + ∆δj

TWδδ∆δj . (2.246)

Substituting eqn. (2.243) and differentiating with respect to ∆δj , the minimum penalty function is

given by

∆δj = [Sj
TWεεSj + Wδδ]

−1Sj
TWεεεj . (2.247)

This result gives the increment to the updating parameters based on the updating variable error. The

model is then evaluated for the new parameter values and the next iteration begins. This procedure

repeats until convergence is attained.

2.7.3 Model Updating with ANSYS

While the early chapters of this thesis rely on purpose-written code, and implement the updating

schemes using exact sensitivity calculations, the later chapters rely on proprietary finite element code.

The software package chosen is ANSYS [152], and the updating capabilities are provided by the design

optimisation toolbox. These tools provide the facility to perturb the updating parameters sequentially,

thus determining empirical sensitivities for the updating process. The design optimisation tools are

not specifically intended for dynamic model updating; instead they seek to minimise whatever values

the user specifies. For these purposes, an objective function is computed as the ℓ-2 norm of the

eigenvalue errors. This value is passed to the design optimisation routine, allowing it to adjust the

parameters to those which best match the dynamic properties of the experimental configuration. In

order to use the optimisation tools it is necessary to provide a parametric ANSYS script which can

build the model according to the design parameter values at each iteration, and run any necessary

solutions to obtain the updating variables.

Another ANSYS feature which is employed in this thesis is the gradient method. This tool can be

applied independently of a full optimisation run; it simply performs an empirical sensitivity analysis on

the model, and by including a modal solution in the optimisation script the software can be configured

to return the eigenvalue sensitivities to design parameters.

74



Chapter 3

Preliminary Stress Stiffening Investigations

3.1 Introduction

This chapter details several test configurations that were employed in performing experimental and

numerical investigations of the effect of loading on structural dynamic behaviour. The primary ob-

jective at the outset was to verify theoretical predictions and determine the accuracy of the different

approximations described in section 2.4. The simple configurations chosen for the tests also provided

an opportunity to validate the generic finite element (FE) code developed by the author for the work in

this thesis, and to identify aspects of the behaviour that could be exploited for beneficial modification

of the dynamic response.

In the course of the experiments several peculiarities are explored, including the parameterisation

of joints subject to loading and the effects of damping on the response functions in the presence of

high modal overlap. Two configurations are used: one with pinned joints and one with welded joints.

The former is used for FE code validation and joint studies while the latter is used to evaluate stress

stiffening formulations, identify response suppression opportunities and investigate damping effects.

3.2 Validation Test Structure

A test structure was developed for the purposes of validating the theory and FE techniques presented

in the foregoing chapters, and to establish the accuracy of the differing levels of approximation.

The structure was designed to isolate the effects of loading from other effects, and so to minimise

uncertainties. Following the example of Greening [175], a cross-braced rectangular framework was

used, as illustrated in figure 3.1. To simplify the analysis a two-dimensional approximation was

employed. An 8×30mm beam cross-section was chosen, with the smaller second moment of area

corresponding to bending in the plane of the frame. This alignment produces high out-of-plane

stiffness, and separates the in- and out-of-plane vibration modes. The centrelines of the beams were
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3.2. VALIDATION TEST STRUCTURE

(a) Plan View (b) Section A-A

Figure 3.1: The cross-braced rectangular frame exhibiting static redundancy, with two bolts forming
a tensioning mechanism in one of the diagonals.

also arranged to lie in the same plane as each other, thus minimising the coupling between in- and

out-of-plane modes.

The two diagonal cross-beams create a static redundancy so that shortening one member results in

an internal load propagating around the structure. The tensioning mechanism is seen in figure 3.2

and is comprised of two bolts inserted in line with one of the cross-beams. The bolts thread through

flanges in the beam segments and pass either side of the other diagonal member. This arrangement

allows the two beams to cross without contacting each other, while ensuring the neutral axis reamins

in-plane. Tightening the bolts shortens the member and induces the structural load. Two strain

gauges are mounted on the top and bottom of the tensioning beam, mid-way between the tensioning

mechanism and corner joint. The strain measurements allow calculation of the tension in the member,

and balancing the two ensures that no bending moment is introduced.

Two variations were built: one with pinned corner joints, assembled as pictured in figure 3.3 to retain

in-plane neutral axes, and the second with welded joints. The pin-jointed arrangement was intended

to ensure the simplest static load case as the members would carry only axial loading, in contrast to

the welded joints which would allow shear and moment transfer between members. In addition, the

analytical buckling load for the pin-jointed truss has a closed form solution so the stressed structure

could be compared to the exact buckling and stress stiffnening solutions, as outlined in appendix A.

In practice, the pinned joints introduced more complications than had been anticipated and these are

described in the next section.

The finite element model (FEM) was constructed using six two-dimensional Euler-Bernoulli beam

elements for each member of the truss. The pinned corner joints were represented by another element

for each of the interleaving, fingered sections. The tensioning mechanism was comprised of a further

three elements representing the two flanges and the bolts. The arrangement of this region can be

seen in figure 3.4. To simulate the tightening of the bolts, the bolts element is uncoupled from the

flange element at one end. The free end of the flange is fully constrained, and the free end of the bolts

element is constrained in the transverse and rotational DOFs. An axial load is applied to the free

end of the bolts and the static analysis is performed. Once this analysis is complete, the loading and
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CHAPTER 3. PRELIMINARY STRESS STIFFENING INVESTIGATIONS

Figure 3.2: Photograph showing the tensioning mechanism in the redundant frame.

(a) Part Drawing

(b) Assembly Drawing

Figure 3.3: The pin-jointed members for the rectangular frame, shown separately and assembled.

Figure 3.4: Finite element model of the tensioning mechanism. The figure is not to scale; in particular,
nodes 2 and 3 are coincident in the unloaded FE model.
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3.3. PIN-JOINTED FRAME

Figure 3.5: Corner joint arrangement in the pin-jointed frame.

contraints are removed and the free ends are coupled once more ready for the dynamic analysis. Small

errors are introduced by the misalignment of the two free ends after loading but the displacement of

the bolts was found to be relatively small and the effect on the mass and stiffness is negligible next

to that of the stress stiffening itself; the approximation is justified by the simplification it affords.

3.3 Pin-Jointed Frame

3.3.1 Experimental Configuration

The pin-jointed frame was tested first. The corner joints are pictured in figure 3.5, with attachments

for suspending the structure. It was suspended from rubber bands to approximate free vibration

conditions as seen in figure 3.6. Two shakers were required to excite the structure; long flexible

stingers were extended from these to the frame, where they were attached magnetically in line with

force transducers (magnetic mounts are acceptable for the low frequencies being considered). Four-

teen accelerometers were attached using wax, and the distribution of these is seen along with the

shaker positioning in figure 3.7. The shakers were used to supply broadband excitation and force

and acceleration measurements were recorded. Frequency response curves were computed and a least

squares complex exponential method used to determine modal frequency and damping values, before

estimating the mode shapes with the frequency domain least squares technique. These methods are

outlined in section 2.5.

3.3.2 Preliminary Model Updating

In preparation for the load tests, the structure was first tested with the tensioning beam removed

to validate the FE model. This arrangement is seen in figure 3.8 and eliminates the uncertainties

associated with the tensioning mechanism. The results were expected to match the finite element
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Figure 3.6: Experimental arrangement for the pinned frame.

Figure 3.7: Experimental layout for the pin-jointed frame, showing the shaker attachment points and
the accelerometer locations denoted by +.

Figure 3.8: The pin-jointed frame with tensioning member removed.
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3.3. PIN-JOINTED FRAME

prediction with a great degree of accuracy but this was not the case. The experimentally determined

frequencies and mode shapes are compared with the finite element results in figure 3.9(a) using tech-

niques from section 2.6. The most plausible source of error was in the pinned joints, where the stiffness

and damping caused by friction had not been accounted for. Correcting for these omissions, small

rotational springs were added to the model to couple the rotational DOFs at the ends of the beams.

Three spring sets were introduced to model the stiffnesses at the three joint interfaces in each corner:

between the long and short outside members, the diagonal and short members, and the diagonal and

long members. These interfaces are highlighted in figure 3.10. An iterative sensitivity-based updating

scheme was employed as described in section 2.7, using the first three experimental frequencies as

updating variables in the penalty function. The model alteration thus determined was found to bring

all of the FE results in line with the experimental data as revealed by figure 3.9(b). Several of the FE

results that were not involved in the updating scheme, and that showed significant disagreement with

the experimental results prior to updating, were found to correlate well using the updated parameters,

instilling confidence in the updated model.

The convergence of the first three analytical frequencies on the experimentally obtained values is seen

in figure 3.11(a) with the corresponding parameter values. The most striking feature of this plot is

that one parameter converges on a much higher value than the other two. The parameters were re-

evaluated using several different mode combinations as reference data in the updating scheme, and each

time similar results were obtained. The high parameter value corresponds to the rotational stiffness

between the diagonal and short outside members (the central and right-hand parts in figure 3.3(a)).

Examining these parts, they were found to have an interference fit, restricting their relative motion.

A file was taken to the mating faces until the parts moved more freely past each other. Reassembling

the modified frame and testing it again verified that it was this interface that was responsible for

the observed discrepancies. Comparing the new experimental results with those of the original FE

model in figure 3.9(c) shows that the pinned assumption is more accurate for the modified structure.

Updating the model once again using the first three experimental frequencies gives the near perfect

correlation seen in figure 3.9(d). The strong stiffness between the diagonal and short members has

been dramatically reduced, as seen in figure 3.11(b), while the estimates for the other two stiffnesses

remain close to their original values.

With high confidence in the joint parameters, the tensioning member was reinserted in the struc-

ture. The experimental results for the complete structure compare favourably with the finite element

results using both the pinned approximation (figure 3.12(a)) and the updated parameter values (fig-

ure 3.12(b)). The parameters were updated once more, this time using the first four frequencies, and

they were found to have changed slightly with the additional member included (figure 3.13). This

discovery is not altogether surprising as the parameter values obtained using the FE model are in fact

averages of the real stiffnesses which will vary amongst the four corners. The two values which exhibit

the greatest change are both associated with the diagonal members, as would be expected upon the

inclusion of the second diagonal. The frequency convergence is seen to be less reliable than previously

and this is attributed to the further uncertainties introduced by the tensioning mechanism. The dis-
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(a) Unmodified frame, ideal pinned configuration.

0 20 40 60 80
0

10

20

30

40

50

60

70

80

90

experimental frequencies (Hz)

an
al

yt
ic

al
 fr

eq
ue

nc
ie

s 
(H

z)

1 2 3 4 5 6 7 8

8

7

6

5

4

3

2

1

experimental modes

an
al

yt
ic

al
 m

od
es

(b) Unmodified frame, updated spring parameters.
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(c) Modified frame, ideal pinned configuration.
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(d) Modified frame, updated spring parameters.

Figure 3.9: Comparison of the experimental and FE results for the frame with tensioning member re-
moved, using frequency and Modal Assurance Criterion correlation techniques described in section 2.6.
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3.3. PIN-JOINTED FRAME

(a) Short-Diagonal (b) Short-Long

(c) Long-Diagonal

Figure 3.10: The three sets of joint interfaces in the interleaved corners of the pinned frame.
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(a) Unmodified frame.
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(b) Modified frame.

Figure 3.11: Convergence of the first three frequencies and the corresponding spring stiffness param-
eters as the model is updated, with the tensioning member removed.

82



CHAPTER 3. PRELIMINARY STRESS STIFFENING INVESTIGATIONS

0 20 40 60 80 100
0

20

40

60

80

100

experimental frequencies (Hz)

an
al

yt
ic

al
 fr

eq
ue

nc
ie

s 
(H

z)

 1  2  3  4  5  6  7  8  9 10 11

11

10

 9

 8

 7

 6

 5

 4

 3

 2

 1

experimental modes

an
al

yt
ic

al
 m

od
es

(a) Ideal pinned configuration.
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(b) Original spring parameters.
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(c) Updated spring parameters.

Figure 3.12: Comparison of the experimental and FE results for the frame, complete with tensioning
member.
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Figure 3.13: Convergence of the first four frequencies and the corresponding spring stiffness parameters
as the model is updated, with the tensioning member included.

crepancies are not significant compared to those encountered in the earlier experiments, however, and

the parameters are seen to converge on reasonable values. The FE results obtained using the final

updated model compares well with the experimental data in figure 3.12(c).

3.3.3 Load testing

The structure was tensioned in approximately 300N steps until the buckling load was approached

at 3800N, and mode shapes and natural frequencies were determined for each load case. The fre-

quencies are plotted in figure 3.14(a). The FE model was evaluated at the same load steps, using

Newton-Raphson iterations at each step, and compared to the experimental results. Several model

configurations were investigated. As expected, the pinned joint assumption produced the relatively

poor results seen in figure 3.14(b). Including the joint stiffness parameters gives much better results,

illustrated in figure 3.14(c), but significant discrepancies still emerge at the higher loads. In an attempt

to reconcile these differences, the parameters were re-evaluated at each load step. Using this approach

produced the frequency curves in figure 3.14(d), matching the experimental results well. Parameter

values for the two approaches are plotted against load in figures 3.15(a) and 3.15(b). Noting that all

three parameters exhibit upward trends in the second model, it was postulated that as the loads on the

joints increase, so do the friction forces responsible for the rotational coupling. The erratic meandering

of the parameter values was attributed to stiction in the joints, causing spasmodic slipping as they were

loaded. Adopting a linear model for the stiffness variation, a new updating scheme was implemented.

This time six parameters were used; each of the three stiffnesses was defined in terms of a zero-load

stiffness and a linear load-dependent component. The new scheme used data from all the load cases

simultaneously, and the parameter values obtained are seen in figure 3.15(c). These parameters give

an excellent reproduction of the experimental behaviour, as presented in figure 3.14(e).

These results demonstrate that the influence of friction on joint parameters demands the adaptation

of parameters to the loading conditions. While many studies have been devoted to the effects of

stress stiffening on dynamic response in slender beams and plates, there does not appear to be a
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(a) Experimental results
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(c) Constant parameters
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(d) Parameters updated at each load step
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(e) Parameters updated with uniform load dependence over
all load steps

Figure 3.14: Variation of the natural frequencies with internal loading in the experimental rig and several FE configurations.

85



3.3.
P

IN
-J

O
IN

T
E

D
F
R

A
M

E

0 500 1000 1500 2000 2500 3000 3500
−100

0

100

200

300

400

500

600

700

800

900

load (N)

sp
rin

g 
pa

ra
m

et
er

s 
(N

m
 r

ad−
1 )

 

 

short−diag
long−diag
short−long

(a) Constant parameters
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(b) Parameters updated at each load step
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(c) Parameters updated with uniform load dependence over
all load steps

Figure 3.15: Variation of the parameters with internal loading for several FE configurations.
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standard approach in the literature for dealing with the effects of nonlinear static joint loading. Joint

modelling in general has received much attention; for example, uncertainties in fastened joints are

reviewed by Ibrahim and Petit [213]. The influence of loading has also been recognised: Bahra

and Greening [214] discuss the difficulties of joint parameterisation in loaded frames, and recognise

that boundary conditions are load-dependent variables. Folkman et al. [215] discuss the effects of

gravitational loading on the damping ratios of pinned trusses and their findings are confirmed by the

experimental results of Bingham and Folkman [216]. In a similar investigation Hsu et al. [217] include

gravity effects in an analytic pinned joint model, but none of these studies propose a global analysis

technique.

The work conducted here suggests that it would be beneficial to develop a set of common joint models

which can respond in a continuous and realistic manner to loading. In fact, the results presented above

show that without something of this nature it will be impossible to predict the dynamic behaviour of

loaded structures accurately, even for simple configurations.

3.4 Welded Frame

3.4.1 Nonlinear Buckling

The welded frame differs from the pin-jointed frame in only one respect: the corner joints are welded as

pictured in figure 3.16. The implications of this in terms of its behaviour under loading are concerned

primarily with the shear and moment transfer between the members. In contrast to the pinned frame

which exhibited abrupt, almost idealised buckling, the welded frame will be prone to a more gradual

onset of buckling as the end moments contribute to the transverse beam deflections. The new frame

does, however, possess greater stiffness and hence a higher buckling load. The welded joints are also

expected to provide more reliable and predictable results than the pinned equivalents, free from the

parametric uncertainties and damping of the previous model.

(a) (b)

Figure 3.16: Examples of the corner joints in the welded frame.
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3.4. WELDED FRAME

Figure 3.17: Experimental configuration for the
welded frame tests.

Figure 3.18: Arrangement of the shaker
and accelerometers (denoted with +) for the
welded frame experiment.

The expermental setup is pictured in figure 3.17. For this frame only one shaker is necessary as

the welded joints couple the two translational DOFs. The position of the shaker is illustrated along

with the accelerometer placements in figure 3.18. The frame was tensioned incrementally up to the

buckling load at approximately 6800N and modal properties were determined as with the pinned

frame, producing the frequency loci in figure 3.19(a).

The FE model was evaluated using 300N load steps with Newton-Raphson iterations, producing the

frequencies in figure 3.19(b). It is seen that the two graphs, although similar, show some discrepancies

at the higher loads, close to buckling. The deformation of the FE model, subject to loading below

the buckling threshold, is seen in figure 3.20(a). The structure buckles abruptly at the critical load,

in the mode illustrated in figure 3.20(b). This idealistic buckling behaviour is rarely seen outside of

text books and computer simulations. As elaborated in section 2.4.3, small imperfections in beam

and force alignments combined with material and assembly defects lead to a more gradual onset

of buckling, usually at a lower load than the ideal case. Zienkiewicz [182] suggests the deliberate

introduction of small imperfections to analytical models to simulate realistic buckling behaviour.

Following this procedure, small perturbations in the beam alignment prior to loading were found to

produce considerable changes in the buckling behaviour. Assuming an initial curvature of the long

external members of the frame - caused perhaps by residual stresses from the welding process - the

FE beams were endowed with a transverse displacement in the form of a half sine wave along their

length. Varying the extent of this initial perturbation, it was found that an amplitude of 1.85mm

(0.185% of the member length) produced frequencies that matched the experimental results, witnessed

by figure 3.19(c) Figure 3.21 shows the load-displacement curves for the two cases at the point of

application of the load (node 3 in figure 3.4). From these curves it is seen that the abrupt failure of

the ideal structure is replaced with a gradual deformation in the imperfect model. The deformation

takes approximately the same form as the eventual failure mode seen in figure 3.20(c). This behaviour

conforms with the visual inspections of the experimental structure made as it reached the buckling

load.
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(c) Perturbed FE Results

Figure 3.19: Frequency loci in the welded frame under loading.

(a) Idealised, pre-buckling (b) Idealised, post-buckling (c) Perturbed, pre- and post-
buckling

Figure 3.20: Deformation patterns and buckling modes for the welded frame with idealised conditions
compared to those for a frame with initial curvature in the members.
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Figure 3.21: Load displacement curves comparing buckling in the idealised and perturbed FE models.
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3.4.2 Investigation of Stress Stiffenening Approximations

Several levels of stress stiffening approximations are discussed in chapter 2. In this section the different

techniques are applied to the welded frame structure to determine the limits of their applicability.

To recapitulate, the desired output from the nonlinear static solution is the tangent stiffness. This is

computed using knowledge of the load distribution. The load distribution may be determined with a

single computation, equivalent to a linear static analysis. Greater accuracy is introduced by applying

the load incrementally and re-evaluating the tangent stiffness at each step. Still further accuracy

is obtained by performing Newton-Raphson iterations (NRIs) at each load step to converge on a

consistent load-displacement solution. These three cases will be examined below.

The effects of the different methods on the static solution are illustrated using a load-displacement

plot for the free end of the tensioning mechanism in the FE model. Variation in the tangent stiffness

manifests itself as changes in the gradient of the curve. In figure 3.22, five load steps take the model

just shy of its buckling load. The linear solution uses a constant tangent stiffness and produces a

linear load-displacement relationship. With the two iterative techniques, the discrepancies in the

tangent stiffness become apparent at higher loads, where the incremental solution diverges from the

more accurate Newton-Raphson result. The accuracy of the incremental solution may be increased by

refining the load steps as shown in figure 3.23. In contrast, the Newton-Raphson method was found

to produce identical results to seven significant figures, even when reduced to a single load step. (The

latter required ten NRIs in contrast to the five-step case which required between four and eight NRIs

for each load step.)

Noting that the linear displacement curve follows the iterative solutions reasonably well in the lower

half of the loading spectrum, a linear tangent stiffness variation (corresponding to a constant load

distribution) is used to produce the frequency loci in figure 3.24. They are found to closely resemble

the Newton-Raphson results away from the buckling region. In figure 3.25 the differences in the two

result sets are seen to increase as the nonlinear behaviour encroaches at higher loads. It is worth

noting that the results for all but a select few modes remain within 0.5% of each other over the entire

loading regime and the other results remain within 1.5% of each other for the lower half of the loading

spectrum. This justifies the use of linear tangent stiffness variation in a range of modelling problems,

and later chapters will take advantage of this simplifying assumption. For now, however, the iterative

Newton-Raphson scheme is retained.

3.4.3 Frequency Response Analysis

Up to this point, only modal characteristics have been considered. In order to produce beneficial

dynamic alterations, the magnitude of the response must be reduced. In this section the frequency

response functions (FRFs) for the welded frame are examined. A slightly different experimental

arrangement was used, primarily to investigate some curious behaviour observed in the FE results,
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Figure 3.22: Load-displacement plot for the
welded frame using linear, incremental, and
full Newton-Raphson solution methods with
large load step increments.
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Figure 3.24: Frequency loci for the welded
frame obtained using the linear stress stiffen-
ing approximation.
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(a) Full scale; the boxed region is shown in (b).
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Figure 3.23: Load-displacement plot for the
welded frame using incremental and full
Newton-Raphson solution methods with small
load step increments.
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(a) All modes.
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(b) Close examination of least affected modes.

Figure 3.25: Discrepancies in the natural frequency results obtained using full NR iterations and a
linear stress stiffening approximation.
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Figure 3.26: Arrangement of the response and excitation points for the FRF studies of the welded
frame.

discussed later in this section. The setup is pictured in figure 3.26.

Using modal superposition and assuming a universal viscous damping ratio of 1.2 × 10−3 (the mean

of the experimentally determined damping ratios), the frequency response function for the zero load

case is plotted in figure 3.27 in terms of magnitude and phase. Similar FRFs are computed at

11.3̇N intervals, their magnitudes producing the waterfall plot seen in figure 3.28(a) alongside the

experimental results in figure 3.28(b). The two data sets compare well, with only small discrepancies:

some noise is apparent in the experimental results and there are artefacts from small-amplitude modes

which do not appear in the FE data. Examples are seen at approximately 40Hz and 95Hz. While

these could be attributed to unmodelled complexities in the tensioning mechanism, they are more

likely a contribution from out-of-plane modes, introduced through imperfect alignment of the beams,

accelerometers and shaker. This hypothesis is supported by the fact that these anomalous modes vary

to a much lesser degree with applied loading than the primary in-plane modes, as would be the case

for bending about the much stiffer out-of-plane axis of the beams.
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Figure 3.27: FRF of the welded frame measured on longitudinally opposite sides for the zero load
case.
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(a) Analytic data, modal damping is 1.2 × 10−3. (b) Experimental data, undamped.

(c) Analytic data, modal damping is 1.2 × 10−2. (d) Experimental data, damped.

Figure 3.28: Waterfall plots showing the variation of FRFs for the welded frame with loading. Experimental and analytic data for two damping cases.

93



3.4. WELDED FRAME

(a) Experimental data. (b) Perturbed model: 1.85 × 10−3m.

(c) Unperturbed model. (d) Smaller perturbation: 1.2 × 10−3m.

Figure 3.29: Contour plots comparing the FRFs over the loading regime, compared with the experi-
mental FRF variations across the loading regime.

A clear overview of the behaviour of the FRFs under loading is afforded by viewing the waterfall plots

from directly overhead, using colour to distinguish the amplitudes in a form of continuously varying

contour plot. This approach will be adopted frequently throughout this thesis and several examples are

seen in figure 3.29, comparing the effects of differing levels of initial beam perturbation on the response

variations. From these charts it is apparent that, despite good modal parameter agreement, the FE

model that has been developed still fails to describe exactly the behaviour of the welded frame. The

differences manifest themselves most clearly in the antiresonances. In particular, the experimental

results in figure 3.29(a) show an antiresonant ‘ring’ sandwiched between resonances in the bottom

right corner of the plot, while the FE results in figure 3.29(b) show no antiresonances in this region.

Reverting to the unperturbed model which was abandoned in section 3.4.1 reveals an antiresonant

curve in fig.3.29(c), and adopting a smaller perturbation of 1.2× 10−3m produces a similar ring, seen

in figure 3.29(d). An exact match cannot be obtained without introducing further parameters but this

investigation illustrates the usefulness of the extra information in describing system behaviour. An

updating scheme could, for example, make use of the antiresonances to increase the accuracy of the

analytical model [218–220]. Care must be taken with such schemes, as antiresonance measurements

will be strongly influenced by misplacement or misalignment of accelerometers, force transducers and

other measurement apparatus.
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(a) 103x-203x (b) 103x-203x (c) 103x-203x

(d) 103x-503x (e) 103x-403y (f) 104x-304x

Figure 3.30: Examples of regions where the dynamic response can be manipulated to produce beneficial
results. Labels refer to excitation and response nodes, as seen in figure 3.31.

Examining various analytical FRFs for the welded frame, several opportunities are identified for

reducing response amplitudes. Examples are highlighted in figure 3.30, with locations referenced

using the FE model node numbers from figure 3.31. The methods fall into two broad categories:

manipulation of the natural frequencies, and manipulation of the antiresonances.

The former is the most obvious solution; if the natural frequencies are shifted away from the dominant

excitation frequencies then a reduced response is achieved. This technique would provide flexibility

in the design of structures with variable excitation conditions, as any natural frequencies within the

excitation bandwidth could be actively controlled during operation to avoid coincidence with the

excitation frequency. An example of natural frequencies that are sensitive to loading can be seen in

figure 3.30(a).

Manipulation of antiresonances is performed in the same manner as with resonances, and the tech-

nique presents several opportunities for reducing response. By aligning antiresonances with excitation

frequencies, the response at those frequencies is eliminated. A good example of antiresonance manip-

ulation is seen in figure 3.30(b). Alternatively, antiresonances may be aligned with natural frequencies

in order to cancel out the resonance. An example is given in figure 3.30(c). Essentially, by aligning an

antiresonance with a resonance for a given FRF, the respective DOF becomes a node for the mode in

question. The advantage of considering the problem in terms of antiresonances is that antiresonance

sensitivities to parameter changes are easily calculated, thus simplifying the problem of determining

appropriate parameter values. The drawback of these methods is that antiresonances vary from point

to point around a structure so they can only influence local response levels and can not provide a

system-wide solution.
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Figure 3.31: Locations and numbering of nodes in the FE model.

A third category of methods can also be considered, combining the methods discussed above to take

advantage of some potentially useful side effects. These effects are observed where two frequency loci

intersect; the interaction of the modes can sometimes lead to unusual results. In figure 3.30(d), the

antiresonance associated with the rising frequency locus appears to punch a gap in the other mode’s

resonant ridgeline. Figure 3.30(e) shows a similar case, where one of the modes does not manifest

itself strongly on the FRF but its interaction with the other mode creates a gap in the resonant band

which may be exploited. These interactions are studied in detail in chapter 4. A different behaviour

is seen in figure 3.30(f), as an antiresonance and two resonances coincide at the same point to cancel

the response of both modes simultaneously. A numerical and experimental examination of this effect

is undertaken in the next section. Because of the intrinsic involvement of antiresonances, it should be

noted that these methods will once more produce differing effects around the structure.

3.4.4 Investigation of the Effect of Damping on Modal Interaction

The region identified in figure 3.30(f) is at the point where the fifth and sixth modes intersect, seen

at around 70 Hz in figure 3.28. While the FE results predict a significant drop in the response where

the two curves meet, the experimental data does not show the same level of reduction. The source of

the discrepancy was thought to be the lack of resolution in the experimental data. The effect spans

only a small parameter variation, and such a small range of influence is not only easy to overlook in

an experiment but also has limited practical use. This section outlines experiments that were carried

out in an effort to expand the parameter range spanned by the region of reduced response, with a

view to verifying the FE predictions and investigating the potential for exploitation.

First the cause of the behaviour is examined, demonstrating how it is intrinsically linked to the

interaction of the two proximate modes. The FRF in this region can be broken down into three parts:

the individual contributions from modes five and six and the contribution from the rest of the modes,
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where the contribution from the rest of the modes is close to zero for the range being considered.

In figure 3.32 the real parts of the two significant contributions are plotted with the complete FRF

overlaid. Using the principle of superposition afforded by linear dynamic approximations, the total

FRF is given by summing the individual contributions. Where the contributions cancel each other

out, regions of reduced response will result. Because the two modes being considered both exhibit

similar peak response amplitude and damping, it is possible for this cancelation to nullify almost all of

their contribution to the response. Three load cases are considered, resulting in three distinct classes

of mode separation: well separated modes (figure 3.32(a)), proximate modes (figure 3.32(b)), and

coincident modes (figure 3.32(c)). For the well-separated modes, the FRF roughly follows the peaks

and troughs of the individual contributions. As the modes approach, the contibutions are summed to

form a single peak with a high amplitude. Where the modes coincide, however, they all but eliminate

the response.

For the modes to interact with one another favourably over a wider range of loading, they would need

to cancel each other out even when their natural frequencies are non-coincident. To accomplish this,

greater damping can be introduced. Damping has the effect of spreading the response peaks, allowing

the modes to interact with greater separation between them. The analytical result can be seen in the

FRFs in figure 3.33. The response for the coincident modes remains low, and the proximate modes

now also see a reduced response. The trade-off is with the well-separated modes, which now experience

a far greater bandwidth of high magnitude response.

In the experimental arrangement, the damping was provided at the frame supports. Instead of sus-

pending the frame from bungee cords, it was supported by foam sponges as seen in figure 3.34. This

was found to provide similar elastic boundary conditions to the bungee cords and similar results were

obtained. The damping was introduced by soaking the sponges in oil. Whilst crude, this method

served its purpose; all of the measured damping ratios were increased by approximately one order

of magnitude. Accordingly, the FRFs were calculated for the FE model with an increased modal

damping ratio of 1.2 × 10−2. The experimental and analytical results are shown in figures 3.28(c)

and 3.28(d). Similar behaviour is seen in each, from which it is clear that, as predicted, the parameter

range covered by the region of reduced response is increased with greater damping at the expense of

larger resonant bandwidths outside of this region.

If this behaviour were to be exploited, two adjacent modes would need similar response amplitudes

at the spatial coordinate of interest, but 180◦ out of phase with each other (recognised by an even

number of antiresonances between them). The fundamental principle is then to manipulate the modes

such that their frequencies are coincident. It was noted in the course of these investigations that

the two modes were never quite coincident in the laboratory tests; instead of crossing, the frequency

loci veered away from one another as if repelled. A close examination of the intersection is seen in

figure 4.4(c). This observation has significant consequences for the application of the ideas discussed

here and was also found to be responsible for the behaviour seen in figs. 3.30(d) and 3.30(e). The

next chapter will explore the intricacies of this frequency curve veering.
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Figure 3.32: Real part of the FRF for the welded frame under loading (–); shown here with the two
significant contributions, from modes 5 (- -) and 6 (-.). Modal damping is 1.2 × 10−3.
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Figure 3.33: Real part of the FRF for the welded frame under loading (–); shown here with the two
significant contributions, from modes 5 (- -) and 6 (-.). Modal damping is 1.2 × 10−2.

Figure 3.34: Experimental configuration for the damped welded frame.
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3.5 Conclusions

From the investigations of the two frames it has been demonstrated that stress stiffening approxima-

tions can reproduce the dynamic behaviour of a structure under loading to a good degree of accuracy

in terms of both modal properties and response functions. It was found that a full Newton-Raphson

iterative scheme was generally the most suitable FE solution method, producing the most accurate

results with the most effiecient use of computational effort. This is particularly true as structures

approach their buckling load, and it was found that an accurate dynamic solution is obtained by

following the same guidelines as used for nonlinear static solutions; this relates not only to the choice

of solution method (linear, stress-stiffening, large rotation etc.) but also to considerations such as

the introduction of small imperfections to induce nonlinear buckling. A convenient consequence of

this finding is that wherever a linear static analysis may be applied, the load distribution may be

considered constant thus providing a linear variation of the tangent stiffness with load. Using this

assumption obviates the need for iterative schemes in the linear loading regime, which was found to

extend to roughly half the buckling load in the examples studied here.

An important lesson learned from these experiments lies in the sensitivity of the FE solution to small

parametric changes. Even for a simple structure the uncertainties can cause considerable discrepancies

in the results. Significantly, it has been established that joint parameters updated for the zero-load

case are unlikely to remain valid over the whole loading spectrum, especially where the parameters

help describe friction effects within the joint. This was shown to be the case in the pin-jointed example

despite good parametric consistency between different assembly configurations at zero load. A method

of adapting joint parameters based on structural loading has been suggested, effectively implementing

stress stiffening in the joints to complement that of the beam and shell elements.

Exploration of the FRFs from the analytical model reveals several opportunities for reducing response

levels. These can be categorised either as natural frequency manipulations, antiresonance manipula-

tions, or modal interactions. Natural frequency manipulations seek to avoid coincidence of natural

frequencies and excitation frequencies. Antiresonance manipulations can be used to align antires-

onances either with the excitation frequencies or with the natural frequencies. Modal interactions

have been found to produce both interuption of resonant peaks through mode veering, and reduced

response through modal superposition. Where modal interactions are to be exploited, it has been

shown that increased damping may serve to broaden the region of influence of these effects.
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Chapter 4

Eigenvalue Curve Veering

4.1 Introduction

In chapter 3, a phenomenon known as frequency curve veering was observed in the experimental results

for the fifth and sixth modes. In contrast to the analytical results, where the two frequency loci cross

at around 4 kN, the experimental loci follow intersecting trajectories but veer away from each other

abruptly, each continuing on the path initially followed by the other. Early references to this type

of behaviour in structural dynamics date back to the 1950s, and were the topic of much debate in

the ensuing decades. Doubts were cast initially over the existence of veering outside of numerical

models and, later, over its relevance to practical structures. More recent works have provided robust

explanations for the phenomenon, and its manifestation has found practical application in some fields.

This chapter begins with a thorough investigation of the theory governing the behaviour, supported

by experimental and numerical data. It is found to have bearing on a wide range of problems, yet, to

date, no practicable method exists for quantifying its presence. The concluding sections of the chapter

seek to reconcile this deficit by deriving new normalised criteria for measuring the intensity of effect.

Section 4.2 reviews the historical and contemporary understanding, section 4.3 presents a numerical

and experimental case study, and section 4.4 derives the new quantitative indices.

4.2 Overview

4.2.1 Historical Background

Early observations of eigenvalue curve veering in structural dynamics were highlighted by Claassen

and Thorne [221]. Leissa [222] cited further examples [223–232] to draw attention to what he saw as

fallacious artefacts in numerical models, and demonstrated that veering could be artificially induced

through inadequate approximations. Later, Kuttler and Siglillito [233] used rigorous error bounds to
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confirm the existence of curve veering in accurate mathematical models and Perkins and Mote [234]

adapted Schajer’s work [235] to present an exact mathematical solution exhibiting the behaviour.

Further analytical examples can be found in references [236–241].

Principally, the description is applied to systems where two eigenvalue loci converge but veer suddenly

away again, each one taking on the trajectory of the other. In this case all of the properties of the

two modes are swapped, including damping ratios, sensitivities and eigenvectors (or eigenfunctions).

The transition is always smooth, albeit abrupt, and will be shown to be an extreme manifestation

of normal parametric variation. The effect is exploited by techniques for establishing the Poisson’s

ratio of orthotropic plates [242], plays a role in localisation [243–252] and can have a strong influence

on dynamic response in systems with sensitive configurations [253]. It is also important in flutter

prediction in rotating blade assemblies [254] and its use has been advocated for analytical model

updating [255] and damage detection [256].

4.2.2 Contemporary Observations

A common theme amongst reported cases of veering is some form of symmetry in the structure being

analysed. Modes in symmetric structures are always symmetric or antisymmetric with respect to that

symmetry and many authors [234, 236–239] have noted that a symmetric mode’s frequency locus will

cross that of an antisymmetric mode while two symmetric or two antisymmetric modes will generally

veer. An explanation for this behaviour is provided in section 4.2.3. Nair and Durvasula [241] observe

that the introduction of small asymmetries to a symmetric system will change crossings to veerings

(or to use their words, quasi-degeneracies). Consequently, as a result of imperfections, any practical

symmetric structure will tend to exhibit some degree of veering.

Similar findings have been made in the related and better known field of localisation. Localisation

is commonly encountered in systems with weakly coupled substructures and symmetric or periodic

structures with some degree of disorder. Such structures are not exceptional; the occurence of this

effect is well documented and there is much discussion of the relationship between veering and locali-

sation in the literature, for example references [244–252]. More specifically, Natsiavas [257] notes that

localisation is necessarily accompanied by veering but that veering may occur without localisation.

The first explicit practical demonstration of localisation was given by Hodges and Woodhouse [243].

Some efforts have been made to predict and quantify veering. Pierre [246] explains how localisation

and veering are related to two “couplings”: the physical coupling between the component structures,

and the modal coupling seen between mode shapes through parameter perturbations. Localisation

and veering occur when the former is of the same order or smaller than the latter. Perkins and

Mote [234] derive “coupling factors” to quantify the eigenfunction coupling. Only when the coupling

factors are zero may the curves cross. If the coupling factors become large veering occurs gradually,

losing much of its characteristic abruptness. Liu [249] suggests that a critical value could be defined

for the derivative of the eigenvectors or for the second derivative of the eigenvalues, above which the
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modes would be deemed to be veering.

A useful characterisation is to examine the eigenvector rotations of the two modes, responsible for

their sometimes aesthetically bizarre transformations. Balmès [255] expressed system properties for a

three degree of freedom lumped-mass system in terms of two eigenvalue perturbations and a rotation

angle, and demonstrated that as two of the modes went through a veering region the eigenvectors

both rotated in their plane by almost 90◦. It will be shown that this result can be extrapolated to

many veering systems.

A final consideration is the effect of damping on veering modes. Woodhouse [258] demonstrated

how the effects of modal coupling can be offset by a large difference in modal damping factors.

In this case, the eigenvectors may become significantly complex and the eigenvalue loci may cross

instead of veering. Adhikari [259] showed how eigenvector sensitivities can differ from their undamped

equivalents in veering regions, even when modal Q-factors are high (low damping). Intrinsic to both

these examples, however, is a substantial level of non-proportional damping in the system, resulting

in notable variation of the modal damping ratios as the loci approach. It is implicit that systems with

uniform low damping may, as usual, be treated as undamped for analytical purposes.

4.2.3 Theoretical Basis

Perkins and Mote [234] use perturbation theory [260, 261] to derive expressions for the eigenvalues of

two proximate modes in terms of a perturbation parameter, ε, as

λi(ε) =λ0
i + [ai] ε+

1

2

[

D2ai +D2di +
D2xij
λ0
i − λ0

j

]

ε2 +O(ε3)

λj(ε) =λ0
j + [aj ] ε+

1

2

[

D2aj +D2dj +
D2xji
λ0
j − λ0

i

]

ε2 +O(ε3). (4.1)

where λi is the ith perturbed eigenvalue, λ0
i is the ith unperturbed eigenvalue and a thorough definition

of the other symbols may be found in Perkins and Mote’s paper. For the present discussion only the

curvature in the eigenvalue loci is of interest, given by the term in ε2. As the loci converge and

|λ0
i −λ0

j | approaches zero, the curvature expression is dominated by the third bracketed term. Perkins

and Mote refer to D2xij and D2xji as the coupling factors, given by

D2xij =
d2

dθ2
[(

< k[u0
j ], u

∗
i >τ −λ0

i < m[u0
j ], u

∗
i >τ

)

×
(

< k[u0
i ], u

∗
j >τ −λ0

i < m[u0
i ], u

∗
j >τ

)]

D2xji =
d2

dθ2
[(

< k[u0
i ], u

∗
j >τ −λ0

j < m[u0
i ], u

∗
j >τ

)

×
(

< k[u0
j ], u

∗
i >τ −λ0

j < m[u0
j ], u

∗
i >τ

)]

(4.2)

where u0
i is the ith eigenfunction of the unperturbed eigenproblem, u∗i is the corresponding eigenfunc-

tion of the adjoint eigenproblem, k and m are perturbation operators relating to a small perturbation
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in the parameter θ, and <,>τ represents an inner product over τ . These coupling factors determine

the concavity of the loci as the modes converge: without coupling the loci are locally independent and

free to cross; two positive factors will cause the curves to veer away from each other; two negative

factors will cause them to veer towards each other (often associated with eigenvalue coalescence); and

differing signs result in the loci veering with each other.

Perkins and Mote’s coupling factors are written here for the case of self-adjoint system matrices:

CFij =
d2

dθ2

{

[

φTj (∆K − λi∆M)φi
]2
}

(4.3)

where ∆K and ∆M are changes in the mass and stiffness matrices with a change in parameter θ, and

λr and φr are the rth eigenvalue and eigenvector, respectively. Performing the differentiation about

the point where ∆K = ∆M = 0 yields

CFij = 2

[

φTj

(

dK

dθ
− λi

dM

dθ

)

φi

]2

. (4.4)

This expression can only produce non-negative coupling factors; thus the eigenvalue loci of self-adjoint

systems will either cross or veer away.

The coupling factors may be used to explain the observations of veering in symmetric structures. The

system matrices for a symmetric structure can be arranged such that

M =





Md Mo

Mo Md



 K =





Kd Ko

Ko Kd



 (4.5)

and

F =

(

dK

dθ
− λi

dM

dθ

)

=





Fd Fo

Fo Fd



 . (4.6)

The eigenvectors will then take the form

φS =







φs

φs







or φA =







φa

−φa







. (4.7)

where φS is a symmetric eigenvector and φA is an antisymmetric eigenvector. Combining eqns. (4.4),

(4.6) and (4.7) gives the coupling factor for a symmetric and an antisymmetric mode as

CFSA = 2













φa

−φa







T 



Fd Fo

Fo Fd











φs

φs













2

= 0. (4.8)

The matrices multiply out such that the terms cancel and the coupling factor is always zero. Thus the

eigenvalue loci are free to cross. With two symmetric or two antisymmetric eigenvectors the terms do

not cancel in the same way and the coupling factors are generally non-zero. In these cases the modes

will exhibit veering.

104



CHAPTER 4. EIGENVALUE CURVE VEERING

4.2.4 Analytical Methods

Balmès’ approach [255] will be adopted in this chapter, studying the rotations of the eigenvectors

as the modes veer. Analysis of the vector rotation requires the definition of a suitable set of basis

vectors to act as reference; a reasonable choice is the eigenvectors of the two modes, experimental or

analytical, anywhere in the vicinity of the veering, being careful to keep the phase consistent. Methods

of eigenvector correlation are reviewed in section 2.6.3, and two are repeated here. The ubiquitous

Modal Assurance Criterion (MAC) produces a measure of the angle, α, between the two eigenvectors

in the physical coordinate system, defined by the eigenvector DOFs:

MACjk = cos2αjk =

(

ψj
Tψk

)2

(

ψj
Tψj

)(

ψk
Tψk

) (4.9)

where ψj is the jth arbitrarily scaled eigenvector. If the mass matrix is used as the weighting matrix

in a Normalised Cross Orthogonality (NCO) then it gives a measure of the angle, β, between the two

eigenvectors in the normal coordinate system, defined by the mass-normalised eigenvectors:

NCOjk = cos2βjk =

(

ψj
TMψk

)2

(

ψj
TMψj

)(

ψk
TMψk

) (4.10)

If the mass matrix remains constant, as is the case in a stress-stiffened structure, then the normal

coordinate system rotates but does not scale or skew, thus allowing comparison of vectors from different

load cases. Analysis in the normal coordinate system has the advantage that the vectors both rotate

by the same angle, as depicted in Figure 4.1. Note that any constant matrix which orthonormalises

the vectors throughout veering may be used as the weighting matrix for this purpose.

In the experimental configuration, the subspace in which the vectors rotate is unlikely to be accurately

represented by the measured degrees of freedom, so the experimental mode shapes are expanded using

Kidder’s method [203]. This approach permits the use of the analytical mass matrix as a weighting

matrix. The bias introduced by the analytic data in these steps is unavoidable, but the mass matrix

for this structure is known with some certainty and the distribution of measured response points on

the structure prevents gross distortion of the low order mode shapes in the expansion.

4.3 Experimental Correlation

Mode veering in experimental results will often go undetected, for one of two reasons: firstly, where

veering is rapid, occurring over a small parameter range with closely spaced frequencies, it is easily ob-

fuscated by measurement discretisations. Conversely, where veering is more moderate the behaviour

resembles ordinary parametric variation in most regards and may be deemed unremarkable. The

former is particularly true of the parameter discretisation, as parametric refinement in experimental
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Figure 4.1: A representation of a plane or subspace in the normal coordinate system. The mass-
normalised eigenvectors, shown in white, rotate in approximately the same plane throughout the
veering region. After a 90◦ rotation the eigenvectors have swapped positions, with one eigenvector
180◦ out of phase with its pre-veering equivalent.

configurations can be laborious. Even where data are captured within a veering region the unfamil-

iar results will often be attributed to measurement or computational inaccuracies and dismissed as

erroneous.

In recognition of the confusion caused by such results, Avitabile [262] documents the established

observation that the mode shapes associated with repeated and pseudo-repeated frequencies in exper-

imental data are often found to differ from those expected. He suggests that any orthogonal linear

combinations of the mode shapes may be used to describe these modes and that experimentalists

should interpret their data accordingly. This explanation is accurate for truly repeated modes, and

provides valuable assistance in the interpretation of unexpected results. For pseudo-repeated modes,

however, the mode shapes are not arbitrary, and the prescriptive nature of their variations can offer

additional insight into the properties of the system. The significance of this insight will be investigated

in later sections; this section will be concerned primarily with the identification of the mode shapes.

Despite widespread acceptance of veering theory, supporting experimental data are scarce, if not

absent, in the literature. Such evidence is inferred in many cases: for example, the orthotropic plate

experiments detailed by McIntyre and Woodhouse [242] rely on the manifestation of veering, and there

is a wealth of data relating to rotor tuning in turbomachinery where mistuned blades and coupling

between shaft and blade vibration modes lead to the related phenomena of localisation [263] and

veering [264]. These do not provide categorical substantiation, however, and this section is intended

to provide the first explict demonstration of the behaviour of two veering modes in a physical structure.
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Figure 4.2: The first 12 modes of the welded frame for the zero load case.

4.3.1 Experimental and FE Configuration

The structure used for the demonstration is the welded frame described in chapter 3 and the exper-

imental setup is not modified. In the course of the investigations of chapter 3, discrepancies were

noted in the behaviour of the fifth and sixth modes of the experimental and FE data, and it is the

intersection of these modes that will be investigated here.

Although the reflectional symmetry is broken by the tensioning mechanism, the structure does posses

rotational symmetry. The first twelve mode shapes from the FE model are shown in figure 4.2 for

zero applied load and, as expected, they are all symmetric or antisymmetric with respect to the 180◦

rotation. The fifth and sixth modes are displayed in figure 4.3, using a finer beam mesh for clarity,

where mode 5 is seen to exhibit even symmetry and mode 6 exhibits odd symmetry. Thus, theory

dictates that there will be no modal coupling between the two modes and they will cross instead

of veering. The FE model upholds this prediction but the experimental data do not. This finding

signifies a break in the symmetry of the practical structure.

Figure 4.3: Modes 5 and 6 of the welded frame for the zero load case.
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A source of significant uncertainty in the assembled structure is the welded corner joints. Referring to

figure 3.16, it is possible to discern that because of accessibility problems the diagonal beams are only

welded on one side, in some cases leaving a gap between the diagonal beam and the the long outside

member. In addition, excessive power or a low feed rate in the welding process has caused erosion of

the beam in places. These factors will create considerable variability in the stiffnesses at these joints.

Accordingly, the symmetry of the FE model is broken by simulating a reduced stiffness at one end

of a diagonal beam: specifically, the bottom right hand corner in the schematic of figure 3.1. This is

achieved by reducing the width of the outermost element (spanning a length of 2.1 cm), affecting the

second moment of area and the cross-sectional area of that element. The reduced width is chosen by

trial and error; more rigorous methods are discussed in chapter 6. For the demonstration in hand, all

that is needed is a qualitative reproduction of the experimental results and this was found to be given

by reducing the width of the element by 70%.

4.3.2 Results

The eigenvalue loci for the symmetric model are shown crossing in figure 4.4(a). The loci for the

asymmetric model can be seen veering in figure 4.4(b). These new FE results are compared with the

experimental results in figure 4.4(c), where their resemblance supports the initial hypothesis: that the

break in symmetry caused by weld variability is responsible for the observed veering of the modes. The

experiment was performed on two separate occasions using different measurement equipment. The

consistency between the two data sets in figure 4.4(c) demonstrates the repeatability of the effect.

A brief foray was made into a stochastic analysis of the eigenvalues using a method proposed by Doe-

bling and Farrar [265]. The method is underpinned by estimates of the statistical FRF distributions

based on the coherence functions. Once these are calculated a Monte Carlo simulation is performed

to propagate the statistical properties to the modal parameters. The FRFs for the Monte Carlo

simulations are constructed by superimposing Gaussian noise on the measured response functions ac-

cording to the computed stochastic properties. Modal parameter extraction is then performed using

the LSCE method detailed in section 2.5.4. It was hoped to automate the parameter extraction but

after repeated efforts to implement a reliable scheme the author learned the hard way that producing

an algorithm to perform this task is no mean feat, even where the expected results are known a priori.

Thus the decision was made to abandon the endeavour, based in part on the assumption that the

eigenvalues were measured to a higher degree of accuracy than the load parameter anyway, and that

the time needed for manual parameter estimation would be time better spent elsewhere.

In the analysis that follows the welded frame is presumed to possess low damping throughout, with

no substantial difference in damping between any of the modes or any two parts of the structure.

This expectation is corroborated by the measured damping ratios in figure 4.5, where the observed

variation is dominated by measurement noise, and justifies the use of real approximations for the

eigenvectors. The mean modal damping ratios for modes 5 and 6 are found to be 1.14 × 10−3 and

108



CHAPTER 4. EIGENVALUE CURVE VEERING

(a) Symmetric FE model. (b) Asymmetric FE model.

(c) Two sets of experimental data, × and �.

Figure 4.4: Close examination of the interaction between the fifth(–) and sixth(- -) modes. FE models
use adaptive loadsteps, down to 2.25 N at maximum curvature.

1.20 × 10−3 respectively.

Mode tracing is facilitated by means of a MAC-based correlation, as discussed in section 2.6.3. The

four elements of the MAC matrix for the veering modes are plotted in figure 4.6(a). Despite the coarse

experimental load increments the MAC is seen to provide an unambiguous correlation: the diagonal

elements of the MAC never drop below 0.79, while the off-diagonal terms never exceed 0.41. These

values are in keeping with the FE model, for which a similar graph is plotted in figure 4.6(b).

While the MAC correlation given above is sufficiently conclusive for the demonstration in hand, it is

clear that the veering modes will present difficulties to MAC-based mode tracing procedures. Bahra

and Greening [266, 267] tackle the problem of mode tracing in the presence of changeable eigenvectors,

and develop an augmented MAC to provide enhanced correlation. Implementing their technique of

forward-casting the eigenvectors produces the improved analytic MAC results seen in figure 4.6(c).

Unfortunately the technique requires knowledge of the eigenvector sensitivities, making it difficult to

implement with experimental data. As such, mode tracing in experimental data remains dependent

upon adequate parametric discretisation. In particular, care must be taken when correlating veering

modes with modeshapes outside the veering region, or with those from a symmetric FE model.
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Figure 4.5: Measured damping ratios for the welded frame.
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(a) Experimental data.
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(b) Analytic data with 300 N loadsteps.
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(c) Analytic data using Bahra and Greening’s aug-
mented MAC.

Figure 4.6: MAC correlation between consecutive load steps for modes 5 and 6.
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The mode shapes determined from the experimental data are expanded and compared to the FE

results in figure 4.7, where they are seen to correspond well. As expected, after the veering each

mode takes on the form of the other through a continuous transformation. The results provide a clear

and thorough substantiation of veering theory, complete with a demonstration of the mode shape

mutations in the transition. In particular, the middle set of mode shapes appear quite unnatural,

with undeflected members on opposite sides of each mode. It is transformations such as these that

prompted Leissa to comment that veering mode shapes are, “figuratively speaking, a dragonfly one

instant, a butterfly the next, and something indescribable in between.” [222]

Figure 4.7: Mode shape variations as modes 5 and 6 veer: (a) FE Model. (b) Experimental Results.

4.3.3 Modal Cancellation

Attention will now be given to the frequency response at the intersection of the two modes. The

response at this juncture was considered in section 3.4.4, and figure 3.28 depicts modes 5 and 6

exhibiting a reduced response where they intersect. This event occurs even in the symmetric model

with no veering present, so it is interesting to explore how veering affects the behaviour.

In the lightly damped model, the response cancellation occurs only when the natural frequncies are

coincident; when the modes are separated their phase difference inhibits their cancellation. As such,

it was expected that the increased separation of the modes caused by veering would prevent the full

cancellation and result in higher responses. In fact, this is not the case: figure 4.8 shows analytical

response surfaces in the region of the intersection for the symmetric case and for the perturbed
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symmetry case. Counter-intuitively, the asymmetric case shows a larger region of reduced response.

While the dip in response for the symmetric model is produced through modal superposition, the

response variation in the asymmetric model is due to the eigenvector transformations. The vectors

permute such that the residues of the two modal FRF contributions always sum to the same value.

Accordingly, as they swap with one another, the response to each mode is similar to that of the

combined response for intersecting modes. Greater modal coupling results in a slower transformation

of the modes, having a similar effect on the response to that of the damping seen in fig. 3.28: an

increase in the range of parameter values spanned by the region of reduced response.

Balmès [255] provides a rigorous mathematical confirmation that veering does not affect the total

response of two modes within a frequency band, and Igusa [253] investigates the circumstances under

which the response exhibits sensitive parameter dependence as found here.

4.3.4 FE Model Updating Repercussions

It has been shown that the eigenvector transformations in veering regions can cause difficulties for

mode tracing algorithms. One technique that relies heavily on an ability to track modes from one

step to the next is FE model updating. Here the experimental modes from which the reference data

is taken must be correlated with the FE modes for the current iteration.

Bahra and Greening’s method, used above, will offer significant improvements to correlation where

the mode shapes change rapidly. It uses eigenvector derivatives to compare the eigenvectors to their

expected form, instead of making a direct comparison between dissimilar vectors. In veering cases, how-

ever, not only the eigenvectors, but also the eigenvector derivatives will undergo significant changes,

further frustrating mode tracing efforts.

Figure 4.9 illustrates the variation of the eigenvector derivatives for the veering case examined above,

demonstrating how rapidly they can change. Over the same parameter range the eigenvalue sensitiv-

ities are also seen to swap with each other. Both of these changes will pose problems not only for

the mode correlation, but also the stability of an updating scheme. Regularisation can help to slow

the convergence and increase stability but even this may not be enough for abrupt variations. Thus

careful consideration must be given to the implementation of updating schemes in the presence of this

behaviour.

Balmès [255] offers a different perspective. He suggests that rather than creating an impediment, the

mode shape transformations could be used to improve a model updating scheme. His idea is to use

the orientation of the eigenvectors of two veering modes in the objective function of a penalty function

method. The FE eigenvector rotations calculated with eqn. (4.10) are shown in figure 4.10(a), and

these are broadly in agreement with the experimental results in figure 4.10(b). The differences
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(a) Symmetric FE model.

(b) Asymmetric FE model.

(c) Experimental data.

Figure 4.8: FRFs in the veering region. The analytical models both use uniform modal damping
ratios of 1.2 × 10−3.

113



4.3. EXPERIMENTAL CORRELATION

Figure 4.9: Modal parameter sensitivities to load variation: fifth(–) and sixth(- -) eigenvalue sensitiv-
ities, and ℓ2-norms of the fifth(-.) and sixth(..) eigenvector sensitivities.

(a) FE model. (b) Experimental data.

Figure 4.10: Eigenvector rotations of the fifth(–) and sixth(- -) modes in the normal coordinate system.

between the two experimental curves indicate a slight lack of orthogonality, which can be attributed

both to errors in the measured eigenvectors and to the use of an estimated mass matrix, taken from

the FE model.

Importantly, the vector rotations can be seen to provide a useful indication of the state of veering,

and thus the parameter values associated with that state. The information provided by this value

is related to that provided by the eigenvectors themselves, but by confining the measurement of the

rotation to a particular subspace, much of the ambiguity associated with eigenvector-based updating

schemes is removed. In this way the model adjustments can be tailored specifically to the coupling of

the modes concerned; this may be desirable, for example, in systems where localisation is important.

As a final cautionary note, the experimental curves of fig. 4.10 are somewhat erratic compared to their

analytical counterparts. Successful implementation of the method will be contingent on sufficiently

high fidelity in these measurements, which may be found to suffer the same problems as measure-

ments of the eigenvectors themselves. Chapter 6 considers an extended version of this scheme which

circumvents the need for accurate eigenvector measurements. For now, the remainder of this chapter

focuses on the detection and classification of veering.

114



CHAPTER 4. EIGENVALUE CURVE VEERING

Figure 4.11: A set of veering eigenvalues, plotted for different ranges.

4.4 Veering Index

The problem of quantifying veering is made difficult by the historically subjective nature of its iden-

tification. Its most tangible characteristic is the eigenvalue curvature or second derivative. Liu [249]

suggests using critical values of this derivative, and of the eigenvector derivatives, to classify veer-

ing. The limitation of this approach is in differentiating between veering and other instances of high

curvature, and Liu also concedes that the critical values would need to be determined on a case by

case basis. Several authors refer to couplings between modes with respect to parameter variations,

and Perkins and Mote’s “coupling factors” are described in section 4.2.3. These factors provide great

qualitative insight into the behaviour but once again, quantitative interpretation of the results can

prove misleading.

In the remainder of this chapter, a non-dimensional approach is taken in order to allow universal

identification of the behaviour. This approach will indicate the presence of veering even where limited

range or atypical context may obfuscate it. This can lead to counter-intuitive results, for example the

unexceptional data presented in figure 4.11(a) are recognisable as veering when plotted for different

ranges in figure 4.11(b). The analysis that follows takes into consideration the distinguishing charac-

teristics of veering to produce a physically meaningful method of quantification. Sections 4.4.1 and

4.4.2 examine some important characteristics of veering modes, which are applied in sections 4.4.3

and 4.4.4 to derive two descriptive quantities. Section 4.4.5 presents a discussion of these quantities

and explains how they can be used to evaluate the behaviour, and section 4.4.6 gives a demonstration

of their application.
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4.4.1 Modal Coupling

Consider a self-adjoint, discrete, undamped structural dynamic eigenproblem. Fox and Kapoor [206]

derive the eigenvalue sensitivity to a parameter δj as

dλi
dδj

= φTi

(

dK

dδj
− λi

dM

dδj

)

φi (4.11)

where λi and φi are the eigenvalue and mass normalised eigenvector of the ith mode and M and K

are the system mass and stiffness matrices. The corresponding eigenvector sensitivity is given as

dφi
dδj

= −
φTi

dM
dδj

φi

2
φi +

∑

r 6=i

φTr

(

dK
dδj

− λi
dM
dδj

)

φi

∆λir
φr (4.12)

where ∆λir = λi − λr. Differentiating eqn. (4.11) with respect to δj and using eqn. (4.12) yields

d2λi
dδ2j

= φTi

(

d2K

dδ2j
− λi

d2M

dδ2j
− 2

dλi
dδj

dM

dδj

)

φi + 2
∑

r 6=i

[

φTr

(

dK
dδj

− λi
dM
dδj

)

φi

]2

∆λir
(4.13)

where d2λi

dδ2j
is the second derivative, or curvature, of the eigenvalue. If the ith and kth eigenvalues

become close such that ∆λik is very small then the expression for curvature is dominated by the

corresponding term in the summation where r = k, and it is this term that is responsible for the veering

of the eigenvalue loci. The numerator of the term is 2
[

φTk

(

dK
dδj

− λi
dM
dδj

)

φi

]2

, which is analogous to

Perkins and Mote’s “coupling factor”. For the purposes of this thesis the “modal coupling” shall be

defined slightly differently as

κijk = φTk

(

dK

dδj
− λi

dM

dδj

)

φi. (4.14)

Expanding this to the full set of modes, a sensitivity matrix can be defined:

Σj = ΦT dK

dδj
Φ − ΦT dM

dδj
ΦΛ (4.15)

where Φ is the complete matrix of eigenvectors, [φ1, φ2...φN ], and Λ is a diagonal matrix of eigenvalues.

The diagonal terms in Σj are the eigenvalue sensitivities and the off-diagonal terms are the modal

coupling, which can be interpreted as cross-sensitivities representing the contribution of each mode to

the derivatives of the other modes’ properties.

4.4.2 Eigenvector Rotation

For proximate modes i and k, if ∆λik << ∆λir for all r 6= i, k then eqn. (4.12) can be represented by

dφi
dδj

≈ −
(

1

2
φTi

dM

dδj
φi

)

φi +

(

κijk
∆λik

)

φk. (4.16)
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From this equation (and the equivalent expression for dφk

dδj
) it is seen that the two vectors throughout

veering can always be represented by a linear combination of a single pair of vectors; as they transform,

they always remain in the same plane or subspace. Furthermore, the validity of this assumption can

be quantified for each mode by comparing the ℓ2-norms of eqns. (4.16) and (4.12) within the normal

basis:

Qijk =

√

√

√

√

√

√

√

√

√

−
(

1

2
φTi

dM

dδj
φi

)2

+

(

κijk
∆λik

)2

−
(

1

2
φTi

dM

dδj
φi

)2

+
∑

r 6=i

(

κijr
∆λir

)2 (4.17)

and noting that the summed term in the denominator is easily computed using a single column of the

sensitivity matrix in eqn. (4.15).

Suppose that a constant matrix, A, can be found such that ΨT
ikAΨik = I for all values of δj , where I

is an identity matrix and Ψik is the N × 2 matrix of A-normalised eigenvectors, [ψi, ψk]. In this case,

the two eigenvectors will always form an orthonormal basis with respect to A, and their magnitude

and orientation within the subspace can be defined relative to a set of reference vectors by a single

angle. This is illustrated in figure 4.12, and can be expressed

Ψ′
ik(Ψik, α) = ΨikT, T =





cos α −sin α

sin α cos α



 . (4.18)

where the prime (′) denotes the property set for an arbitrary parameter value, δj
′, distinct from

the property set for parameter value δj . Eqn. 4.18 is a generalisation of the system described by

Balmés [255] and demonstrates that his observations may be extrapolated to any veering system,

contingent on the existence of an appropriate orthonormalising matrix and satisfactory agreement

with eqn. (4.16). The former is achieved most readily by keeping either the mass or stiffness matrix

constant and these two scenarios will be considered in the analysis that follows.

Figure 4.12: Orthogonal mode shape vectors, for jth and kth modes,
transforming into new modes within their subspace.
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4.4.3 Cross-Sensitivity Quotient

In this section the variation of the modal coupling throughout veering is investigated. A reduced

sensitivity matrix for modes i and k shall be defined as

Σijk = ΦT
ik

dK

dδj
Φik − ΦT

ik

dM

dδj
ΦikΛik =





σiji κijk

κkji σkjk



 (4.19)

where σiji is equivalent to the eigenvalue sensitivity, dλi/dδj . Considering a linear variation in the

stiffness matrix, represented by δK , the mass matrix remains constant and serves as an orthonormal-

ising matrix, allowing the substitution of eqn. (4.18) in eqn. (4.19) using Ψik = Φik. Noting that

dM
dδK

= 0 and d2K
dδ2

K

= 0 so dK
dδK

= dK
dδK

′
, this substitution produces

Σ′
iKk = Φ′T

ik

dK

dδK

′

Φ′
ik = TTΦT

ik

dK

dδK
ΦikT = TTΣiKkT (4.20)

where Σ′
iKk and dK

dδK

′
are the sensitivity and stiffness matrices corresponding to the eigenvectors Φ′

ik.

Σ′
iKk is a symmetric 2×2 matrix in which the off-diagonal elements are equal:

κ′iKk = κ′kKi = κiKk(cos2α− sin2α) + (σkKk − σiKi)cos α sin α

= κiKkcos (2α− 2β) (4.21)

where

tan (2β) = ∆σkKi/2κiKk (4.22)

κ2
iKk = κiKk

2 + (∆σkKi/2)
2

(4.23)

and ∆σkKi = σkKk − σiKi. The modal coupling is seen to vary harmonically with the orientation of

the vectors. The maximum coupling is given by eqn. (4.23) and this is used to define a corresponding

set of reference vectors, Φik. Setting Φ′
ik = Φik gives κ′iKk = κiKk and hence from eqn. (4.21) α = β,

so that eqn. (4.22) describes the angle between Φik and Φik. Setting Φ′
ik = Φik gives κ′iKk = κiKk

and α = 0, so that eqn. (4.21) produces

κiKk = κiKkcos (2β) (4.24)

From eqn. (4.22) the angle β is zero when ∆σkKi = 0 and the sensitivities of the two modes are equal:

effectively the point where the eigenvalue loci swap trajectories. This corresponds to the point where

the eigenvalues are closest, and since eqns. (4.13) and (4.16) can be written d2λi

dδ2
K

≈ 2(κ2
iKk/∆λik) and

dφi

dδK
≈ (κiKk/∆λik)φk for this case (as dM

dδK
= d2M

dδ2
K

= d2K
dδ2

K

= 0) it is also the point where the eigenvalue

curvature and eigenvector sensitivity are greatest. These reference vectors form a veering datum set

where the modal coupling, or cross-sensitivity, is greatest. The cross-sensitivity thus provides a useful

measure of the intensity of veering, its square being proportional to the eigenvalue curvature. The
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maximum cross-sensitivity over a range of δK is easily computed from the modal properties for any

single value of δK , and it is convenient to define a cross-sensitivity quotient as CSQiKk = (κiKk/κiKk)
2
.

Using eqns. (4.23-4.24),

CSQiKk = cos2(2β) =
κ2
iKk

κ2
iKk + (∆σkKi/2)

2 . (4.25)

A more general definition is afforded by examining the eigenvector rotations. As β → ±π
4 , the modal

coupling goes to zero so from eqn. (4.16) the vector rotation also halts. Thus for an idealised veering

case (without interaction from other modes), the datum vectors are oriented exactly half way between

their asymptotic limits. This definition is used to derive a CSQ for the case of mass matrix variation

as follows.

Consider a linear variation in the mass matrix, represented by δM , with constant stiffness matrix.

The stiffness matrix may be used as the orthonormalising matrix such that

ΨT
ikKΨik = I, Ψik = ΦikΛ

− 1
2

ik (4.26)

where Λ is a diagonal matrix so the inverse square root needs no further clarification. Combining

eqns. (4.19) and (4.26) while noting dK
dδM

= 0 yields

ΣiMk = −Λ
1
2

ikΨ
T
ik

dM

dδM
ΨikΛ

3
2

ik (4.27)

This matrix is not symmetric, and maximum values for κiMk and κkMi will not necessarily coincide.

In order to define a cross-sensitivity quotient for the two modes in the same manner as before, a

symmetric matrix is defined in the form of an adapted sensitivity matrix:

Σ∗
iMk = Λ

− 1
2

ik ΣiMkΛ
− 3

2

ik = −ΨT
ik

dM

dδM
Ψik. (4.28)

Substituting eqn. (4.18) and remembering dM
dδM

= dM
dδM

′
,

Σ∗
iMk

′ = −Ψ′T
ik

dM

dδM

′

Ψ′
ik = −TTΨT

ik

dM

dδM
ΨikT = TTΣ∗

iMkT. (4.29)

This is equivalent to eqn. (4.20) and, by analogy,

CSQ∗
iMk =

κ∗iMk
2

κ∗iMk
2 + (∆σ∗

kKi/2)
2 =

κ2
iMk

λiλ3
k

(

κ2
iMk

λiλ3
k

+ 1
4

(

σk

λ2
k

− σi

λ2
i

)2
) . (4.30)

Note that the eigenvalues are generally close at veering, and if λi ≈ λk then κ∗ ≈ κ and CSQ∗ ≈ CSQ.

Eqns. (4.25) and (4.30) are valid for any symmetric, undamped structural eigenproblem with linear

variation of the mass or stiffness matrices.
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4.4.4 Modal Dependence Factor

Veering is distinguished from other forms of parametric variation by the swapping of modal properties

from one mode to another. This is effected by a transformation of the eigenvectors within a fixed

subspace. If the vectors stray significantly outside their subspace, it is an indication that they are

interacting with other modes. On this premise, a modal dependence factor (MDF) is derived below

to quantify the contribution of the interaction between two modes to their total variation.

Eqn. (4.17) gives an exact measure of the conformity of the mass-normalised eigenvectors to their

subspace. As before, considering a change in parameter δK causing a variation of the stiffness matrix

such that dM
dδK

= 0, eqn. (4.17) can be written

MDFiKk = Q2
iKk =

(κiKk/∆λik)
2

∑

r 6=i

(κiKr/∆λir)
2

(4.31)

This equation requires knowledge of the modal parameters for all the modes, but it is desirable that the

modal dependence factor, as with the cross-sensitivity quotient, may be computed using only modal

parameters for the two modes concerned. The eigenvector derivative, dφi

dδK
can be obtained in a com-

putationally efficient manner using only modal properties for the ith mode with Nelson’s method [207].

Transposing eqn. (4.12), post-multiplying by Mφk and noting the orthogonality properties gives

dφi
dδK

T

Mφk = κiKk/∆λik. (4.32)

Post-multiplying eqn. (4.12) again, this time by M dφi

dδK
, and remembering

dM

dδK
= 0 gives

dφi
dδK

T

M
dφi,K
dδK

=
∑

r 6=i

(

κiKr
∆λir

)2

. (4.33)

Combining eqns. (4.31-4.33) yields

MDFiKk =

(

dφi

dδK

T
Mφk

)2

dφi

dδK

T
M dφi

dδK

, (4.34)

giving the contribution of the kth mode to the derivative of the ith eigenvector. From vector algebra

and inner products, this is seen to be equivalent to the cosine of the angle between the eigenvector

derivative and the plane Φik in the normal coordinate system. The same approach may be taken for

mass matrix variation with dK
dδM

= 0, to produce

MDF∗
iMk =

(

dψi

dδM

T
Kψk

)2

dψi

dδM

T
K dψi

dδM

. (4.35)

where ψi is once more the stiffness-normalised ith eigenvector, and careful attention must be given to
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the correct normalisation of dψi

dδj
when using Nelson’s scheme. In the case of several modes veering

simultaneously, the MDFs may also be summed to quantify the confinement of the vector within the

larger subspace.

4.4.5 Veering Index

Veering has been shown to occur in the presence of strong modal coupling and proximate modes.

Contrarily, subjective observations of the behaviour are most often made in systems with weak modal

coupling outside of the veering regions. In these circumstances the eigenvalues must be closer to

induce veering, producing more rapid and hence more discernible instances of the effect.

The difficulty in quantifying the behaviour lies in determining what values constitute strong modal

coupling and close eigenvalues. A better definition is afforded by considering the modal interactions

in the context of the complete system: to produce veering the two modes must be close with respect to

their coupling, and they must be isolated from the influence of other modes. These two requirements

are quantified with the CSQ and the MDF, respectively. It is necessary and sufficient that they are

both close to unity to produce veering.

A geometric interpretation is given in Figure 4.13. From this the MDFs are seen to describe the

extent to which the eigenvector derivatives deviate from their subspace, while the CSQ describes their

orientation relative to the veering datum within that subspace. Thus the MDFs determine whether

the modes will veer, and on this presumption the CSQ determines whether they are veering.

Figure 4.13: A geometric interpretation of the cross-sensitivity quotient and modal dependence factors
described by CSQijk = cos2(2β), MDFijk = cos(γi) and MDFkji = cos(γk). Depicted is a plane or
subspace in the normal coordinate system containing two eigenvectors φi and φk. These vectors are
separated from the veering datum vectors for that subspace, φi and φk, by angle β. The corresponding
eigenvector derivatives are pictured forming angles γi and γk with the subspace.
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4.4. VEERING INDEX

A veering index is proposed as the product of the CSQ and the two MDFs:

VIiKk = MDFiKk × CSQiKk × MDFkKi (4.36)

VI∗iMk = MDF∗
iMk × CSQ∗

iMk × MDF∗
kMi (4.37)

This index provides an unambiguous measure of the extent to which two modes are swapping properties

with each other. It is a definitive indicator for the presence of veering between two modes, based not

upon subjective observations but on physically relevant manifestations.

4.4.6 Examples

Two examples are presented here: the first is a simple 2 degree of freedom (DOF) system which

will demonstrate the principles of the veering quotient. The second example has been chosen to

demonstrate some of the more surprising results obtained with the veering index.

Figure 4.14: Two degree of freedom spring

mass system with light spring coupling, s, be-

tween the two masses.

Figure 4.14 shows the 2 DOF system, consisting of

two grounded spring-mass arrangements and a light

coupling spring between them. In this example k1 =

k2 >> s. Away from veering, each mass dominates

the motion for its respective vibration mode. As m2

varies, the natural frequencies of the two modes con-

verge and veer, forming two symmetrical mode shapes

where m2 = m1. The eigenvalue loci are plotted in

figure 4.15(a). Because there are only two modes in

this system, the modal dependency factors MDF1m2

and MDF2m1 will always be unity. In this case, the

cross-sensitivity quotient and the veering index are identical and are plotted in figure 4.15(b) using

eqn. (4.30). They provide a clear indication of the intensity of veering. The “half-SCQ parameter

bandwidth” has also been marked, denoting the region within which the SCQ exceeds 0.5. The effect

of veering on the eigenvalue loci is most pronounced in this range.

The second example is illustrated in figure 4.16. It consists of two pairs of lightly coupled spring-mass

systems as used in the first example, with an even lighter spring coupling the two systems together.

The masses are all equal in this example and the parameter change δj corresponds to a linear increase in

the stiffnesses of k1 and k2. The initial spring stiffnesses, k1−4, are chosen such that prior to veering

modes 1-4 are dominated by the motion of DOFs 1-4 respectively and the coupling springs, s1−3,

introduce light modal coupling where s1 = s2 >> s3. With this arrangement it is expected that mode

1 will be closely coupled to mode 3 and that mode 2 will be closely coupled to mode 4. Modes 1 and

4 may be lightly coupled while modes 2 and 3 should experience the least coupling. The eigenvalues

are plotted in figure 4.17(a), where on first inspection modes 2 and 3 appear to veer away from each
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Figure 4.16: Four degree of freedom spring

mass system with light spring couplings s1−3

between the masses.

other. In fact the observed veering is caused by con-

current interaction of mode pairs 1-3 and 2-4, and

this is clearly indicated by the veering indices in fig-

ure 4.17(b). The only curves to rise substantially

above zero in this plot are those corresponding to

VI1j3 and VI2j4. Examining the cross-sensitivity quo-

tients in figure 4.17(c) shows that as the two mode

pairs veer the vectors swing close to the veering da-

tums for other mode pair combinations; the sharp

peaks at δj ≈ 77 correspond to pairs 2-3 and 1-4.

Consultation of the modal dependency factors in fig-

ure 4.17(d), however, confirms that while the factors

for the veering mode pairs stay close to unity, those for the spurious mode combinations remain small,

ensuring a true representation of the modal transformations in the veering index.

Increasing the coupling between the two spring-mass systems so that s3=s2=s1 produces similar

eigenvalue loci, presented in figure 4.17(a). Referring to the veering indices in figure 4.17(b), the

observed curvature is now seen to be attributable to interaction between several modes, in three

distinct phases. First modes 1 and 3 begin to veer. As mode 3 takes on the properties of mode 1

its coupling to mode 2 increases. At the same time the 2nd and 3rd eigenvalues get closer and the

combination of these effects causes those two modes to veer, taking the dominant role in the variation.

As these modes diverge again the 2nd mode starts to veer with the 4th and the corresponding veering

index peaks. At no stage are any two modes interacting solely with one another and this is witnessed

by the veering indices which are always significantly below unity.
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Figure 4.15: 2 DOF system plotted for k1 = k2 = 3, m1 = 2, s = 0.0625 and m2 = 1...3. Dotted lines
indicate the half-SCQ parameter bandwidth.
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(a) eigenvalues (b) veering index

(c) veering quotient (d) veering participation factor

Figure 4.17: 4 DOF system plotted for m1 = m2 = m3 = m4 = 1, s1 = s2 = 0.6, s3 = 0.05,
k1 = 0.1 + 0.03δj , k2 = 0.75 + 0.03δj , k3 = 2.2, k4 = 3.2 and δj = 1...150.
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(a) eigenvalues (b) veering indices

(c) cross sensitivity quotients (d) MDF1j3 and MDF3j1

(e) MDF2j3 and MDF3j2 (f) MDF2j4 and MDF4j2

Figure 4.18: The 4 DOF system plotted for s1 = s2 = s3 = 0.6.
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4.5 Conclusions

Possibly the first explicit experimental demonstration of eigenvalue curve veering has been given,

along with the associated mode shape transformations. The results correspond well with those from a

finite element model. These findings are important with regard to the interpretation of experimentally

determined modal parameters. The abrupt and counterintuitive variations may also cause problems

for model updating and general modal correlation techniques; in particular, idealised models of sym-

metric or periodic structures may overlook the behaviour entirely. Properly accounted for, however,

the eigenvector rotations within a subspace are found to offer sensitive information about structural

parameters and could provide an important contribution to updating schemes.

The investigations have highlighted a hitherto unsatisfied need for a meaningful method of quantitative

identification of veering. The new techniques presented here allow analysis of the mechanisms through

which veering is manifested, notably the migration of properties from one mode to another. Three

normalised criteria are proposed: The cross-sensitivity quotient describes the state of veering of two

modes within their subspace, the modal dependence factor identifies the conformity of the modes to

that subspace, and the veering index combines the two to give a definitive quantification of mode

veering. An important feature of the technique is that it requires only knowledge of the modal

properties for the two modes concerned at a single parameter value, anywhere in the vicinity of

veering. The method offers insight when used in isolation but its principal application is expected

to be in the interpretation and extrapolation of less esoteric quantities, as described in the following

chapters.
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Chapter 5

Application of Veering Indices

5.1 Introduction

The preceding chapter has developed tools for the identification and quantification of eigenvalue curve

veering. The results they produce are insightful but the normalised appraisal they provide is not suited

to dimensionalised assessments. In this chapter the tool kit is extended to facilitate the evaluation of

more physical quantities.

In sections 5.2–5.5, expressions are derived for the datum values of various modal properties. These

are formulated in terms of the modal properties for an arbitrary eigensolution in the vicinity of veering,

and offer a consistent dimensionalised representation of the coupling between the modes regardless

of the transient parameter variations. They are derived first for stiffness matrix variations, and the

results are extrapolated to mass matrix variations in section 5.6. Their application is demonstrated

with regard to two simple lumped mass systems in section 5.7.

To conclude, section 5.8 assesses all of the methods of both this chapter and the last, with reference

to a full FE model. The evaluation includes comparisons with recently proffered veering metrics from

the literature.

5.2 Veering Parameter Datum

The equations of motion for an undamped dynamic system are given by

KΦ − MΦΛ = 0 (5.1)

Considering a linear variation of the stiffness matrix,

K′ = K +
dK

dδK
∆δK , (5.2)
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where ∆δK = δ′K − δK is the change in the parameter δK and the prime (′) is once again used to

differentiate the properties for the arbitrary parameter value δj
′ from those for δj . The equation of

motion for the modified system can then be written

(

K +
dK

dδK
∆δK

)

Φ′ − M′Φ′Λ′ = 0. (5.3)

Once again a constant mass matrix is assumed so that the transformation of the mass-normalised

eigenvectors takes the form of a rotation, α, in the orthonormal basis thus defined. Limiting the

eigenvector matrices to include only the two veering modes, premultiplying by Φ′
ik
T

and using eqn.

(4.18) gives

TTΦT
ik

(

K +
dK

dδK
∆δK

)

ΦikT − Φ′
ik
T
M′Φ′

ikΛ
′
ik = 0. (5.4)

Applying orthogonal relationships to eqn. 5.4 and using eqn. (4.19) with dM
dδK

= 0, the modified

eigenvalues can be expressed in terms of the initial modal properties so that

Λ′
ik = TTΛT + TTΣiKkT∆δK (5.5)

where the diagonal elements of the matrix equation give

λ′i =λicos2(α) + λksin
2(α)

+
(

σiKicos2(α) + 2κiKkcos(α)sin(α) + σkKksin
2(α)

)

∆δK (5.6)

λ′k =λisin
2(α) + λkcos2(α)

+
(

σiKisin
2(α) − 2κiKkcos(α)sin(α) + σkKkcos2(α)

)

∆δK , (5.7)

and the off-diagonal elements identically prescribe

∆λkicos(α)sin(α) +
(

∆σkKicos(α)sin(α) + κiKk(cos2(α) − sin2(α))
)

∆δK = 0. (5.8)

Rearranging the latter allows the determination of the parameter variation required to produce a given

vector rotation,

∆δK = − ∆λkisin(2α)

∆σkKisin(2α) + 2κiKkcos(2α)
. (5.9)

Dividing numerator and denominator by cos(2α) gives

∆δK = − ∆λkitan(2α)

∆σkKitan(2α) + 2κiKk
, (5.10)

and setting α = β so that ∆δK = δK − δK , substitution of eqn. (4.22) produces

δK = δK − (∆λki/2)(∆σkKi/2)

(∆σkKi/2)
2

+ κ2
iKk

(5.11)

where δK is the veering parameter datum: the parameter value required to align the eigenvectors with

the veering datum set. This parameter value locates the point where the eigenvector sensitivities are
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greatest, the eigenvalues are closest, and their loci effectively swap trajectories. Using eqns. (4.23)

and (4.25) gives the alternative expressions

δK = δK − ∆λki∆σkKi

4κ2
iKk

(5.12)

and

δK = δK − ∆λki∆σkKi
4κ2

iKk

CSQiKk. (5.13)

5.3 Eigenvalue Determination

It is now possible to determine the eigenvalues at the veering datum. Rearranging eqns. (5.6) and

(5.7), and setting α = β so that λ′i = λi, λ
′
k = λk, and ∆δK = δK − δK gives

λi =
λi + λk

2
− ∆λki

2
cos(2β)

+

(

σiKi + σkKk
2

− ∆σkKi
2

cos(2β) + κiKksin(2β)

)

(

δK − δK
)

(5.14)

λk =
λi + λk

2
+

∆λki
2

cos(2β)

+

(

σiKi + σkKk
2

+
∆σkKi

2
cos(2β) − κiKksin(2β)

)

(

δK − δK
)

. (5.15)

From eqns. (4.22) and (4.24),

sin(2β) =
∆σkKi
2κiKk

(5.16)

cos(2β) =
κiKk
κiKk

(5.17)

so

λi =
λi + λk

2
− ∆λki

2

κiKk
κiKk

+

(

σiKi + σkKk
2

)

(

δK − δK
)

(5.18)

λk =
λi + λk

2
+

∆λki
2

κiKk
κiKk

+

(

σiKi + σkKk
2

)

(

δK − δK
)

. (5.19)

Substituting eqn. (5.12),

λi =
λi + λk

2
− (σiKi + σkKk)∆λki∆σkKi

8κ2
iKk

− ∆λkiκiKk
2κiKk

(5.20)

λk =
λi + λk

2
− (σiKi + σkKk)∆λki∆σkKi

8κ2
iKk

+
∆λkiκiKk

2κiKk
. (5.21)

5.4 Eigenvalue Separation

A useful quantity is the separation of the eigenvalues at their closest point, the veering datum. It is

trivial to determine this value from the difference of eqns. (5.6) and (5.7), but the expression may also
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be derived without the intermediate rumination of the parameter datum. From eqns. (5.6) and (5.7),

∆λ′ki = λ′k − λ′i

= ∆λki
(

cos2(α) − sin2(α)
)

+
(

∆σki(cos2(α) − sin2(α)) − 4κiKkcos(α)sin(α)
)

∆δK

= ∆λkicos(2α) + (∆σkicos(2α) − 2κiKksin(2α)) ∆δK (5.22)

Once more setting α = β so that ∆λ′ki = ∆λki and applying eqns. (5.17) and (5.16), the term in ∆δK

vanishes so that
∆λki

∆λki
=
κiKk
κiKk

. (5.23)

This simple result provides a powerful means of determining the minimum eigenvalue separation of

two veering modes. Employing eqns. (4.23) and (4.25), the minimum separation can be expressed in

terms of the properties for an arbitrary parameter value:

∆λki =
∆λki|κiKk|

√

κiKk2 + (∆σkKi/2)
2

= ∆λki
√

CSQiKk. (5.24)

5.5 Eigenvalue Curvature

It has been shown that the eigenvectors and eigenvalues of a system at the veering datum are easily

computed; in addition, the system matrices may be determined in a straightforward manner using

knowledge of the veering parameter datum from eqn. (5.11) in a linear expression such as

K = K +
dK

dδK
(δK − δK). (5.25)

Equipped with this knowledge, any other properties may be derived. One more quantity will be

considered here: the curvatures, or second derivatives, of the eigenvalue loci are not only a useful

quantity in their own right, but along with the eigenvalue separation they provide a dimensionalised

means of comparing the intensity of different veering cases.

Eqn. (4.13) gives an expression for the eigenvalue curvature, and the accompanying discussion explains

that the contribution of the kth mode to the ith second derivative is

d2λi
dδ2j

∣

∣

∣

∣

∣

k

= −
2
[

φTk

(

dK
dδj

− λi
dM
dδj

)

φi

]2

∆λki
= −

2κ2
ijk

∆λki
. (5.26)

At the veering datum this term is likely to dominate the curvature, and under this assumption it is

expressed as
d2λi
dδ2j

= −
2κ2

ijk

∆λki
. (5.27)
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Using eqn. (5.23), it can be written

d2λi
dδ2j

= −
2κ3

ijk

κijk∆λki
, (5.28)

or, once more substituting eqn. (4.23),

d2λi
dδ2j

= −
2
[

κ2
ijk + (∆σkKi/2)2

]3/2

κijk∆λki
. (5.29)

5.6 Mass Matrix Variation

Now considering a linear mass matrix variation with constant stiffness matrix, the eigenvectors are

normalised with respect to the stiffness matrix as in eqn. (4.26), and eqn. (5.2) becomes

K′Ψ′ −
(

M +
dM

dδM

′

∆δM

)

Ψ′Λ′ = 0. (5.30)

Using only modes i and k, premultiplying by Ψ′
ik
T
, postmultiplying by Λ′

ik
−1

and introducing

eqn. (4.18) produces

Ψ′
ik
T
K′Ψ′

ikΛ
′
ik

−1 − TTΨT
ik(M +

dM

dδM

′

∆δM )ΨikT = 0. (5.31)

Rearranging and appling eqn. (4.28) in conjunction with the orthogonality conditions,

Λ′
ik

−1
= TTΛ−1

ik T − TTΣ∗
iMkT∆δM . (5.32)

This is analogous to eqn. (5.5) so that

δM = δM +
∆λ∗ki∆σ

∗
kMi

κ∗iMk
2 , (5.33)

λ∗i =
λ∗i + λ∗k

2
− (σ∗

iKi + σ∗
kKk)∆λ

∗
ki∆σ

∗
kKi

8κ∗
2
iKk

− ∆λ∗kiκ
∗
iKk

2κ∗iKk
, (5.34)

λ∗k =
λ∗i + λ∗k

2
− (σ∗

iKi + σ∗
kKk)∆λ

∗
ki∆σ

∗
kKi

8κ∗
2
iKk

+
∆λ∗kiκ

∗
iKk

2κ∗iKk
, (5.35)

∆λ
∗

ki =
∆λ∗ki|κ∗iMk|

√

κ∗iMk
2 + (∆σ∗

kMi/2)
2

= ∆λ∗ki
√

CSQ∗
iKk, (5.36)

and
∆λ∗ki

∆λ
∗

ki

=
κ∗iMk

κ∗iMk

(5.37)

where Λ∗ = Λ−1. The relationship between modal coupling and eigenvalue separation is not as

elegant for mass matrix variation as it is for stiffness matrix variation, and can not be determined

directly from eqn. (5.37). To determine the datum eigenvalue separation it is necessary to compute
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the eigenvalues individually using eqns. (5.34) and (5.35), and to calculate the difference. This value

is no longer the minimum eigenvalue, however, as the minimum is not exactly coincident with the

datum.

Similarly, the determination of the eigenvalue curvature at the datum is protracted for mass variation.

Following the methods of section 5.5 yields

d2λi
dδ2j

= 2κ2
ijkκ

∗
ijk/∆λ

∗
kiκ

∗
ijkλiλk (5.38)

or
d2λi
dδ2j

= 2κ∗ijk
3λi/∆λ

∗
kiκ

∗
ijk. (5.39)

This solution once again requires the prior evaluation of eqn. (5.35) to obtain λi.

5.7 Examples

The application of these ideas will be demonstrated with reference to the two examples used in

section 4.4.6. The first of these is the 2 DOF system seen in figure 4.14, where the parameter being

varied is the mass m2. The stiffness matrix remains constant so using eqn. 5.37, the quantity ∆λ∗ki

can be plotted on the same axes as its predicted minimum value, ∆λ∗ki. These results are seen in

figure 5.1(a), where the minimum separation is seen to be predicted exactly for all values of m2. Of

note is the well-behaved, symmetric appearance of the curves afforded by the transformation of ∆λ to

∆λ∗. Unfortunately, ∆λ∗ can not be used directly to obtain the eigenvalue separation; instead, using

eqns. (5.34) and (5.34) produces the datum eigenvalue predictions seen in figure 5.1(b) along with the

actual eigenvalues. Once again, the predictions are exact for this 2 DOF system. The separation of

the eigenvalues is then simple to determine, as shown in figure 5.1(c). The symmetry of figure 5.1(a)

is not present in the new figure, helping to explain the need for a more intensive computation. As

expected, however, the minimum value is located almost exactly at the veering datum.

The second example of section 4.4.6 is the 4 DOF system presented in figure 4.16. The parameter

variation in this example is manifested as a linear change in the stiffness matrix. This parameter

allows the use of eqn. (5.23) to directly determine the eigenvalue separation at veering, without the

more involved computations required for mass matrix variation. Two cases are presented: in the first,

the coupling between DOFs 1 and 4 is much lower than that between the DOF pairs 1-3 and 2-4. As a

result, veering is observed between those two mode pairs, but not for any other modes. Figure 5.2(a)

shows the predicted eigenvalue separations for the two mode pairs compared to the actual eigenvalue

separations. The predictions are almost constant over the parameter range and acurately forecast the

minimum separation. Nearly indistinguishable, small discrepancies arise in the predictions due to the

interference of other modes with the idealised veering behaviour. The eigenvalue separation predictions

for the remaining mode pairs are seen in figures 5.2(c) and 5.2(b), but these are not valid because the
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Figure 5.1: Modal properties of the 2-DOF system plotted with veering peak estimates for varying
values of parameter m2. The vertical dotted line denotes the veering datum.

modes in question are not veering. Accordingly, they are seen to meander over the parameter range

and provide no meaningful information. A good indication of the validity of the estimates is provided

by the MDF, with values close to unity assuring an accurate result. It is interesting to note that,

necessarily, the estimates match the actual values wherever the CSQ is unity, regardless of the MDFs.

This is exhibited in figure 5.2(b).

The second case presented for the 4 DOF system is with equal coupling between DOF pairs 1-3, 2-4

and 1-4. The corresponding modes are all observed to veer but never in isolation. This behaviour is

accompanied by lower MDFs for mode pairs 1-3 and 2-4, but increased MDFs for pairs 2-3 and 1-4.

As such, the estimates for pairs 1-3 and 2-4 plotted in figure 5.3(a) are seen to be less reliable than

before, while figure 5.3(b) shows that those for pairs 2-3 and 1-4 to have improved. As with the first

case, the predictions for the non-veering modes in figure 5.3(c) give no useful information. None of the

predictions are particularly good, and this second case study highlights the importance of the MDF

in ascertaining the accuracy of the eigenvalue separation predictions.

5.8 Practical Exposition

Chapter 4 demonstrated the presence of veering phenomena in experimental data. Having now de-

veloped tools for the analysis of the behaviour, they are applied to the original structure in fig. 3.1
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(b) Mode pairs 2-3 and 1-4.
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(c) Mode pairs 1-2 and 3-4.

Figure 5.2: Eigenvalue separation (–) in the 4-
DOF system compared to the estimated min-
imum (datum) separation (-.-) for variation
of parameter δj , using s1 = s2 = 0.6 and
s3 = 0.05.
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(a) Mode pairs 1-3 and 2-4.
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(b) Mode pairs 2-3 and 1-4.
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Figure 5.3: Eigenvalue separation (–) in the 4-
DOF system compared to the estimated min-
imum (datum) separation (-.-) for variation
of parameter δj , using s1 = s2 = s3 =
0.6.
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to demonstrate their utility. Comparisons are then drawn with existing methods to highlight the

advantages of the new techniques.

5.8.1 Veering Analysis of a Real Structure

The stressed structure described in section 3.4 has many intersecting eigenvalue loci. Modes 2 and 4

are seen to intersect at around 3000N (with mode numbers referenced from the zero load case; modes

2 and 3 cross at 555N). These modes will be examined in detail below.

While the modes are seen to veer in both figure 3.19(b) and figure 3.19(c), the coarse load steps used

to produce the graph do not disclose the precise behaviour at the intersection. Refining the load steps

in this region to 6.5 N produces the frequency loci seen in figure 5.4. These curves are indisputably

veering, and this interpretation is supported by the veering index seen in figure 5.5. The corresponding

CSQ and MDFs are seen in figure 5.6. An interesting feature of this plot is the sharp rise in both

CSQ2P4 and MDF4P2 at around 4650 N, seeming to “bounce” back from zero. These upturns are

not an indication of veering, and MDF2P4 remains low so that the veering index is representative of

this fact. This example epitomises the manner in which the two MDFs window the CSQ to form the

veering index, restricting it to the region for which it provides a valid measure of veering. This window

must be inferred when interpreting other results as well. For example the eigenvalue separation is

shown in figure 5.7 along with the estimated minimum, which is seen to be accurate within the window

but again shows significant deviation at around 4650N.
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Figure 5.4: Close examination of the veering frequency loci for the 2nd and 4th modes.
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Figure 5.5: Veering index for modes 2 and 4
in the welded frame.
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Figure 5.6: Cross-sensitivity quotient and
modal dependence factors for modes 2 and 4
in the welded frame.
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Figure 5.7: Eigenvalue separation of the 2nd
and 4th modes in the welded frame, along with
the value estimated using veering approxima-
tions.

1500 2000 2500 3000 3500 4000 4500
0

0.2

0.4

0.6

0.8

1

load (N)

ve
er

in
g 

in
de

x

 

 

VI
2P4

VI
2P1

Figure 5.8: Veering indices for mode 2 with
respect to modes 1-10. The prominent indices
are labelled in the legend, while the other in-
dices are close to zero and indistinguishable at
the bottom of the plot.

Figure 5.8 shows all of the veering indices of mode 2 with respect to modes 1-10. Besides VI2P4, only

one other index stands out. This index is VI2P1, corresponding to veering between modes 2 and 1.

Figure 5.9 shows the first four frequency loci, where mode 1 is seen to rise gradually, crossing mode 3

before veering with mode 2. (Note that modes 2 and 3 have already crossed below the load range of

this figure.) Where the modes veer at the right of the plot, a sharp peak is seen in VI2P1, explaining

the anomalies at around 4650N noted previously. The gentler slope to the left of the plot indicates

a much more gradual veering, spanning the loading range to the extent that it is difficult to observe

at the scale of figure 5.9. In fact, the behaviour is first interrupted by the veering of modes 2 and 4

(whereupon the gentler veering is transferred from mode 2 to mode 4), and then curtailed by the onset

of buckling in the structure. In this instance it would be nearly impossible to recognise the occurence

of veering without using the veering index. The significance of veering in these circumstances is that

once it has been recognised, all of the tools presented in this chapter and the last become available

for the analysis of the modes concerned.
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Figure 5.9: The first four frequency loci for the welded frame.

5.8.2 Comparison of Veering Quantifiers

Having explored the traits of the cross-sensitivity quotient, modal dependency factors and veering

index, the new quantities will now be contrasted with existing metrics. For the purposes of identi-

fying and quantifying veering, the primary candidates are the modal coupling, or coupling factors,

suggested by Perkins and Mote [234] and the derivatives and second derivatives of the eigenvectors

and eigenvalues as suggested by Liu [249].

The “modal coupling” and “coupling factors” convey the same information for a self-adjoint system,

the coupling factor being proportional to the square of the modal coupling. Figure 5.10 shows the

coupling factors for mode 2 with respect to the other modes. While the two rapid instances of

veering stand out with high peaks, the gradual instance of veering between modes 2 and 1 in the

lower loading spectrum shows unremarkable modal coupling values. In fact, figure 5.10(b) shows that

another coupling factor involving mode 6 is greater than that for mode 1, yet modes 6 and 2 are not

veering. A similar artefact is observed at the high end of the loading range, where the coupling factor

for mode 6 rises substantially, once again without any of the other traits associated with veering.

Thus, despite conveying important information about a system, the modal coupling factors are not a

reliable indicator of the presence or extent of veering.

The eigenvector sensitivities and eigenvalue second derivatives are both dominated by similar terms

to each other in veering regions, as discussed in section 4.4.1. Accordingly, the plots in figure 5.11 and

5.12 both show similar trends. Once more the most abrupt occurrences of veering are identified but

the gentler veering of modes 2 and 1 is not evident. In contrast to the veering index, the two criteria

have substantial non-zero values for non-veering modes, which mask the significance of the veering

modes’ curvature. Addressing a technical point, two spurious impulses are seen in each graph
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Figure 5.10: Modal coupling factors for mode 2 with respect to modes 1 and 3-7 in the welded frame.
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Figure 5.11: The ℓ2 norm of the eigenvector sensitivities for the first seven modes of the welded frame.
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Figure 5.12: The eigenvalue sensitivities for the first seven modes of the welded frame.
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at 2500 N and 4000 N, where frequency loci cross. These are numerical artefacts caused by the

erroneous calculation of small but finite modal coupling where there should be none, combined with

the appearance of ∆λki (which goes to zero as the modes cross) on the denominator of the respective

expressions. As with the modal coupling, the eigenproperty derivatives are found to be inadequate

for the identification of veering, endorsing the choice of the newly-derived veering index for these

purposes.

5.9 Conclusions

The concepts of a veering datum and modal coupling, taken from chapter 4, have been used to

determine expressions for the extremums of various system properties throughout a veering region.

Once again these can be determined from a single eigensolution anywhere in the vicinity of veering.

While the equations given are strictly only valid for linear systems, problems involving such systems

are common: in particular, stress stiffening formulations may often be treated as such. Furthermore,

linear approximations can form a basis for iterative nonlinear solutions.

The extremum properties are useful in dimensionalised comparisons, describing the influence of modal

couplings on the system dynamics over the parameter space. This characterisation could be useful

in correlation exercises such as model updating, or in fact anywhere where modal interactions are

significant. Notable examples are localisation and stability studies of bladed disk assemblies.

The new tools have been shown to offer significant advantages over existing techniques for quantifying

veering, and their application has been successfully demonstrated with respect to a practical structure.
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Chapter 6

Modal Coupling in Model Updating

6.1 Introduction

Finite element model updating is a technique that receives much attention within the modal analysis

community; however, all but the simplest of structures continue to frustrate attempts to replicate the

intricacies of their dynamic response by numerical means. An important part of the evolution of this

discipline is the development of new tools to locate and quantify the discrepancies between actual

structures and their digital counterparts.

Section 4.3 considered the possibility of using eigenvector transformations within a subspace to aid

with parametric identification. Two difficulties compromise the operation of such a scheme. Firstly,

eigenvectors are infamously difficult to determine experimentally. Measuring the orientation of the

eigenvectors within a subspace offers some level of abstraction from the eigenvectors themselves, but

the results of section 4.3.2 suggest that this quantity is still not reliable enough to be useful.

The second difficulty lies in the sensitivity of the vector rotations to other parameters in these regions.

For example, in the welded frame the behaviour of modes 5 and 6 in the vicinity of their intersection

was seen to depend strongly on the weld stiffnesses. Without accurate knowledge of these parameters

the utility of the vector rotations as updating variables is diminished.

This chapter develops and implements a new approach for a model updating scheme, based upon

eigenvector rotations with respect to two or more parameters. All but one of the parameters are those

to be determined by the scheme, while the remaining parameter is deliberately varied to produce

multiple results sets. The concept of using parametric variations to enrich the available dataset is not

a new one. Chen et al. [268] and Lammens et al. [269] discuss perturbed boundary condition testing,

where the structure is adapted by means of mass and stiffness elements, and the extended result

sets offer better conditioning to the updating problem. Where perturbed boundary condition tests

tend to employ discrete structural modifications, the method presented here uses continuous variations

(albeit sampled at discrete intervals). This approach permits the novel introduction of modal coupling
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properties, which contribute qualitatively different information to the updating scheme. In particular,

they will be shown to offer unique insights into uncertainties in symmetric structures.

First the proposed technique is set out, and the theory developed for extracting the veering properties

from experimental data. A discussion of the properties and their application to an updating scheme

follows, before a numerical and experimental example is demonstrated with regard to the welded

frame.

6.2 Theory

The principle behind the proposed technique is to collect sets of response data for a system while

deliberately varying one parameter. This will be referred to as the “control parameter”. These data

are used to evaluate the veering characteristics, or veering properties, of two modes with respect to the

control parameter and in turn to update the dependent parameters of the FE model. The assumption

of “ideal veering” is made in this analysis, corresponding to mode pairs with both MDFs close to

unity.

The control parameter in the example that follows will take the form of structural loading, but for

the development of the technique the parameter may be considered to be any linear modification

of the stiffness matrix, δK . An analogous method can be derived for mass matrix variation. The

direction of rotation of the eigenvectors throughout veering plays an important role, so to measure

this it is first necessary to establish a set of reference vectors. These may be from the analytical

or experimental results and may correspond to any parameter values, but a convenient choice is the

veering datum vectors. The datum vectors may be established easily from the analytical model using

the tools of chapters 4 and 5. Most modal analysists will be familiar with the idea that the sign of

an eigenvector is arbitrary, but it is critical throughout the process described here that the sign of

the reference vectors is kept constant. Without a constant reference it is not possible to establish

a direction for the eigenvector rotation, which conveys important information about the parameter

variations in symmetric structures.

Once the reference vectors are established, the veering properties may be extracted from the test data,

and these are then used to update the FE model.

6.2.1 Veering Property Extraction

Veering property extraction is the process of determining the veering characteristics from experimental

data. It consists of two stages: eigenvalue curve fitting and eigenvector sensitivity analysis. Most of

the veering characteristics are established in the first step but arguably the most important piece of

information, the eigenvector rotation direction, is obtained in the eigenvector analysis.
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The curve fitting is itself broken down into two steps. The first determines the mean eigenvalue

trajectory while the second identifies the separation of the two loci. The mean eigenvalue locus traces

a straight line under linear stiffness variation. The least squares solution is
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where µ
(n)
λ = (λ

(n)
i + λ

(n)
k )/2, bracketed superscripts denote the experimental data point, and +

denotes the pseudo-inverse such that

A+ = (ATA)−1AT . (6.2)

The locus is then defined by the gradient of the line and the mean eigenvalue at the veering datum,

given by
dµλ
dδK

= p1 and µλ = δKp1 + p2. (6.3)

The second curve fitting step is performed using the eigenvalue separation, ∆λki, computed directly

as the difference of the measured eigenvalues. From eqns. (4.23), (5.12) and (5.23),

∆λ2
ki = (4κ2

iKk)δ
2
K − (8κ2

iKkδK)δK + (4κ2
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2

K + ∆λ
2

ki). (6.4)

Thus in the vicinity of the veering, where the MDFs are close to unity, ∆λ2
ki is described by a quadratic

in the controlled parameter δK . The least squares curve fit is obtained from
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. (6.6)

From eqn. (6.6) the veering properties κiKk, δK and ∆λki may be established in turn, and all that

remains is to determine the the sign of κiKk. This is not possible from consideration of the eigenvalues

alone, and the eigenvectors must be consulted.

There are several methods available for establishing the sign of κiKk, the simplest being inspection of

the eigenvector rotations. Having established a set of reference vectors, the eigenvector orientations

can be determined as in section 4.3.4. This permits their rotation to be plotted against the controlled
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parameter as in figure 4.10. From eqn. (4.22), a positive eigenvector rotation direction corresponds

with negative modal coupling1 so the sign is easily ascertained from such a plot. This distinction

allows the determination of parameters which would otherwise be insoluble due to symmetry.

6.2.2 Choice of Updating Variables

The eigenvalue curves in the vicinity of the veering can be completely described with five variables:

four of these variables define the straight lines of the two uncoupled modes, upon which the eigenvalues

converge asymptotically away from veering, and the remaining variable describes the coupling. The

properties derived in the preceding section are a linear permutation of these five variables. In this

section the physical relevance of each of the veering properties is discussed, and their suitability as

updating variables is assessed.

Of the five properties derived, two describe the location of the veering datum: δK and µλ. A third

describes the orientation of the mean eigenvalue locus, dµλ

dδK
, leaving the remaining two to describe the

relationship between the two loci.

The maximum modal coupling, κiKk, seems an obvious choice for describing the coupling between

the modes. Significantly, it conveys the direction of rotation of the eigenvectors. In practice, however,

the modal coupling at the datum will often show little variation over a wide range of configurations.

Remembering that, in the limit, the modal coupling goes to zero away from veering, eqn. (4.23)

(or inspection of eqn. (6.4)) reveals the maximum modal coupling to be a measure of the difference

in gradients of the two asymptotic eigenvalue loci. Apart from the special case of uncoupled modes

(where the modal coupling at the intersection is undefined), the maximum value of the modal coupling

does not provide any real measure of the actual coupling between the modes.

The minimum eigenvalue separation is then the only property which holistically conveys the magnitude

of the coupling between the two modes. Its shortcoming as an independent quantifier of the coupling

is that it can only be positive or zero; the eigenvector rotation direction is not represented. Other

eigenvalue-based quantifiers such as the eigenvalue curvature suffer from the same inadequacy.

In the search for a suitable property to represent the coupling, the most promising candidate is the

rate of eigenvector rotation within the subspace, dβ
dδK

. It is related to, but not entirely equivalent to,

the eigenvector sensitivities. Importantly, the maximum rotation rate dβ
dδK

occurs at the veering datum

and conveys both the magnitude and sign of the coupling. Rearranging eqn. (5.12) and differentiating

yields
dδK
dβ

=
∆σki

4κ2
iKk

d∆λki
dβ

+
∆λki

4κ2
iKk

d∆σki
dβ

. (6.7)

1Remembering that β is the angle a vector set must rotate through to coincide with the veering datum, a positive
rotation of the eigenvectors results in a positive β prior to veering and a negative β after veering. Conversely, ∆σki will
always be negative prior to veering as the eigenvalues converge, and positive after veering as they diverge again. Thus
a positive eigenvector rotation produces a negative modal coupling and vice versa.
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Eqns. (5.16), (5.17) and (5.23) produce

∆σki = 2κiKksin(2β) and ∆λki =
∆λki

cos(2β)
(6.8)

so that differentiating gives

d∆σki
dβ

= 4κiKkcos(2β) and
d∆λki

dβ
= 2

∆λki
cos2(2β)

sin(2β). (6.9)

Substituting eqns. (5.16), (5.17) and (5.23) again,

d∆σki
dβ

= 4κiKk and
d∆λki

dβ
=

∆σki∆λki
κiKk

. (6.10)

Combining eqns. (6.10) and (6.7) and rearranging yields

dδK
dβ

=
∆λki

κ2
iKk

(

(∆σki/2)2 + κ2
iKk

κiKk

)

, (6.11)

and using eqn. (4.23) this becomes
dδK
dβ

=
∆λki
κiKk

. (6.12)

The eigenvector rotation rate is then given by

dβ

dδK
=

(

dδK
dβ

)−1

=
κiKk
∆λki

(6.13)

and the maximum rotation rate by
dβ

dδK
=
κiKk

∆λki
. (6.14)

Although this function is the most physically recognisable, it is discontinuous across ∆λki = 0, making

its inverse, dβ
dδK

−1

, more suitable for updating schemes.

6.2.3 Updating Scheme

Having ascertained the veering properties from the experimental data, it remains to derive the equiv-

alent properties and their derivatives from the FE data for the purposes of implementing a sensitivity

based updating scheme. A key advantage of the method proposed is that these values can be derived

from a single eigensolution, without the need to obtain multiple eigensolutions over a range of δK .

This study will focus on three properties, ignoring the gradients of the eigenvalue loci and describing

the curves only in terms of the vector rotation rate and the datum position on both axes. The

computation of the datum position in terms of δK and µλ is documented in chapter 5. The vector

rotation rate is defined above in terms of κiKk and ∆λki, whose derivation are in turn described by

chapters 4 and 5.

The sensitivities of these properties with respect to the dependent parameters are now derived below.
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The first step is to obtain the derivative of the eigenvalue sensitivities and modal coupling, contained

within the sensitivity matrix. Differentiating eqn. (4.19) with respect to an arbitrary parameter δp

produces

dΣiKk

dδp
=





dσiKi

dδp

dκiKk

dδp

dκkKi

dδp

dσkKk

dδp



 =
dΦik

dδp

T dK

dδK
Φik + ΦT

ik

dK

dδK

dΦik

dδp
, (6.15)

where the parameters δK and δp are assumed to be independent so that d2K
dδKdδp

= 0 and δK affects

only the stiffness so that dM
dδK

= 0. The eigenvalue derivative dΦik

dδp
is best obtained with Nelson’s

method [207]. The eigenvalue derivatives are obtained with eqn. (4.11), and the following relationships

are noted:

d∆λki
dδp

=
dλk
dδp

− dλi
dδp

(6.16)

d∆σki
dδp

=
dσk
dδp

− dσi
dδp

. (6.17)

The sensitivity of the maximum modal coupling is determined by differentiating eqn. (4.23) to produce

d

dδp
κ2
iKk = 2κiKk

dκiKk
dδp

+
∆σki

2

d∆σki
dδp

(6.18)

and hence
d

dδp
κiKk =

κiKk
κiKk

dκiKk
dδp

+
∆σki
4κiKk

d∆σki
dδp

. (6.19)

The sensitivity of the minimum eigenvalue separation is found by differentiating eqn. (5.23), yielding

d∆λki
dδp

=
κiKk
κiKk

d∆λki
dδp

+
∆λki
κiKk

dκiKk
dδp

− ∆λkiκiKk

κ2
iKk

dκiKk
dδp

. (6.20)

It is now possible to determine the derivative of the maximum vector rotation rate, or more specifically

its inverse, from eqn. (6.14):

∂

∂δp

(

dβ

dδK

−1)

=
1

κiKk

d∆λki
dδp

− ∆λki

κ2
iKk

dκiKk
dδp

. (6.21)

Similarly the derivative of the datum parameter value is found by rearranging and differentiating

eqn. (5.12) to give

dδK
dδp

=
∆σki∆λki

4κ4
iKk

∂

∂δp
κ2
iKk −

∆σki

4κ2
iKk

d∆λki
dδp

− ∆λki

4κ2
iKk

d∆σki
dδp

. (6.22)

Finally, the mean eigenvalue at the veering datum is found from eqns. (5.20) and (5.21),

µλ =
λi + λk

2
=
λi + λk

2
− (σiKi + σkKk)∆λki∆σkKi

8κ2
iKk

, (6.23)
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and differentiated to give

dµλ
dδp

=

dλi

dδp
+ dλk

dδp

2
− ∆λki∆σki

8κ2
iKk

(
dσi
dδp

+
dσk
dδp

)

− (σi + σk)∆σki

8κ2
iKk

d∆λki
dδp

− (σi + σk)∆λki

8κ2
iKk

d∆σki
dδp

+
(σi + σk)∆λki∆σki

8κ4
iKk

d

dδp
κ2
iKk. (6.24)

Eqns. (5.12), (6.14) and (6.21–6.24) are incorporated into the sensitivity-based updating routine de-

scribed in section 2.7.

6.3 Welded Frame Example

It is anticipated that model updates based on the veering properties will produce the best results

when these properties are used in conjunction with more commonplace updating variables, notably the

eigenvalues. For this example, however, the veering properties will be used in isolation to demonstrate

their utility. To this end, the method developed above will now be applied to the welded frame

described in section 3.4 to produce an informed estimate of the weld stiffnesses at the corners.

6.3.1 Tangent Stiffness Derivative

To perform the updating computations as detailed above, the tangent stiffness derivative dK
dδK

must be

known. It was shown in section 3.4 that under the majority of practicable conditions the structural

stiffness experiences approximately linear variation with loading. Making this assumption greatly

simplifies the study of veering modes, allowing direct application of the expressions in chapters 4 and

5 and simplifying any updating scheme based upon these principles. The stiffness matrix derivative

required for the calculations can be determined from a single linear static solution. The solution is

performed for unit load, and the stress stiffening matrix is determined as in section 2.4.2. The linear

approximation then gives

K = KT = KE + K̂GδK (6.25)

where δK is the applied load and K̂G is the stress stiffening matrix for unit load. From this,

dK

dδK
= K̂G. (6.26)

Where appropriate, this approximation greatly reduces the computational effort. In the following

example, however, it was found that significant nonlinearities were present over the load range studied,

so instead a numerical finite difference technique was used. This technique provides greater accuracy

at the expense of doubling the number of eigensolutions, by using two load steps and calculating the
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Figure 6.1: Experimentally determined eigenvalue separation
of modes 5 and 6 in the welded frame, squared to give ∆λ2.

stiffness derivative as
dK

dδK
=

K(n+1) − K(n)

δ
(n+1)
K − δ

(n)
K

(6.27)

where the bracketed superscripts refer to the load step.

6.3.2 Veering Property Extraction

The update in this example is based upon the veering of modes 5 and 6, whose eigenvalue loci are

presented in figure 4.4(c). The first set of results is used and the squared eigenvalue separation is

plotted in figure 6.1. The curve shows significant deviation from a smooth path; the disturbances

are attributed primarily to the load measurements which were only accurate to within ±50 N. The

quadratic trend is clear, but the mild nonlinearity of the structural loading causes a shift over the

course of the loading range. For this reason the data points used in the curve fitting should be limited

to the vicinity of the veering. In contrast, it is desirable to include sufficient points so as to produce a

reliable estimate of the true curve. Where possible, plentiful data should be collected over the range

of the veering but if this is not practical then a sensible compromise must be reached.

The approach taken here is to evaluate the veering property estimates obtained using varying load

ranges, centered approximately about the veering datum, and assess the quality of the curve fit as

the range increases. Figure 6.2 shows the results of the two extremes; in figures 6.2(a) and 6.2(b) the

curve is fitted to only the three central points and in figures 6.2(c) and 6.2(d) all of the available data

is used. Neither case produces a satisfactory model of the behaviour in the vicinity of the veering

so a reasonable middle ground is sought. Figure 6.3 shows the variation of the modal properties

as the load range is expanded to encompass more data points. It is found that between the 1 kN

and 3 kN ranges the estimates settle to reasonable values before diverging to the invalid global least

squares fit. Accordingly modal property values are chosen based on the estimates from this range, as

indicated by the dashed lines. These values produce the quadratic curves in figures 6.4(a) and 6.4(b),
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Figure 6.2: Curve fitting the experimental eigenvalue separation using differing numbers of data points,
and viewed at different scales.

corresponding with the eigenvalue loci in figures 6.4(c) and 6.4(d). They exhibit a good approximation,

with significant differences emerging only at the outermost extents of the loading spectrum.

6.3.3 Model Updating

Using the FE model described in chapter 3, the weld stiffnesses connecting the diagonal members to

the rest of the frame are parameterised once more using the cross-sectional width of the short beam

elements at the ends of each member. This time all four corners are considered. Using traditional

eigenvalue-based techniques the symmetry of the structure prevents the determination of a unique

solution to the update. Inclusion of the vector rotation rate resolves this difficulty, as the sign of the

rotation rate differentiates the effects of two symmetrical parameters.

In section 4.3 it was recognised that the welds do not form perfectly rigid joints, so here the four

parameters are initialised to 70% of the full stiffness. Despite the additional information given by

the vector rotation rate, the structure exhibits reflectional symmetry about two planes, as well as

rotational symmetry, so it is still not posssible to update all four parameters simultaneously without

the solution diverging. This information deficiency would likely be resolved by incorporting the veering

properties for further modes, but this example will simply consider the two parameter pairs separately.
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(b) Mean Eigenvalue at Veering Datum
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Figure 6.3: Veering properties extracted from the experimental data using data points from varying
load ranges, centered approximately about the veering datum ( o ), and chosen values (- -).
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Figure 6.4: Quadratic curves and eigenvalue loci produced by the mathematical veering model (–),
and the experimental data (◦).
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Figure 6.5: Schematic of the welded frame with labels denoting the weld stiffness parameters in each
corner.

Taking this approach also obviates the need for determining other properties besides the veering

characteristics.

To update two parameters at least two measured quantities must be used. The first of these must

be the maximum vector rotation rate. For the second, two quantities will be considered here in turn:

the veering parameter datum and the mean eigenvalue at veering. The sensitivity is thus selected as

a 2 × 2 submatrix of

S =











∂
∂δA

(

dβ
dδK

)−1
∂
∂δB

(

dβ
dδK

)−1
∂
∂δC

(

dβ
dδK

)−1
∂
∂δD

(

dβ
dδK

)−1

∂
∂δA

δK
∂
∂δB

δK
∂
∂δC

δK
∂
∂δD

δK

∂
∂δA

µλ
∂
∂δB

µλ
∂
∂δC

µλ
∂
∂δD

µλ











(6.28)

where the subscripts A-D refer to the welds at locations A-D in figure 6.5.

The full sensitivity matrix for the first iteration is

S =











−473.7 473.7 −420.9 420.9

358.0 358.0 260.5 260.5

2061 2061 1670 1670











. (6.29)

From this it is clear that the vector rotation rate is the only variable differentiating the symmetric

parameters from one another (A from B and C from D). In addition it is seen that the two sets of

symmetric parameters have similar sensitivities, confirming the need for more independent data if all

the parameters are to be updated simultaneously. Accordingly, only the first two parameters will be

considered in this example, corresponding to the weld stiffnesses at each end of the non-tensioned

member (that is, the member which does not contain the tensioning mechanism).

The parameters are first updated using rows 1 and 2 of S, corresponding to the vector rotation rate,
(

dβ
dδK

)−1

, and the veering parameter datum, δK . Figure 6.6 shows the parameter values and the

updating variables’ convergence history. As expected for equal numbers of parameters and variables,

the variables converge exactly. The updated parameter values suggest that the weld stiffness is greater

in the top left corner than the bottom right. Visual examination of the two welds in figure 6.7 does
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Figure 6.6: Parameter values and convergence history for the welded frame, updated using the eigen-

vector rotation rate,
(

dβ
dδK

)−1

, and the veering parameter datum, δK . Dotted lines indicate experi-

mentally obtained values.

(a) Bottom right (A). (b) Top left (B).

Figure 6.7: Welded joints in the corners; these weld stiffnesses are used as parameters in the model
update.
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Figure 6.8: The eigenvalues of the updated FE model compared to those of the experimental data,
before and after updating. This update was based on the eigenvector rotation rate and the veering
parameter datum.

not provide a rigorous confirmation of this result, although the weld bead does appear thicker in the

top left corner and the base metal errosion greater in the lower left corner. The updated FE model is

then loaded incrementally to produce the eigenvalue loci in figure 6.8. These are seen to reproduce the

experimental trends well, although the eigenvalues are higher than those obtained in the experimental

data.

The update is performed again, this time with respect to the mean eigenvalue at veering, µλ, instead

of the veering parameter datum, δK . The new results in figure 6.9 show similar trends, with the top

left corner stiffer than the bottom right, but now both weld stiffness parameters are seen to be lower.

This is to be expected, as this time the update procedure seeks to compensate for the high eigenvalues

obtained in the first example. The new eigenvalue loci are seen in figure 6.10. The datum eigenvalues

have been brought in line but the compromise is that the veering parameter datum now does not

match that of the experiment.

A trivial explanation for the discrepancies in the updated model could be that the load cell calibration

was incorrect; the load measurements have already been identified as a likely source of errors, and

offsetting the values would bring the veering parameter datum in the second example into line. A

more likely explanation, however, lies in the remaining unknown parameters which must still be

accounted for. For example, a total of twelve weld stiffness parameters could be included, representing

the different joints between all the members (three joints in each of four corners). The tensioning

mechanism also introduces uncertainty, and the list continues.

Comparisons can be drawn with the updating scheme used in section 3.3 with the pin-jointed frame. In

that experiment, the symmetry of the structure prevented distinction of the parameters at individual

corners and each corner was assumed to be identical to the others. Using the technique presented

here with sufficient mode pairs, it should be possible to overcome this limitation and update all the

joint parameters independently.
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Figure 6.9: Parameter values and convergence history for the welded frame, updated using the eigen-

vector rotation rate,
(

dβ
dδK

)−1

, and the mean eigenvalue at the veering datum, µλ. Dotted lines

indicate experimentally obtained values.
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Figure 6.10: The eigenvalues of the updated FE model compared to those of the experimental data,
before and after updating. This update was based on the eigenvector rotation rate and the mean
eigenvalue at veering.
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6.4 Conclusions

This chapter has presented a new selection of properties to be used in model updating schemes. They

are based upon the characteristics of veering modes, and permit the inclusion of valuable information

which can not be determined from eigenvalues alone. In particular, the maximum eigenvector rotation

rate throughout a veering region has been shown to be an invaluable tool in characterising veering and

distinguishing between otherwise evasive symmetric parameter adjustments. Each veering instance

has the potential to resolve one plane of symmetry, or one degree of periodicity, as well as providing

better conditioning than can generally be achieved in symmetric updating problems.

A novel experimental technique has been developed for extracting the veering properties, taking

advantage of the quantitative accuracy of the eigenvalues and the important qualitative information

from the eigenvectors. This vector information can be gathered reliably with only two carefully selected

measurement locations: far fewer than would be needed for an eigenvector-based updating scheme.

Large amounts of experimental data are required by the method, but the repetition of the test for

varying parameter values is generally a simple task compared to the initial setup of an experimental

rig.

A practical demonstration has shown the methods to work well, providing a unique solution to a

hitherto ambiguous updating problem, although it has also highlighted the dangers of introducing

further uncertainties through the new control parameter. Future development of this work could

focus on demonstrating the techniques with respect to a multiply symmetric updating problem using

veering properties from a range of mode pairs. It would also be instructive to compare the techniques

directly with results from other updating variable candidates such as the eigenvectors themselves.
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Chapter 7

Automated Response Suppression Example

7.1 Introduction

The foregoing chapters describe investigations into the effects of structural loading on dynamic re-

sponse. In particular, section 3.4.3 identifies several behaviours which could be exploited for reducing

vibration amplitudes. Of these, the simplest methods involve direct manipulation of the natural fre-

quencies and antiresonances. This capability will prove useful wherever variable operating conditions

may bring excitation frequencies in line with structural resonances. Such variation could be caused

by either an alteration in the structural configuration or a change in the excitation conditions.

This chapter describes a proof-of-concept study into the use of quasi-static structural loading in an

adaptive system for response suppression. The structure used to demonstrate the concept is a three-

dimensional space frame. An actuator is embedded in the structure and a fully automated control

system is developed to respond to a range of varying narrow band excitation conditions by varying

the internal loading.

Two systems are tested: the first is ambitious in its scope, attempting not only to avoid the excitation

of structural resonances but also to optimise the response further at key locations using continuous

load adjustments. This approach inevitably leads to compromises in the performance and the results

also highlight inadequacies in the generality of the demonstration. A second study addresses these

shortcomings, using a simpler binary actuation scheme to improve on the performance while at the

same time demonstrating a more versatile functionality.

To begin, sections 7.2 and 7.3 define the test structure and develop an FE model to assist the analyses.

Sections 7.4 and 7.5 explain the actuation and frequency estimation strategies, before section 7.6

reports the outcome of the initial tests. The approach to generalising the demonstration is described

in section 7.7, leading to the final tests in section 7.8. The results of the tests indicate the frequency

estimation to be the weakest component in the implementation so section 7.8.2 offers further analysis

of this aspect of the system ahead of the conclusions in section 7.10.
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7.2 Baseline Test Structure & FE Model

(a) Node (b) End Connector

(c) Node attached to end connector

Figure 7.1: The Meroform M12 components.

The structure chosen for the implementation of the

system is an adaptation of the Meroform R© space

frame used by Mottershead et al. in assessing var-

ious updating techniques [270]. The advantages of

this structure are that updating parameters have al-

ready been established and tested and that it is eas-

ily adapted or extended, being comprised of modular

components. The beams of the Meroform R© M12 set

are available as hollow tubes in a selection of lengths

as multiples of
√

2, allowing a range of geometric con-

figurations based around isosceles right triangles. Fig-

ure 7.1 shows the nodes and beam end connectors

used. The configuration adopted by Mottershead et

al. is seen in figure 7.2 and this arrangement is used

as the baseline configuration here.

For initial tests and FE model correlation the structure is fitted with 31 accelerometers, one in the x-

and one in the y-direction at each of the 16 nodes labelled in figure 7.3, with the exception of node

1 which was fitted with only one accelerometer in the y-direction. The remaining data acquisition

channel was used for a hammer force transducer. Hammer tests were performed and the modal

properties extracted using the methods described in section 2.5, with 5 averages of 1024 spectral lines

in the range 0Hz to 256Hz. The first nine modes are shown in figure 7.4.

The FE model is assembled in ANSYS R© [152]. Each member is divided into 5 beam elements, and

following the procedure of Mottershead et al. a further rigid section is modelled at each end to

represent the stiffer connectors. Extra masses and moments of inertia are included to account for the

end connectors, nodes and accelerometers.

Figure 7.2: Baseline space frame configuration.
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Figure 7.3: The sixteen structural nodes of the space frame; accelerometers for the first set of tests
are attached in the x- and y-directions.

The baseline configuration is updated using the design optimisation tools of ANSYS, discussed in

section 2.7.3. The three updating parameters are the wall thickness of the tubes (which cannot be

directly measured without destroying one of the members), the offset of each end connector centre

of mass from the node, and the length of the rigid sections used to model the end connectors. The

objective function to be minimised is the sum of the squares of the frequencies for modes 1 and 4-

8. Modes 2 and 3 are omitted for simplicity due to their proximity and the likelihood of the mode

numbers being reversed.

The natural frequencies from the FE model before and after the updating process are compared with

those from the experiment in figure 7.5, and the MACs are seen to be largely unchanged in figure 7.6.

The figures indicate excellent correlation for both cases, marginally improved in the updated model.

It is apparent from the MACs that modes 2 and 3 are reversed in the two result sets. This is not of

significant concern as the frequencies of the modes are close. In fact, accounting for this artefact in

the frequency comparison improves the frequency correlation for mode 2, as seen in figure 7.5(c).

The trade-off in swapping modes 2 and 3 is a reduced correlation for mode 3. This mode also exhibits

poor MAC correlation. Examining the third analytic mode shape in figure 7.7 reveals that it is

dominated by motion in the z-direction, with negligible displacements in the measured x- and y-

DOFs. Thus poor MACs are to be expected for this mode, and the natural frequency will be difficult

to determine with confidence. Similarly, FE mode 9 primarily involves bending of the individual

beams with little translational motion at the measured DOFs. This explains the discrepancy in the

frequencies, and the high cross-correlations in the MACs for modes 8 and 9.

With the justifiable exception of modes 3 and 9, the FE model provides an accurate representation of

the dynamics of the baseline configuration.

7.3 Introducing Redundancy

The baseline structure does not contain sufficient members to carry axial loading in a pin-jointed

statically determinate manner. As a result, internal loading will be carried primarily by the bending
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Figure 7.4: Experimental modal results from the baseline space frame configuration.
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(a) Prior to updating.
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(b) After updating.
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(c) Experimental modes 2 and 3 swapped.

Figure 7.5: Frequency correlation between the
analytical and measured test data in the base-
line configuration, before and after model up-
dating.
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(b) After updating.

1 3 2 4 5 6 7 8 9

9

8

7

6

5

4

3

2

1

measured modes

an
al

yt
ic

al
 m

od
es

(c) Experimental modes 2 and 3 swapped.

Figure 7.6: MAC correlation between the ana-
lytical and measured test data in the baseline
configuration, before and after model updat-
ing.
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Figure 7.7: FE mode shapes and natural frequencies for the baseline configuration after updating.
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(a) Simple cube. (b) Statically determinate. (c) Statically redundant.

Figure 7.8: A cube built up from a simple configuration with only edge members, through a statically
determinate case with square diagonals, to a redundant structure with a cubic diagonal.

stiffness of the members, transferred through the node connectors. Such an arrangement will result

in large deflections of the structure before any significant axial loading is induced. While this will

undoubtedly produce a change in the dynamic properties, it is neither desirable nor feasible in an

airframe and so will not be the subject of this demonstration.

To encourage axial stress propagation, the structure must be reinforced with additional members to

form a redundant load path. An actuator may then be incorporated into one of these members such

that shortening the member propagates the loads. The central cube is pictured in figure 7.8(a) with

no diagonal members. A statically determinate cube is presented in figure 7.8(b). To produce the

necessary redundancy a further member is required and this takes the form of the cubic diagonal shown

in figure 7.8(c). The standard Meroform components do not accommodate cubic diagonal members

so two nodes are adapted and a custom beam connector is created to compensate for the new angle

and the restricted space, as seen in figure 7.9. The redundant cube is substituted for the central cube

in the original configuration, leaving the outboard cubes as they are, and the complete arrangement

is seen in figure 7.10.

Unlike the other aluminium beams, the cubic diagonal is made of steel, and introduces further un-

certainties to the FE model because of the different joint connectors employed at the beam ends. To

compensate for these uncertainties another parameter is introduced: another rigid length section, as

used before but this one unique to the cubic diagonal member. The configuration of the FE model at

the ends of the member is clarified in figure 7.11. The tube length is known from measurements, so the

distribution of the remaining length between the bolts and the rigid elements is decided by the rigid

Figure 7.9: The node and end connectors adapted for the cubic diagonal.
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Figure 7.10: The redundant space frame configuration, with reinforcing members in the central section.

length parameter. This approximation is considered to be sufficient for determining the fundamental

bending behaviour of the structural members. To provide for better modal correlation, it was found

helpful to add two accelerometers to the centre of the cubic diagonal member, perpendicular to the

beam alignment and each other, with one accelerometer lying in the horizontal plane. Measurement

channel limitations necessitate the removal of two other accelerometers, arbitrarily taken from node 5

in the x-direction and node 10 in the y-direction (where mode numbers and orientations refer to those

in figure 7.3).

Prior to updating, the new cubic diagonal rigid length parameter is initialised to the same value as used

for the other, standard members. The FE results from this model are compared to the experimental

data. Figure 7.12(a) shows reasonable correlation for the frequencies, with small discrepancies in

modes 5 to 8. The MACs plotted in figure 7.13 are encouraging, but only the first two modes

show good correlation. Modes 3 and 4 show significant cross-correlation, but it is noted that their

frequencies are close; following chapter 4’s discussion of mode shape transformations for proximate

modes in symmetric and periodic structures, this cross-correlation is unsurprising. Importantly, the

subspace occupied by the two modes is in good agreement. This is approximately assessed by summing

the MAC values for the two modes: if an analytical mode lies in the subspace defined by two measured

mode shapes, and these are assumed to be orthogonal, then the two MAC values will sum to unity.

The same subspace arguments apply to modes 5 and 6, although the correlation is not quite as good

for this pair. The worst agreement is seen for modes 7–9. Consulting the analytical mode shapes in

figure 7.14, it is seen that these modes primarily involve bending motion of the individual members,

Figure 7.11: The cubic diagonal end connector broken into sections for the purposes of FE modelling.
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(b) After updating.

Figure 7.12: Frequency correlation between
the analytical and measured test data in the
redundant structure, before and after the cu-
bic diagonal connector stiffness is updated.
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(b) After updating.

Figure 7.13: Mode shape correlation between
the analytical and measured test data in the
redundant structure, before and after the cu-
bic diagonal connector stiffness is updated.

with little translational movement at the Meroform nodes. As before, the measured DOFs represent

these modes poorly, explaining the lower MACs for modes 7 and 8 and the abysmal correlation for

mode 9.

In light of this measurement ambiguity, it is prudent to mention a procedural improvement that could

have produced more satisfactory results. The choice of measured DOFs for this experiment was made

intuitively, guided heavily by the configuration of previous tests and the convenience of attaching

accelerometers at structural nodes. A better approach would be to compute the locations in the

FE model that are most representative of the modes being considered. Methods of performing this

computation are discussed in section 2.6.

For the case in hand, the eigenvalues upon which to base the FE updating scheme must be chosen

carefully. The most reliable and distinct modes, assessed from the MACs, are considered to be 1, 2, 7,

and 8. Modes 5 and 6, being dominated by the motion of the cubic diagonal member, will also have a

strong influence on the stiffness parameter being updated so these are included as well. The updated

frequencies are compared with the experimental results in figure 7.12(b). Modes 5 and 6 now show

good agreement, while the other modes are largely unaffected. Negligible changes are observed in the

analytical mode shapes and the MAC values. The final properties adopted for the FE model are thus
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Figure 7.14: The mode shapes for the FE model with the redundant configuration prior to updating. The fifth mode is unclear from the angle presented, but is
dominated by motion of the cubic diagonal member in the plane perpendicular to the viewing plane.
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Property Value

ρAl 2710 kg m−3

ρsteel 7860 kg m−3

EAl 71 GPa
Esteel 210 GPa
node mass 78.000 g
node mass moment of inertia 2.08 × 10−5 kgm2

(calculated as shell, radius 20mm)
accelerometer mass (includes attachments) 23.000 g
accelerometer mass moment of inertia 1.217 × 10−5 kgm2

end connector mass (standard members) 56.997 g
end connector mass (cubic diagonal member) 34.629 g
cubic diagonal connecting bolt length 37.5 mm
cubic diagonal connecting bolt diameter 6.00 mm
outer tube radius 11.000 mm
inner tube radius∗ 10.086 mm (10.015 mm)
end connector CoM offset from node∗ 30.006 mm (30 mm)
rigid length (standard connectors)∗ 17.839 mm (20 mm)
rigid length (cubic diagonal connectors)∗ 1.000 mm (17.839 mm)

Table 7.1: Properties used in the FE model of the Meroform space frame, including the updated
properties denoted by ∗. (Starting values for the updated properties are indicated in brackets.)

listed in table 7.1. It is noted that after the updating process the rigid lengths at the ends of the cubic

diagonal are reduced to 1 mm, which is an unrealisitic value that corresponds to the minimum bound

specified in the optimisation routine. In making this adjustment, the updating routine has reduced

the stiffness of the joint as far as possible, suggesting that it is compensating for unmodelled flexibility

in the newly introduced joint interfaces. Although the solution is not entirely satisfactory, the value

obtained produces good correlation in the frequency results. This agreement gives some degree of

confidence in the buckling and stress stiffening results as well: like the natural frequencies, these

results will essentially be dependent on the overall bending stiffnesses of the constituent members.

7.4 Actuation

The choice of actuator location for the current configuration is simplified by noting that the structure

exhibits only one degree of redundancy. That is, only one linearly independent load distribution exists

(neglecting the small influence of moment and shear transfer at the nodes). The significance of this

observation is elaborated in section 8.2; essentially the choice of actuator location within the central

cube is arbitrary as every location will result in the same axial load distribution. For these tests it

is placed in line with the diagonal member in the top face of the cube between nodes 7 and 12, as

indicated in figure 7.15.

A critical prerequisite for the actuator implementation is a knowledge of the failure load of the struc-

ture. To this end, an eigenbuckling solution is obtained from the FE model as described in section 2.4.3.

Following the same procedure used in section 3.2, one end of the actuated beam is uncoupled from
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Figure 7.15: Location chosen for integration of the actuator in the space frame.

the Meroform node. The Meroform node is fully constrained and the end of the beam is constained in

all but the axial DOF. An axial load is then applied. The buckling load obtained from this solution

is 2810.7 N but it is noted that the true buckling load is usually slightly lower than the eigensolution.

A full nonlinear analysis is run and the displacement curve shown in figure 7.16 is produced. From

this graph the 2811N estimate seems reasonable, but it is acknowledged that this value is still likely

to be artificially high due to the perfect alignments in the analytic structure.

The chosen loading range is 0-2250N, leaving a reserve factor of 1.25 with respect to the buckling

load obtained from the FE model. In an adaptive system there are no stringent requirements for the

actuator bandwidth, and the displacements seen in figure 7.16 are small (approximately 7.5mm imme-

diately pre-buckling) so a linear ball screw actuator is selected to the appropriate load specification.

The actuator is driven by a 24V, 6A DC motor, powered from a direct drive amplifier.

For accurate load control the actuator is fitted in line with a load cell. The load cell is tailored to be

sensitive to forces in the 0-2250N range by waisting a steel bar to a 39mm2 cross-section. The design

is seen in figure 7.17, with one end fashioned to accommodate the actuator lug and the other fitted

to the internal diameter of a Meroform tube, where it is glued and pinned in place. Strain gauges are

attached either side of the waisted section and these are included in opposite sides of a Wheatstone

bridge, as described in section 2.5.1. The actuator-loadcell arrangement is pictured in figure 7.18.

The local feedback loop is completed with a proportional-integral-derivative (PID) controller, imple-

mented in a dSpace R© rapid control prototyping (RCP) board. The RCP board incorporates analogue

to digital and digital to analogue converters (ADC/DAC), an onboard processor, and a computer in-

terface for data logging. The code for the processor is compiled using the real-time workshop facility

in Simulink R© [150] and uploaded to the board.

The full load control system is seen in figure 7.19. Values for the amplifier gain and PID controller

are chosen to produce a compromise between fast response and short settling time. Examples of

the response are shown in figure 7.20. On the rising edge the overshoot is limited by the amplifier

saturation, hence the flat region. The falling edge demonstrates a more typical response. The rise

time is indicated as 1.25s while the equivalent time for the falling step response is 0.6s.
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Figure 7.16: The load-displacement curve for the redundant structure indicates the onset of buckling
at around 2850N, where the actuator displacement is roughly 7.5mm.

Figure 7.17: The waisted beam section used to build the loadcell.

(a) Load cell. (b) Actuator-loadcell arrangement.

Figure 7.18: The actuator and loadcell installed in the space frame.
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Figure 7.19: Closed-loop load control.
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Figure 7.20: Step response for the actuator, load cell and PID controller. Dashed lines indicate rise/fall
times.

Property Value

Mass 2.749 kg
CoMx 118.0 mm
CoMy 34.0 mm
CoMz 13.7 mm
Ixx 0.023 kg m2

Iyy 0.025 kg m2

Izz 0.029 kg m2

Table 7.2: Actuator inertial properties and coordinate system definition.

(a) Connectivity. (b) Solid beam representation.

Figure 7.21: The FE model of the actuator and load cell incorporated into the Meroform beam.
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To incorporate the actuator in the FE model, its mass and inertia properties are determined as

described in appendix C, and these are listed in table 7.2. The actuator is assumed to be rigid in

comparison to the beams of the space frame, and is modelled as three light, rigid beam elements and

a point mass with inertia. Two further beam elements represent the solid bar and waisted section of

the load cell. The FE implementation can be seen in figure 7.21.

7.5 Frequency Estimation

The objective of the adaptive system is to reduce the response to variable narrow-band excitation. As

such, the controller relies on real time estimates of the drive frequency.

The input for the frequency estimation is provided by a single accelerometer, attached close to the

source of the excitation. This is connected to the RCP board via an IEPE filter and amplifier as

described in section 2.5.1. The spectral content of the vibration signal is determined using a short-

time fast Fourier transform (ST-FFT), described in section 2.5.2. The Simulink ST-FFT block is used;

in addition to the standard windowing and FFT steps, the block contains a digital filter which serves

the purpose of averaging the results over several data frames, and a normalising stage to compensate

for the scaling introduced by the windowing.

To determine the main excitation frequency, a simple peak picking method is applied to the Fourier

decomposition. This approach is not expected to be particularly robust, but should provide adequate

performace for the proof-of-concept tests.

A Simulink diagram showing the full frequency estimation process can be found in figure 7.22. First

the input is converted to a discretised signal with the zero-order hold, then buffered to create data

frames. The data frames form the input for the ST-FFT block. The spectral response output from the

ST-FFT is filtered through a ’maximum’ block, which gives the index of the maximum value in the

spectral response, and this index is then adjusted using an offset and a gain to produce the frequency

as an output. The algorithm uses a sampling frequency of 1000 Hz and an FFT buffer of 512 samples

with with 128 sample overlaps.

Figure 7.22: Simulink implementation of the frequency estimation algorithm.
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(a) FE data. (b) Experimental data.

Figure 7.23: Frequency response at the centre of the cubic diagonal member.

(a) FRF (b) FRF with optimised actuator load path overlaid in
black.

Figure 7.24: Experimental response contour plots: light regions represent high response and dark
regions represent low response.

7.6 Preliminary Experimental Evaluation

7.6.1 Control Strategy

To complete the control loop a lookup table is implemented, stipulating the optimum actuation force

for a given drive frequency. These optimum values are determined below, using experimental FRFs,

measured at discrete intervals over the loading range.

Before conducting the experimental identification, a variety of waterfall plots are produced by the FE

model to determine how the response is expected to vary at different locations around the structure.

Of particular interest is the response at the centre of the cubic diagonal member, seen in figure 7.23(a).

The dominant feature of the plot is the resonant ridge at around 50 Hz, dwarfing the other response

modes. This mode is seen to be affected by the loading, with the natural frequency dropping by more

than 10 Hz over the loading spectrum. This provides an ideal opportunity for demonstrating the

principles of the adaptive response tuning.
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Figure 7.25: Full adaptive vibration control system.

Hammer tests are performed to obtain the experimental FRFs and confirm the analytical results.

The response data is averaged over three runs for each load, in steps of 150 N from 0 N to 2250 N.

Figure 7.23(b) shows the FRFs for the response point located on the cubic diagonal member. The

same dominant mode for this point is recognised at around 50 Hz, decreasing in frequency as the load

is increased. Thus, a preliminary demonstration is conducted with the primary objective of avoiding

excitation of the dominant 50Hz mode. Two secondary objectives are also considered: firstly, for

every frequency in the range 0Hz to 200Hz to avoid coincidence of the drive frequency with resonant

frequencies; and secondly, to align the drive frequency with an antiresonance wherever possible. This

plan is to be accomplished by controlling the actuation load to manipulate the FRFs: Figure 7.24

illustrates a path through the response surface which attempts to fulfil these requirements and this

is used to create the lookup table for the control system. The lookup table takes the output of the

frequency estimation as its input and the load demand from its output is fed to the actuator controller,

forming the complete controller illustrated in figure 7.25.

7.6.2 Testing

Figure 7.26: Space frame suspended by bungee

cords, with the actuator mounted at the top.

The structure is pictured in figure 7.26 with the

actuator embedded. A shaker is attached via a

flexible push-rod to node 1 in the z-direction (as

labelled in figure 7.3) and a stepped sinusoidal in-

put is applied. Each frequency is held constant

for ten seconds at intervals of 2 Hz and the vi-

bration data from the accelerometers are logged

to record a full time history. This test is car-

ried out twice: first with the control system acti-

vated, and then with it deactivated. The result-

ing time histories for the cubic diagonal response

are shown in figure 7.27(a). A clearer picture of
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the results is obtained from the root mean square (RMS), plotted in figure 7.27(b) using averages over

0.5 s. These graphs are plotted on a linear scale; figure 7.28 shows a more familiar logarithmic plot.

The most striking feature of these curves is the marked reduction in response in the region of the 50 Hz

mode. In fact, the true extent of the improvement is greater than can be seen, as the measurement

from the accelerometer in the non-adaptive experiment was inadvertently clipped at 1 ms−2 by the

ADC. The adaptive system successfully avoids the peak of the resonance in this region. The only

time it falters is in a brief adjustment period, seen as the tall spike in the adaptive results. This

is an important result: it demonstrates that without any damping, and without the use of fully

active control systems, the driving frequency can traverse a region containing a resonant mode of

vibration without exciting that mode. This could be useful, for example, in helicopter rotor spin-up.

Furthermore, the force required from the actuator to achieve this goal is unrelated to the level of force

generated by the excitation signal, so that a well-designed system based on this principle will use far

less power than an active system directly countering the dynamic loads.
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Figure 7.27: Time histories of the response measured on the cubic diagonal. The horizontal axis labels
indicate the excitation frequency (found by dividing the time in seconds by 5).
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Figure 7.28: The response of the adaptive structure compared to that of the passive structure on a
logarithmic scale.
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Outside of the 40-70 Hz region, and particularly in regions of high modal density, the actuation is

less effective and response levels are sometimes even higher with the control system enabled. This

can be attributed largely to the accuracy of the two feedback measurements. In this setup the strain

gauge measurements do not compensate for temperature changes or other ambient conditions and as

such the readings will wander with time, affecting performance. Despite this deficiency, however, the

relatively low sensitivity of the natural frequencies to loading means that this is less of a concern than

the accuracy of the drive frequency estimation.

The shortcomings of the frequency estimation algorithm were recognised at its conception and as a

result it suffers from two problems: these will be referred to as “misidentification” of the excitation

frequency and “inaccurate” assessment of the frequency. The former produces an entirely incorrect

identification of the drive frequency, often alternating between two very different values, and is thought

to be responsible for rapid oscillations in the actuation that were observed during the test. Not only is

this inefficient for power consumption but it can produce higher levels of structural response, with two

examples seen as a series of spikes in the response at around 35Hz and 95Hz. “Inaccurate” frequency

assessment refers to estimates that are in the vicinity of the actual drive frequency but fail to identify

the true peak exactly. These errors are thought to be less significant but hamper the ability of the

device to function amongst closely spaced modes.

Further analysis of these shortcomings can not be undertaken here as the necessary data were not

recorded during the study. This omission was due to the prohibitively large quantity of data. In

the following sections the development and implementation of a new study is described, for which

comprehensive data were recorded, permitting a full interrogation.

7.7 Generalising the Demonstration

The prime success of the first demonstration was in manipulating the dominant 50Hz mode such as

to avoid exciting this mode. Examining the frequency loci from the FE model in figure 7.29, the

resonance is in fact seen to be composed of two closely spaced modes, numbers 7 and 8 from the

zero-load case. (The question of which modes veer and which cross is not tackled here; some clearly

veer while others are more ambiguous.) Examining the mode shapes from the FE model in figure 7.30

it is seen that they involve little motion other than that of the cubic diagonal member. Located in

the central cube, this member lies directly in the load path for the actuation forces. As such, the

demonstration constitutes a relatively trivial example of frequency manipulation in a single axially

stressed beam. The study described below is intended to provide a more general illustration of the

potential of the technique.

In most load-bearing structures there exists some degree of redundancy. Because of this redundancy, it

is inevitable that the influence of actuator forces will be diminished in parts of the structure away from

the actuator attachment points. So far it has been demonstrated that the response of the structure
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Figure 7.29: Frequency loci from the FE model for the redundant frame.

in the locality of the the actuator can be reduced. What remains to be demonstrated is the reduction

of the response at a point outside the primary load path of the actuator.

The sensitivity of a mode to structural forces is a function of the mode shape and the force distribution.

This is discussed in greater detail in section 8.2; for now it is simply stated that to influence the natural

frequencies the two must overlap spatially. In other words, the static axial loading must coincide with

dynamic transverse bending. The load distribution for the current redundant configuration is shown

in figure 7.31(a). It is apparent that the load is confined mostly to the central cube. Therefore, to

manipulate the response outside of this cube, the mode shapes must simultaneously involve motion

of both the central and outboard cube sections.

To facilitate this modal uniformity, adequate coupling must exist between the different cubes. To

achieve the coupling in the 50 Hz mode, the attachment points of the cubic diagonal member are

stiffened. From figure 7.9 the joint is seen to contain a narrow section of threaded bar which is

significantly more flexible than the rest of the structure. This is believed to be responsible for the

localisation of modes 7 and 8 in figure 7.30. Accordingly, the joint is replaced with that in figure 7.32,

similar to the standard joints used throughout the rest of the structure. In addition, the outboard

cubes are reinforced with further diagonal members to bring their stiffnesses in line with that of

the central section. Three new configurations were investigated: one with all three cubic diagonals

in place, one with the leftmost cubic diagonal removed, and one with the rightmost cubic diagonal

removed. These configurations are pictured in figure 7.33.

Assuming the new end connectors to have the same stiffness as the standard connectors, the new

actuator load distribution is computed and shown in figure 7.31(b). The stress is still found to be

concentrated in the central cube, albeit with small loads now carried in the outboard cubes as well.

An eigenbuckling analysis of the FE model estimates the buckling load for the stiffer structure as

8542 N, allowing a greater load range of 0 N to 3200 N to be adopted in the new study, detailed

below.
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Figure 7.30: Mode shapes from the FE model of the redundant structure with the actuator included.
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(a) Original configuration. (b) Fully redundant configuration.

Figure 7.31: The axial load distribution in the space frame under actuation.

Figure 7.32: The new stiffer end connector for the cubic diagonal member: similar to the standard
connector but with a small diameter at the contact surface due to space limitations.

(a) Fully redundant configuration (b) Right-hand cubic diagonal re-
moved.

(c) Left-hand cubic diagonal re-
moved.

Figure 7.33: The space frame configurations used in the follow-up study.

Figure 7.34: Fully redundant space frame, with the shaker attachment seen in the bottom left corner.
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7.8 Follow-Up Experimental Evaluation

7.8.1 Control Strategy

For the second study, the preparatory tests use a finer measurement resolution in both the load

and frequency domains to investigate the possibility of weaving through the densely spaced modes.

To facilitate the large number of tests required for the detailed spectral waterfall plots, a new test

procedure is developed. While the first study employed dedicated LMS R© [151] modal testing hardware

and software to determine the frequency response, the second takes advantage of the RCP hardware

to automate the aquisition and processing of the data while simultaneously controlling the actuator

and shaker signals.

The experimental setup is shown in figure 7.34. The shaker is attached as before, powered by an

amplifier supplied with random broadband excitation from the RCP. The load demand for the actuator

is determined by a timer, stepping down from 3200 N to 0 N in steps of 40 N, using the controller in

figure 7.35. Prior to ADC conversion, the transducer signals are all conditioned through an IEPE filter

and a further amplification stage. Force and acceleration data are collected for 10 minutes at each

load step to permit high quality estimates of the FRFs and the sampling rate is reduced to 500 Hz to

cover the 0 Hz to 200 Hz range while minimising the data storage. The resultant FRF curves have a

spectral resolution of 0.2216 Hz.

Frequency response contour plots are presented in figure 7.36 for the first of the new configurations.

Due to the large number of load steps, the high spectral resolution and the large number of averages,

the tests took a total of 13 hours to complete. Over the course of this time, significant changes in

the dynamics of the structure were observed. While the resonant ridgelines are mostly smooth and

follow reasonable paths, the more sensitive antiresonances are seen to meander as the load is varied.

There also appear to be several abrupt events affecting all of the FRFs, creating sharp transitions in

the contour plots. Two of these are seen to have partially, then fully dislodged an accelerometer at

3000 N and 1500 N in the third plot. Interestingly, the channel still registers a weak but correlated

signal after the accelerometer is detached, attributed to crosstalk in the signal leads.

Figure 7.35: The timing system for the load demand output, including a disable switch which is
triggered at the end of the test to turn off the test equipment.
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Figure 7.36: Spectral response of the space frame at response points on the left, central and right
cubic diagonal members as viewed in figure 7.33. Accelerometers are located in the vertical and
horizontal planes, and the plots from left to right represent: left, vertical; left, horizontal; central,
vertical; central, horizontal; right, vertical; right, horizontal.

The cause of the abrupt changes is unknown; it is possible that they can all be attributed to changes

in the accelerometer attachment conditions. The accelerometers in the centres of the beams are

mounted using wax and thirteen hours of vibration could loosen these connections. The vibrations

could also have an effect on the joints at the node connectors, and both of these circumstances

would help to explain the meandering antiresonances. Another explanation that was tendered was

that temperature variation could affect both the wax stiffness and the structural response itself.

Monitoring the laboratory temperature over the course of the tests proved inconclusive, however: the

range covered was seen to remain within the measurement device’s specified tolerance of ±1◦C.

The outboard diagonals are removed in turn and the new results are seen in figures 7.37(a) and 7.37(b).

Once again an accelerometer is seen to fall from the structure in the 4th plot of figure 7.37(a).

The fallen accelerometer once more registers low-level results from the crosstalk in the wires and

this was mimicked by the spare accelerometers, which were left attached to a stationary desk. The

spectral patterns are similar for each of the three cases, with the latest two configurations showing

greater promise for resonance avoidance. This is because the quasi-periodicity of the structure creates

several resonances in close proximity, all responding in the same manner to the actuator loading.

The distribution of the natural frequencies spans a similar range to the change in natural frequencies

afforded by actuation, thus compromising the ability to skip over all of the resonant peaks as before:

adjusting the load to avoid one resonance will simply bring another one in line. Removing one of
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(a) Right cubic diagonal removed.

(b) Left cubic diagonal removed.

Figure 7.37: Spectral response of the space frame for the final two configurations. Charts represent
response points on the left, central and right cubic diagonal members as viewed in figure 7.33. Ac-
celerometers are located in the vertical and horizontal planes, and the plots from left to right represent:
left, vertical; left, horizontal; central, vertical; central, horizontal; right, vertical; right, horizontal.
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(b) Vertical plane

Figure 7.38: Passive RMS response measurements for the binary actuation study on the space frame,
measured at the centre of the outboard cubic diagonal member, perpendicular to the beam in the
horizontal and vertical planes. Vertical lines indicate the chosen actuation change points.

the three diagonals reduces the multiplicity and provides a more amenable structure. Thus, the right

hand cubic diagonal is removed for the remainder of the tests.

The shortcomings acknowledged in the accuracy of the frequency estimates from the first study suggest

that with the current test setup it is futile trying to weave through regions of high modal density.

In addition, the unpredictable antiresonances seen in the latest tests indicate that aligning drive

frequencies with antiresonances will be unreliable. Consequently, the continuous adjustment of the

actuator load is abandonned in favour of a binary mode of operation, using only a 0N or 3200N load

at any given time, with the sole aim of avoiding excitation of resonant frequencies.

The binary actuation method not only provides a simplified implementation, but also provides a

simplified method of planning. Instead of determining the full response surface across the load-

frequency plane, it is instead possible to perform two tests, one at each load, and simply choose

the load which provides the lowest response for each drive frequency. Essentially, wherever the two

response curves cross, the actuation should change.

The stepped sine excitation is supplied via the shaker, adapting the timed system used for the stepped

load control in figure 7.35 to the purpose. Ignoring the regions of high modal density and restricting

the demonstration to the 40Hz to 80Hz range, the sinusoid is stepped in intervals of 0.5Hz holding for

10 seconds at each frequency. This is performed for the two static loading cases, sequentially, and the

results are plotted in figure 7.38. These results are the RMS averaged response, with averages taken

over 5s and overlapping by 2.5s. The actuation change points are chosen as indicated in the figure,

intended to optimise the response of the horizontal DOF measurements.
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(b) Vertical plane

Figure 7.39: RMS response measurements for the binary actuation study on the space frame. Results
with the adaptive control enabled are compared to the passive responses, measured at the centre of
the outboard cubic diagonal member, perpendicular to the beam in the horizontal and vertical planes.

7.8.2 Testing and Results

For the new tests, the accelerometer used for the frequency estimation is moved away from the shaker

attachment to see how well the technique functions with remote acceleration data. It is relocated to

node 9, in the x-direction. The frequency estimation also uses a larger sample period of 1024 samples

to improve the frequency resolution. All of the data from the experiments is saved on this occasion

to facilitate a more detailed post analysis.

The stepped sinusoidal test is repeated with the automated actuation enabled, and the results are

seen in figure 7.39. These are an improvement over the individual results at either 0 N or 3200 N in

the horizontal direction. The passive cases have maximum response amplitudes of 2.503 × 10−5ms−2

and 2.001 × 10−5ms−2 over the frequency range, whereas the automated system limits the maximum

amplitude to 1.342 × 10−5ms−2, with the peaks also spanning a reduced bandwidth. A poor choice

of actuation change points is responsible for the less impressive results in the vertical direction.

In a second test, further gains are made by retesting the passive cases and making a slight adjustment

to the lookup table, as seen in figure 7.40. The final test produces the results in figure 7.41, with a

horizontal peak magnitude of only 1.543 × 10−5ms−2: a 47% reduction in the peak response. The

benefits are emphasized in the linear response plots of figure 7.42.

Despite the success of the latest demonstration, it does not exploit the full potential offered by the

technique. In particular, the peak at roughly 52.5 Hz should have been avoidable. Part of the problem

is once again a poor choice of actuation change points, but analysis of the saved data reveals some of

the responsibility to lie with the frequency estimation.
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(b) Vertical plane

Figure 7.40: Passive RMS response measurements for the second binary actuation study on the space
frame. Vertical lines indicate the chosen actuation points.
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Figure 7.41: RMS response measurements for the second binary actuation study on the space frame.
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Figure 7.42: RMS response measurements for the second binary actuation study on the space frame.
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7.9 Frequency Estimation Discussion

The frequency estimation method may now be analysed in further detail. The output of the estimation

algorithm throughout the final test is shown in figure 7.43. As previously, the errors in the estimated

frequencies are categorised as either inaccurate or misidentified. The inaccurate estimates are close to

the actual excitation frequencies, whereas the misidentified frequencies skip between vastly different

values. The misidentified frequencies are now seen to be composed entirely of harmonics of the

excitation frequency or 0 Hz. In contrast to the conclusions drawn previously these errors do not

seem to be responsible for any fluctuation in the load demand, seen in figure 7.44. This is largely due

to the fact that the harmonics and the 0 Hz band lie outside the range of the lookup table for this

example. Instead, the fluctuations that are seen in the load demand occur close to 200 s and 600 s

on the graph. These correspond with regions of inaccurate frequency estimation in figure 7.43, where

the estimate meanders close to the excitation frequency without identifying it precisely.

An analysis of the spectral breakdown over the course of the test provides further insight. This

analysis is performed after the test is completed, using saved accelerometer response time histories.

Unfortunately, file size restrictions on the data aquisition software led to a reduced sample frequency

of 100 Hz in the saved data. As a result, the spectral response chart exhibits aliasing in the frequency

range of interest and requires careful interpretation. This chart is seen in figure 7.45. The dominant

excitation frequency is clearly seen dropping in 0.5 Hz intervals from 80 Hz to 40 Hz. The aliasing

is manifested as a reflection about the Nyquist frequency of 50Hz so there is an equivalent peak seen

rising from 20 Hz to 60 Hz. It should be noted that the full sampling frequency of 500Hz used in

the real-time estimation algorithm does not suffer from this artefact. Also present in the figure is a

weak harmonic peak; this is confusing because of the aliased reflections but it can be seen in the top

right corner dropping at twice the rate of the base frequency to a final value of 80Hz, with equivalent

reflections throughout the plot. The harmonic generally has a much lower magnitude than the true

excitation frequency. The regions where the load demand fluctuates are now seen to correspond with

near-resonant conditions, where the full frequency spectrum sees an increased response, manifested as

light bands on the spectral chart. Perversely, these regions are exactly those which depend the most

on the accuracy of the estimates to avoid exciting the resonances. It is this behaviour which is seen

at 550 s, leading to the poor performace observed previously at 52.5 Hz.

Several possibilities present themselves for improving on the estimation algorithm. Firstly, a knowledge

of the expected range of drive frequencies can narrow down the scope for error. Limiting the range

in this example to 40-80 Hz would not only eliminate the possibility of the frequency being estimated

near 0 Hz, but would also rule out the harmonic. This limiting could be performed by applying a

band-pass filter prior to the spectral estimation, or more simply by passing only the appropriate data

range to the peak-picking routine.

Sporadic fluctuations in the frequency estimation could be tackled by applying a low-pass filter to

the output of the frequency estimation routine, or the load demand input. These two options would
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Figure 7.43: The drive frequency estimation as recorded throughout the final test of the space frame.
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Figure 7.44: The load demand throughout the final test.

Figure 7.45: The spectral response of the space frame throughout the final test. Light regions represent
high response and dark regions low response. Inadequate sampling frequency in the saved data is
responsible for the aliasing in this plot.
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achieve more or less the same objective, reducing the potentially detrimental tendency of the algorithm

to skip between actuation loads. Provided the frequency was identified correctly for the majority of

the sampling intervals then the desired outcome would be achieved.

A related development would be concerned with minimising actuation changes, and thus minimising

power consumption. Here the paradigm would be to replace the lookup table with a decision-making

algorithm. By storing the frequency response surface for the full load range the algorithm could

perform an online cost function minimisation, taking into account both the estimated response im-

provement and the required actuation energy to decide on the appropriate actuation demand.

The most problematic behaviour observed in the tests was the appearance of small inaccuracies re-

sulting from the peak-picking method at resonance. The identification difficulties are thought to be

due to non-linearities in the model, creating spurious peaks in the vicinity of the excitation frequency.

A better estimate of the driving frequency may be found using curve fitting methods. These could

be applied to a frequency spectrum from a single accelerometer as above, or further benefit could be

gained by employing measurements from a selection of locations; these would compensate for “dead

spots” in any one response spectrum.

Finally, in conjuction with any of the above methods, the drive frequency estimation may be improved

by employing a Kalman filter [271, 272]. To be of significant benefit the filter would need to be embued

with some understanding of the nature of the variations in the excitation conditions, but in its simplest

form this could be comprised of a simple stochastic description of the rate of change of the excitation

frequency. Perhaps a better application of the Kalman filter would be in updating the reference

response curves used to decide on the optimum actuation load. This approach would allow the system

to account for long term structural variability without operator intervention.

7.10 Conclusions

An automated response suppression system has been successfully implemented, demonstrating the

reduction of the response of the test structure to narrow-band excitation across a range of frequencies.

The improved response is achieved without the use of damping or active control, but using an adaptive

technique which requires less power than equivalent active solutions.

The main shortcomings of the scheme are due to the frequency estimation algorithm. Suggestions to

improve on this aspect of the system have been made, focusing on band-pass filtering, curve fitting and

Kalman filtering. A further weakness in the proposed controller is its reliance on a priori measurements

of the response curves. Again it has been suggested that a Kalman filter could be employed to permit

online updating of the assumed response profile.

An advantage of using stress stiffening to implement the adaptive scheme is its potential for propa-

gating stiffness changes far from the actuation point. Even then, however, the loads are unlikely to
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propagate in significant proportions around an entire structure. Answering this doubt, a follow-up

study has demonstrated the reduction of vibrations at locations outside of the actuator load path.

While these experiments have focused on compensating for changeable drive frequencies, the technique

is equally applicable to case of variable operating conditions. For example, the response of a helicopter

tail boom could be manipulated to compensate for changes in the transverse tail rotor loads.
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Chapter 8

Lynx Tail Boom Study

8.1 Introduction

In the preceding chapter a clear demonstration of adaptive response tuning has been given, demon-

strating the potential of automated internal load adjustment for response suppression. Implementation

details for the technique are case specific and for each new structure a thorough analysis must be per-

formed to determine firstly the suitability of the method to the problem in hand, and secondly the

approach that must be taken. In this chapter, some analytical tools are developed to address these

tasks and a finite element analysis (FEA) of a Lynx tail boom is undertaken. Two methods are inves-

tigated: the first consists of manipulating the natural frequencies of the structure as before, while a

second approach employs the actuation apparatus as a tuned vibration absorber (TVA). The original

intention was to apply the results of the numerical analysis to an experimental demonstration but

unfortunately the airframe was unavailable for testing at the time of writing.

8.2 Actuator Placement

When deciding on an appropriate actuator placement the first question that must be answered is,

“which mode(s) do you want to control?”. The task faced is then that of determining which members

must be tensioned in order to influence those modes, and which actuator placement will produce such

tensioning. Where several modes should be controlled independently it may prove advantageous to

distribute several actuators around the structure.

A set of tools are proposed here for this analysis. The choice of actuator placements in a complex

structure is vast, so the first step is to narrow down the possibilities. An algorithm is developed below

to aid in this endeavour; the end product is a diagram of the structure indicating the extent to which

a given mode will be influenced by unit stress stiffening in each of the members. This information

facilitates an informed choice of actuator placements which may then be evaluated in detail. The
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detailed evaluation utilises modal FEA sensitivity analyses, performed with respect to loading at each

location in turn, giving a clear indication of the extent to which each mode may be controlled by an

actuator at that location. Once suitable actuation points are chosen, an inverse method produces a

simple control law for placing the poles as desired.

8.2.1 Stress Stiffening Influence Diagram

The first tool offered here provides a means of visualising the sensitivity of each mode to stress

stiffening in the component members. It is implemented in an ANSYS macro, following the methods

presented below.

The sensitivity of a mode to structural loading is dependent upon the coincidence of axial or in-plane

static loading with transverse or out-of-plane dynamic bending. The tools developed below use this

premise to illustrate the sensitivity of each mode to the presence of stress stiffening in the individual

elements.

As a note of caution for anyone hoping to apply these methods, be aware that the ANSYS terminology

differs from that used in this thesis: in ANSYS, the tangent stiffness is considered to be the nominal

stiffness adjusted to compensate for deflections. That is, it takes into account the structural reconfig-

uration occuring in nonlinear geometric problems but not the stress stiffening effect. The consistent

stiffness is the ANSYS term for what is referred to here as the tangent stiffness. For the sake of

consistency, the following text will continue with the nomenclature used throughout the rest of the

thesis.

The sensitivity of an eigenvalue is given by Fox and Kapoor [206] as

dλ

dp
= φT

(

dKT

dp
− λ

dM

dp

)

φ. (8.1)

From eqn. (2.153),

KT = KE + pKG (8.2)

where KT is the tangent stiffness matrix, KE is the nominal stiffness matrix and KG is the unit stress

stiffness matrix, or the stress stiffness matrix differentiated with respect to the load. The nominal

stiffness is constant by definition and KG is assumed constant within the linear loading regime so

dKT

dp
= KG. (8.3)

For the case of stress stiffnening,
dM

dp
= 0 (8.4)

so the eigenvalue sensitivity becomes
dλ

dp
= φT

(

KG

)

φ. (8.5)
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The sensitivity can be expressed as a sum of elemental contributions such that

dλ

dp
=
∑

n

φT
(

KG

∣

∣

(G)

n

)

φ (8.6)

where KG

∣

∣

(G)

n
is the full global stiffness matrix contribution of the nth element. Including only the

elemental DOFs in each term produces

dλ

dp
=
∑

n

φT
∣

∣

(g)

n

(

KG

∣

∣

(g)

n

)

φ|(g)n (8.7)

where φ|(g)n and KG

∣

∣

(g)

n
are the reduced-DOF-set elemental displacement vector and elemental stiff-

ness matrix contribution of the nth element, but still in the global coordinate system. A rotational

transform Tn is defined for each element, relating the elemental coordinate system to the global

coordinate system such that

φ|(e)n = Tn φ|gn (8.8)

and

KG

∣

∣

(g)

n
= TT

n KG

∣

∣

(e)

n
Tn (8.9)

where φ|en and KG

∣

∣

(e)

n
are the elemental displacement vector and stress stiffness matrix respectively,

both in the elemental coordinate system. Combining eqns. (8.8) and (8.9) it can be shown that

φT
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∣

(g)

n

(

KG
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)

φ|(g)n = φT
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(
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)

φ|(e)n (8.10)

and the eigenvalue sensitivity can thus be expressed in terms of the elemental eigenvector components

and stress stiffness matrices:

dλ

dp
=
∑

n

dλ

dp
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n

=
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n

φT
∣
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(

KG
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(e)

n

)

φ|(e)n . (8.11)

Elemental stress stiffening matrices can not be extracted directly from ANSYS so they must be

computed for these purposes. The stress stiffening matrix given for a 2D beam in the ANSYS Theory

Guide [152] is the same as that given by Przemieniecki [164] and derived in section 2.4.2. Differentiating

with respect to load gives
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Extrapolating to the 3D beam,
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Putting this into eqn. 8.11 gives

dλ

dp

∣

∣

∣

∣

n

=
6

5L
[∆u2

y + ∆u2
z] +

1

5
[Σθz∆uy + Σθy∆uz]

+
L

15
[θ2y1 + θ2y2 + θ2z1 + θ2z2 +

1

2
θy1θy2 +

1

2
θz1θz2] (8.14)

where

∆uy = uy1 − uy2 ∆uz = uz1 − uz2 (8.15)

Σθy = θy1 + θy2 Σθz = θz1 + θz2 (8.16)

and

φT
∣

∣

(e)

n
= { ux1 uy1 uz1 θx1 θy1 θz1 ux2 uy2 uz2 θx2 θy2 θz2 }T . (8.17)

In order to use eqn. (8.14) to compute the sensitivity of a given mode to each of the beam elements,

the components of φT
∣

∣

(e)

n
in eqn. (8.17) must be known, as well as the element length L. The useful

information which may be extracted from the ANSYS database consists of the cartesian node locations

for each element, the element rotation α about the elemental x-axis, and the 12 nodal displacements

in the global coordinate system. The displacements correspond to the mass-normalised eigenvector

DOFs (where care must be taken to stipulate the mass-normalisation prior to solution by setting the

relevant ANSYS flag).

The element length is calculated from the node coordinates:

L =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. (8.18)

The elemental displacements must be computed from the global DOF displacements of the eigenvector
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using eqn. (8.8). The ANSYS Theory Reference [152] describes how to compute the transform Tn as

follows:

Tn =

















T 0 0 0

0 T 0 0

0 0 T 0

0 0 0 T

















(8.19)

where

T =











C1C2 S1C2 S2

(−C1S2S3 − S1C3) (−S1S2S3 + C1C3) S3C2

(−C1S2C3 − S1S3) (−S1S2C3 + C1S3) C3C2











(8.20)

and

S1 =







y2−y1
Lxy

if Lxy > 0.0001L

0 if Lxy < 0.0001L
(8.21)

S2 =
z2 − z1
L

(8.22)

S3 = sin(α) (8.23)

C1 =







x2−x1

Lxy
if Lxy > 0.0001L

1 if Lxy < 0.0001L
(8.24)

C2 =
Lxy
L

(8.25)

C3 = cos(α) (8.26)

Lxy =
√

(x2 − x1)2 + (y2 − y1)2. (8.27)

Using this procedure, each beam’s potential for affecting the eigenvalue is determined, and subse-

quently placed in an ANSYS element table allowing it to be displayed pictorially through the ANSYS

postprocessor.

Figure 8.1 shows the results of the macro for the first nine modes of the space frame used in chapter 7.

As expected, the frequencies of modes 7 and 8 show a strong dependency on the axial loads carried in

the cubic diagonal member. Other modes, notably 5 and 9, are most sensitive to loads in the actuated

member but the scale on the plots reveals that they are affected to a lesser extent than modes 7 and

8. The other modes show a more even distribution of dependency throughout the structure.

Stress stiffening for shells and solid elements is calculated in ANSYS using numerical integration over

the element area or volume. While it is possible to perform this integration in an ANSYS macro, the

coding task is prohibitive and for reasons that will be seen in section 8.4 it is not necessary for the

task in hand.
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Figure 8.1: Influence of stress stiffening in each of the beam elements on the eigenvalue of each mode.
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Figure 8.2: Actuator locations in the spaceframe for the sensitivity studies. (A) is the location used
for previous studies, (B) is the cubic diagonal member and (C) is the horizontal member at the front
centre of the structure.

8.2.2 Modal Sensitivity Analysis

The stress stiffening influence diagram does not directly lead to the identification of an appropriate

actuator location; rather, it provides an indication of which members should be subjected to axial

or in-plane loading. Equipped with this knowledge, sensible loading points may be selected and

evaluated. Provided there is no interaction between modes (low modal coupling and high frequency

separations) then the eigenvalues will exhibit approximately linear variation within the linear loading

regime and the behaviour is fully described by the eigenvalue sensitivities for the zero load case. Using

the ANSYS Gradient method in the Design Optimisation library the sensitivities to loading at each

actuation point may be determined with a single run.

As an example, the sensitivities calculated by ANSYS for the space frame of chapter 7 are shown

in table 8.1, corresponding to the actuator locations shown in figure 8.2. The values for location

A, as used in the previous studies, are seen to match the gradients of the lines in figure 7.29. The

sensitivities for other locations about the central cube are seen to be roughly linear permutations of

the first load case, on account of the single degree of redundancy.

Mode Frequency sensitivity to unit load (HzN−1)
Config A Config B Config C

1 3.77×10−4 -1.55×10−4 2.58×10−4

2 3.93×10−4 -1.63×10−4 2.74×10−4

3 -1.42×10−5 -3.04×10−6 1.23×10−5

4 6.64×10−4 -2.81×10−4 4.68×10−4

5 2.09×10−3 -8.55×10−4 1.42×10−3

6 1.57×10−4 -6.09×10−5 9.73×10−5

7 -8.09×10−3 3.71×10−3 -6.26×10−3

8 -8.35×10−3 3.83×10−3 -6.46×10−3

9 1.70×10−3 -6.84×10−4 1.13×10−3

Table 8.1: The first nine frequency sensitivities for the actuator configurations shown in figure 8.2
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The significance of the degree of redundancy was touched upon on in chapter 7, and the values

presented here support the notion that the internal load distribution in the redundant cube is roughly

the same regardless which member contains the actuator. Bahra and Greening [266] describe how

rank deficiency of the equilibrium matrix leads to fewer linearly independent load distributions than

members in a frame. The consequence of this observation is that any achievable load distribution

may be induced using appropriately placed actuators, their number being equal to the rank of the

equilibrium matrix.

8.2.3 Inverse Control Law

Depending on circumstances it may be desirable to control several modes independently. This could

be useful, for example, in the configuration seen in section 7.8, where three modes with non-negligible

modal overlap are seen to vary such that their separation remains roughly constant. In this case it is

difficult to find a load configuration using a single actuator that will avoid exciting any of the three

modes within that frequency band.

Because of the linear behaviour of the eigenvalues within the linear loading regime, it is possible to

develop a simple control algorithm for this purpose. The ability to control modes independently is

dependent upon a set of actuator placements which produce linearly independent eigenvalue sensi-

tivities. The number of actuators that can be usefully employed will be determined by the rank of

the sensitivity matrix, which will not exceed that of the equilibrium matrix discussed above, and will

correspond to the number of linearly independent columns in the sensitivity matrix

S =

















∂λ1

∂p1
∂λ1

∂p2
· · · ∂λ1

∂pn

∂λ2

∂p1
∂λ2

∂p2
· · · ∂λ2

∂pn

...
...

. . .
...

∂λm

∂p1
∂λm

∂p2
· · · ∂λm

∂pn

















(8.28)

wherem is the number of eigenvalues to be controlled and n is the number of actuators. The eigenvalue

perturbations from their nominal values are given by

∆Λ = S∆p (8.29)

where ∆p is the vector of parameter perturbations, in this case the actuator loads. To determine the

necessary load inputs for a given set of eigenvalue perturbations, the inverse problem must be solved:

∆p = S+∆Λ (8.30)

where

S+ = (STS)−1ST (8.31)

is the pseudo-inverse. If m = n, an exact solution exists. Where m > n, and there are more modes to
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be controlled than actuators to control them with, the solution provided is the least squares solution.

If some modes are more critical than others then a weighting matrix can be used as in the updating

schemes of section 2.7 such that

W∆Λ = WS∆p (8.32)

and

∆p = (STWS)−1STW∆Λ (8.33)

where W is a diagonal matrix of weighting factors.

If m < n, and there are fewer modes to be controlled than actuators to control them with, a unique

solution does not exist and another method must be used. By minimsing the actuator perturbations

the least squares solution becomes

∆p = ST (STS)−1∆Λ (8.34)

and once more a weighting matrix may be used, this time influencing distribution of the actuator load

changes:

∆p = W−1ST (STW−1S)−1∆Λ. (8.35)

Although admitting exact solutions, this technique does not take into account the permissible load

ranges of each of the actuators. As a result, the loading parameters may be unrealistic: they may

stray into nonlinear regions, outside the actuator capabilities, or even beyond the structural failure

loads. Solutions to this problem could be to limit the eigenvalue perturbations to sensible values, or

to incorporate the load boundaries into the penalty function for the control system.

8.3 Tail Boom Model

The Lynx Mk. 7 is pictured in figure 8.3(a). Prior to the commencement of this study an extensive

modal testing programme had been performed on the tail boom, identifying frequencies, damping and

mode shapes for the first 18 modes. It is pictured in figure 8.3(b) mounted on a reaction wall for the

modal tests. While the Lynx itself was not available for new tests, the availability of test data for

model validation led to the decision to use an FE model of the tail boom as a test case to explore the

potential for response control in a real aerospace structure.

Furthermore, a detailed FE model of the structure was also available. This model had been created

for Nastran, but in order to directly apply the tools and techniques developed here an ANSYS model

was needed. Several options for converting the model were considered but after some investigation,

the most reliable method of those available was deemed to be the creation of a custom script. The

script was created in MATLAB.

The first step in the conversion is a parsing routine to interpret the data in the Nastran bulk data

file (BDF). This is relatively straightforward as the file format is well defined in the Nastran docu-
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(a) Lynx helicopter. (b) Tail boom mounted on reaction wall.

Figure 8.3: Photographs of the Lynx Mk 7 used in preliminary experimental tests.

mentation [273]. Once the command entries have been stored in MATLAB arrays, the next step is

to read the model data. The Lynx model was found to contain entries corresponding to coordinate

systems, materials, nodes, beam elements, triangular and quadrilateral shell elements, point masses,

DOF couplings, constraint equations, and boundary conditions, in addition to the real constants as-

sociated with each element type. The final step in the conversion process is to write an ANSYS input

file (.lgw extension) containing the commands to recreate the model.

To produce a valid ANSYS model, an additional element processing stage was needed before the final

ANSYS input file creation. This was necessary because the element shape restrictions in Nastran

were found to be more relaxed than those in ANSYS; some of the highly warped quadrilateral shell

elements needed to be substituted with two triangular shells and some of the heavily tapered beams

adjusted appropriately. The code was carefully written to produce warnings for any model features

which were not reproduced exactly, as well as for unsupported model features in the Nastran BDF

file, so that differences in the results could be attributed to the model discrepancies.

The full helicopter model imported to ANSYS is pictured in figure 8.4. The tailboom section is shown

in figure 8.5. The tailboom model consists of 2185 nodes, 3519 elements and 13 coupling/constraint

equations. Trials with ANSYS showed that the constraint equations led to problems with insufficient

memory. This problem seems unusual but after extensive investigation the allocated memory was

deemed sufficient, and the constraint equations were seen to be applied correctly, yet the errors were

still produced. For want of a better solution the constraint equations were replaced with light, rigid

beam elements. For coupled nodes this does not have a significant effect on the solution, but com-

plicated constraint equations such as those used in Nastran’s RBE3 elements can not be reproduced

accurately in this way. RBE3 elements were used in the Nastran model to attach the tail plane and

the point mass representing the tail rotor hub to the fin, as seen in figure 8.6. The effect of the

RBE3 constraint equations is to distribute loading realistically between several nodes but without

constraining the displacement of the nodes relative to one another. By substituting the RBE3 ele-

ments with nearly-rigid beams an artificial rigidity is introduced between the attachment nodes. This

transcription inaccuracy was necessarily accepted.
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Figure 8.4: Full model of the lynx helicopter airframe, as imported into ANSYS.

Figure 8.5: The FE model of the Lynx tail boom imported into ANSYS.
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Figure 8.6: Enlarged view of the RBE3 elements connecting the tailplane and the tail rotor hub
(modelled as a point mass) to the fin.

The model is constrained at the tail root, mimicking the early experiments on the reaction wall. Using

this configuration the modal results from the ANSYS and Nastran models are compared in figure 8.7.

The two result sets are by no means identical but the low order modes show consistency up past the

rotor excitation frequency of 22Hz. The ANSYS model produces higher frequencies than the Nastran

model, possibly due to the increased stiffness at the tailplane and tail rotor hub attachment points.

Comparing the two models to the experimental results in figure 8.8, the ANSYS model is in fact seen

to give a better mode shape correlation than that of the Nastran model while the frequency correlation

for the low order modes is worse. Once again, the high order modes are seen to exhibit a relatively

poor correlation. For these reasons the analysis that follows will be confined to the low order modes,

focusing on those close to the rotor frequency. The first 9 modes from the ANSYS model are shown

in figure 8.9.
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Figure 8.7: Comparison of the modal results from the ANSYS and Nastran FE models of the Lynx
tail boom.
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Figure 8.8: Comparison of the experimental modal results for the Lynx tail boom with the ANSYS
and Nastran FE models.
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Figure 8.9: Modal results from the ANSYS FE model of the Lynx tail boom.

202



CHAPTER 8. LYNX TAIL BOOM STUDY

8.4 Tail Boom Eigenfrequency Control

Examining the mode shapes in figure 8.9 it is clear that the low order modes are the principal bending

modes of the tail boom. Consequently, the most effective form of stress stiffening will be that which

applies axial loading to the boom, thus reducing the transverse stiffness of these modes as for a simple

beam. For these fundamental modes the scheme derived in section 8.2.1 offers little further insight; as

all of the elements exhibit transverse motion with respect to the boom axis it would simply confirm

that for maximum effect an axial load should be distributed throughout the boom. In contrast, local

stresses would serve to soften small sections of the boom but within a safe loading regime this would

not have a great effect on the overall stiffness, and thus the effect on the eigenfrequencies would also

be small.

In the model the axial loading is established through the attachment of a tensioning wire, or cable,

running the length of the tail boom. One end of the wire is attached at the centre of the tail root,

with the other attached to a bulkhead toward the aft of the tailboom. The bulkhead has a hole in

the centre so to facilitate the wire attachment in the centre a rigid plate is simulated using stiff, light

elements spanning the hole. The arrangement is seen in figure 8.10. The tensioning wire is modelled

using 10 steel beam elements with a cross sectional area of 0.001m2 and symmetrical moments of

inertia of 10−9m4; the intention being to simulate a sturdy wire with low bending stiffness. The ends

of the wire are pinned at the attachment points.

The first buckling mode is illustrated in figure 8.11. Although hard to discern in the figure, it is

found that the failure point is the bulkhead itself, which is not designed to carry loading in this

direction. The failure is manifested in the diagram as a deflection in one of the panels connected

to the bulkhead. Accordingly, the whole bulkhead is reinforced in the model, transferring the load

directly to the cylindrical frame of the boom. The new buckling mode is shown in figure 8.12, where

the boom is seen to buckle along its length as expected.

With this configuration, a sensitivity analysis is carried out using the Gradient method of the Design

Optimisation tool, discussed in section 2.7.3. The tensioning wire is uncoupled at the root for the static

analysis then reattached for the dynamic analysis and two iterations of this procedure are performed

for the sensitivity analysis. The results are shown in table 8.2. Examining the mode shapes, it is

found that many of the modes are simply localised bending modes for the tensioning wire. Perhaps

unsurprisingly, these modes show the greatest sensitivities with respect to the loading.

The ANSYS script was adapted to record iterative modal solutions over successive load steps. Fig-

ure 8.13 shows the first 38 frequency loci over a range of loading up to the first buckling load, where

the tensioning wire modes are seen to rise steeply while the tail boom modes fall almost imperceptibly.

In attempting to separate the two sets of modes, it is found that some modes become coupled where

the frequencies are close, such that the sensitivities change rapidly as seen in chapter 4. In such

cases the zero-load sensitivities are not representative of the macroscopic behaviour of the tail boom
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Figure 8.10: Wireframe view of the tail boom model, showing enlargements of the tensioning wire
attachment points, at the root centre and reinforced aft bulkhead.

Mode Freq.(Hz) Freq. sens.(HzN−1) Mode Freq.(Hz) Freq. sens.(HzN−1)

1 0.71 1.95×10−05 11 17.68 1.78×10−05

2 0.71 1.95×10−05 12 17.74 1.95×10−05

3 2.83 1.95×10−05 13 18.25 1.66×10−06

4 2.83 1.96×10−05 14 25.52 1.62×10−05

5 6.35 1.91×10−05 15 25.66 1.94×10−05

6 7.13 1.93×10−05 16 26.35 3.17×10−06

7 7.13 4.03×10−07 17 33.48 1.09×10−06

8 7.98 4.82×10−07 18 35.03 1.76×10−05

9 11.32 1.95×10−05 19 35.32 1.84×10−05

10 11.33 1.95×10−05 20 37.79 1.87×10−06

Table 8.2: The first twenty frequency sensitivities for the Lynx tail boom with axial tensioning wire.

204



CHAPTER 8. LYNX TAIL BOOM STUDY

Figure 8.11: First buckling mode of the initial tensioning wire configuration.

Figure 8.12: First buckling mode of the tail boom with the bulkhead reinforced for the tensioning
wire attachment.

205



8.4. TAIL BOOM EIGENFREQUENCY CONTROL

0 0.5 1 1.5 2

x 10
5

0

20

40

60

80

100

120

140

160

180

load (N)

fr
eq

ue
nc

y 
(H

z)

Lynx Mk7, JdB config 651

Figure 8.13: The first 38 frequency loci of the tail boom with the axial tensioning wire, loaded up to
the first buckling load. Mode tracing has not been employed in the production of this plot.

modes. To quantify the variation of the tail boom modes more reliably, a second sensitivity study

is conducted but with the tensioning wire removed from the model and the loads applied directly to

the wire attachment points. While the local behaviour at modal intersections can not be modelled

this way, the global trends are properly represented. The resulting tail boom frequency sensitivities

are shown in table 8.3, along side the loads required to produce 1% and 2% shifts in each frequency

(remembering that the eigenvalue perturbations show approximately linear response to the loading).

It is noted that in all of the examples considered, the load required to produce a 1% change in the

frequencies is greater than the principal buckling load of 247kN. Examining figure 8.12, the failure

mode is seen to be in localised panel buckling. That is, the overall stiffness of the tail boom does not

approach zero but instead the stiffness of local sections goes to zero. This is apparent at the right

hand side of figure 8.13 where a single frequency locus, representing a localised mode in the buckling

region, is seen to drop sharply past the principal bending frequencies of the stucture. Note that mode

tracing has not been employed in the production of this figure so the falling mode appears as a series

of perturbations to the modes it crosses; whether or not these modes veer is not a question that is

addressed here.

The localised failure can be seen as a “weak link” in the buckling behaviour. Unfortunately it im-

poses severe practical restrictions on the method being implemented here. Several solutions present
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Mode Freq.(Hz) Freq. sens.(HzN−1) 1% shift load (N) 2% shift load (N)

1 7.12 -1.16×10−7 -6.19×105 -1.24×106

2 7.98 8.67×10−8 9.25×105 1.86×106

3 18.22 -5.17×10−8 -3.54×106 -7.12×106

4 26.26 -7.53×10−8 -3.51×106 -7.05×106

5 33.47 3.33×10−9 1.01×108 2.03×108

6 37.80 -2.51×10−7 -1.51×106 -3.04×106

7 56.68 -1.46×10−8 -3.92×107 -7.87×107

8 81.37 -2.30×10−8 -3.56×107 -7.16×107

9 85.40 -1.42×10−9 -6.04×108 -1.21×109

Table 8.3: The frequency sensitivities for the first nine tail boom modes, along with the corresponding
loads required to produce 1% and 2% changes in each of the frequencies.

themselves to this problem: firstly, the weak sections could be reinforced. This would likely involve

an extensive redesign of the tail, to meet the axial loading requirements of the tensioning scheme.

The second solution is to perform a more detailed buckling analysis of each section of the tail and

distribute appropriately scaled loading to each section. This could be accomplished with individual

actuators or with a mechanical or pneumatic distribution system. The complexity of such a system

is, however, beyond the scope of this chapter.

Two further configurations are investigated here: the first is a wire similar to that used previously, but

this time applying a compressive axial force to the fin, and the second utilises the existing 8C strut as

a tensioning member. The 8C strut is seen in figures 8.14 and 8.15, and was originally introduced to

change the torsional stiffness of the tail; thus it was thought that this stiffness may also be sensitive

to changes in the tension carried by the strut.

Figure 8.14: The 8c struts connecting the fin to the main tail boom in the FE model.
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Figure 8.15: Photograph of the 8c struts spanning the corner between the fin and tailboom.

Mode Freq.(Hz) Frequency sensitivity to unit load (HzN−1)
main boom fin 8c strut

1 7.05 -1.16×10−7 1.31×10−7 -6.24×10−9

2 7.95 8.67×10−8 -9.42×10−7 -4.77×10−6

3 18.13 -5.17×10−8 -1.20×10−8 -5.61×10−7

4 26.15 -7.53×10−8 -1.43×10−8 -2.59×10−6

5 32.99 3.33×10−9 -5.04×10−8 -3.29×10−6

6 37.51 -2.51×10−7 -8.15×10−8 -5.82×10−6

7 56.49 -1.46×10−8 -1.67×10−8 3.57×10−7

8 81.16 -2.30×10−8 -4.27×10−8 -1.66×10−6

9 85.38 -1.42×10−9 -5.89×10−9 -2.66×10−8

buckling load (N) 246839 117655 7977

Table 8.4: The buckling loads and frequency sensitivities for the first nine tail boom modes, with
three different loading configurations. The nominal frequencies listed are those for the baseline tail
boom configuration, before adaptation for the attachment of tensioning wires.

The attachment of the wire for the fin loading is shown in figure 8.16. The same approach is taken as

before and the same properties used for the wire. As with the first configuration, the buckling mode

is seen in figure 8.17 to be comprised of local panel buckling.

For the 8C strut tensioning, the existing member in the FE model is simply uncoupled at one end,

the loading applied, and the nodes recoupled for the dynamic analysis. In this case the buckling mode

in figure 8.18 is a failure of the 8c strut attachment lug. This occurs at a much lower load than that

encountered in the primary load-bearing structures of the fin and main boom.

The buckling loads and sensitivities for all of the schemes in this section are amalgamated in table 8.4.

The most effective scheme of those considered is the first, with a tensioning wire running the length of

the tail. Using this arrangement, the biggest change in frequency seen before the first buckling load

is reached is 0.17% in mode 6.
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Figure 8.16: Attachment points for the tensioning wire in the fin.

209



8.4. TAIL BOOM EIGENFREQUENCY CONTROL

Figure 8.17: First buckling mode for the fin under compression.

Figure 8.18: First buckling mode with the 8c strut under tension.
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Figure 8.19: Detailed region of the frequency loci for the main tail boom tensioning wire arrangement,
with refined load steps.

8.5 Adaptive Tuned Vibration Absorber

Referring once more to figure 8.13, it is noted that the frequency loci intersect in many places. Up until

now no efforts have been made to distinguish between veerings and crossings. Focusing on smaller load

and frequency ranges, and with greater refinement, figure 8.19 reveals that some of the intersections

undoubtedly exhibit veering. It is now clear how the tensioning wire modes interact with the main tail

boom modes, altering their sensitivities as noted in the previous section. Following the investigations

of chapter 4, it is not uncommon to find antiresonances sandwiched between two resonant eigenvalue

curves as they veer, and this section details how this can be exploited for vibration suppression. The

technique is effectively that which is applied in tuned vibration absorbers (TVAs), so the section will

begin by revisiting this topic.

8.5.1 Tuned Vibration Absorbers: Principles of Operation

Sun et al. [274] offer a survey of TVAs, covering passive, active and adaptive systems. In their simplest

form, TVAs consist of a supplementary spring mass system attached at a point. The textbook example

is that of a single DOF system subject to periodic forcing as shown in figure 8.20. The FRF for the
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(a) One DOF. (b) TVA added.

Figure 8.20: Textbook tuned vibra-

tion absorber example.

primary system is seen in figure 8.21, with and without the TVA

attached. The mass and stiffness are described by M = K = 1

so that without the TVA there is a single resonant peak at

1/2π Hz. When the spring-mass system of the TVA is tuned

such that its own natural freqency matches that of the primary

system, the resultant FRF exhibits an antiresonance at that

frequency, with two resonant peaks either side. In this example

the absorber is described by m = k = 0.1.

The effect of tuning the TVA stiffness is illustrated in fig-

ure 8.22(a), where the response of the primary system is seen to

vary. As the absorber stiffness is increased the antiresonance is

clearly seen rising from 0 Hz to replace the single resonance at 1/2π Hz. The response of the absorber

itself is shown in figure 8.22(b), where there is no antiresonance. Thus, when tuned, the absorber

vibrates in place of the primary system. This is not a resonant response, however, and is thus less

severe than the vibration it seeks to suppress.

Viewing the 3D FRFs from above while preserving the colour gradient to denote amplitude, the

variation of the natural frequencies and antiresonances with the TVA stiffness is easy to distinguish

in figures 8.23. From these graphs it is clear that the two frequency curves are veering with respect

to one another. Reducing m from 0.1 to 0.01 produces an even clearer demonstration of veering in

figure 8.24.

Extrapolating from this system, it is apparent that wherever an antiresonance exists bewteen two

modes, if they can be made to veer then the antiresonance will pass between them, thus forming an

effective tuned mass damper. This result was highlighted in chapter 4 where figures 3.30(d) and 3.30(e)

exhibit instances of the effect. The addition of a dedicated absorber mass to the system is not necessary

in this case; one part of the system acts as the absorber, eliminating the vibrations in another. The

“sacrificial” part of the structure is not jeopardised because the vibrations are not resonant. It

simply constrains the inevitable vibrations to an acceptable locality. This idea is not new: Feng

and Mita [275] describe a technique referred to as Mega Substructure Configuration where instead of
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Figure 8.21: FRFs for the primary system.

supplementing a building with a spring-mass-damper

system, the stiffness and damping properties of an

existing substructure are tuned to provide the same

effect. The tools of chapters 4 to 6 may offer new

approaches to the problem.

One of the difficulties with pure undamped vibration

absorbers (as opposed to tuned mass dampers, which

explicitly include a damping element) is that the de-

vice must be tuned accurately to produce optimal re-

sults. If the tuning is slightly misaligned, the antires-
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(a) Primary system. (b) TVA response.

Figure 8.22: FRFs for varying TVA stiffness values.

(a) Primary system. (b) TVA response.

Figure 8.23: FRFs for varying TVA stiffness values. TVA mass is 0.1.

(a) Primary system. (b) TVA response.

Figure 8.24: FRFs for varying TVA stiffness values. TVA mass is 0.01.
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(a) Circular cable.
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(b) Eccentric cable.

Figure 8.25: Example of three veering frequency loci, using two different tensioning cable profiles.

onance will not coincide with the excitation frequency. Similarly, if the excitation frequency wanders

from the tuned frequency, the response will be adversely affected. In extreme cases the forcing could

excite one of the resonances either side of the antiresonance. Recent developments, cited in chapter 1,

have explored the concept of adaptive TVAs. Such a device can, in theory, adjust its tuning on line,

thus maintaining an optimal response. In figure 8.23(a) the antiresonance is seen to sweep a wide

frequency band as the TVA stiffness is adjusted, permitting effective vibration cancellation over a

range of excitation conditions.

8.5.2 Adaptive Load Tuning

As loading is applied to the tail boom, it exhibits many veering modes. In contrast to the frames

tested in earlier chapters, and the Mega Substructure Configuration method mentioned above, the

example considered here does involve a dedicated absorber mass. In this case it is not a discrete mass

but a distributed mass in the form of the tensioning cable. As with a standard TVA, one of the veering

modes is dominated by motion of the absorber mass over the majority of the parameter spectrum

(in this case the load range). Thus it is expected that the cable will be capable of functioning as an

adaptive TVA, with the axial tension serving to tune the stiffness. The feasibility of this proposition

is investigated below.

For the method to be successful it is necessary that an antiresonance runs between two veering modes.

Most of the instances of modal interaction observed here are complicated, consisting of at least two

concurrent veerings. The resultant effect is one or more loci appearing to “cut across” between two

veering loci. An example is framed in figure 8.25(a), showing the veering of the 18 Hz boom mode.

The TVAs efforts are hampered by these “double veerings”, which place a resonance instead of the

desired antiresonance directly between two veering modes. The double veerings occur because the

axisymmetric wire has two almost coincident frequencies for each of the principal bending modes.

Where these cross another mode, they both veer simultaneously with the third mode and with each

other.
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Figure 8.26: Frequency loci of the tail boom with the eccentric tensioning wire.

Figure 8.27: The excitation point for the response plots on the lynx tail boom.
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To mitigate this behaviour, the symmetry of the wire in the model is broken by quintupling the moment

of inertia in the vertical plane and dividing the inertia in the horizontal plane by five. As hoped, there

is less interference between the veering modes with each of the wire modes clearly distinguishable in

figure 8.26. The 18 Hz example is now seen to produce pure two-mode veering in figure 8.25(b).

Using the asymmetric wire configuration, FRF plots are computed in ANSYS for 100 load steps in

the range 0N to 75kN, representing 30% of the buckling load. Point FRFs will inevitably produce

antiresonances between all the modes, but the current demonstration is intended to show that the

whole tail boom’s motion may be repressed. Accordingly, separate response and excitation points

are chosen. The excitation is applied at a reinforced section mid-way down the tail, indicated in

figure 8.27. The response is measured at the wire attachment point in the aft bulkhead, as described

before in figure 8.10.

FRF waterfall plots are seen in figure 8.28 for horizontal and vertical excitation and response mea-

surements. Clearly the interaction of the modes interrupts the resonant ridges. The behaviour of

the natural frequencies and antiresonances is better illustrated in the contour plots of figure 8.29.

Promisingly, many antiresonances are seen passing between the veering modes. Focusing again on

the 18 Hz example, the FRFs can be seen clearly in figures 8.30 and 8.31. Evidently the response

can be dramatically reduced by tuning the cable tension, and figure 8.32, shows how the behaviour

mimics that of a traditional TVA. Figure 8.33 highlights instances of the effect which could be used

to address each of the 6 modes below 50 Hz, all requiring less than 15% of the first axial buckling load

of the tail boom. It was hoped that all the modes could be tackled using even lower loading levels,

as there are modal intersections at much lower forces, but figure 8.34 shows that the interactions

between cable modes and tail boom modes are weaker at lower loads. This is something that could be

addressed by increasing the coupling; if the stress stiffening matrices from the FE model are available

then the methods of chapter 6 can be used to evaluate changes to the cross section, tapering, and

end contstraints of the wire, as well as additional mass or stiffness elements. Unfortunately the stress

stiffening matrices are not readily available from ANSYS (hence their re-evaluation for beam elements

in the macro described in section 8.2.1). The computation of these matrices and the evaluation of the

modal coupling sensitivities would be the starting point for future studies along these lines. As well

as reducing the actuation loads required to produce TVA behaviour, another objective could be to

reduce the wire mass from the 7.85 kg/m used here.

The system proposed above has an obvious advantage over passive TVAs: the adaptive stiffness pro-

vided by the load modulation can maintain optimum tuning in the presence of changeable system

configurations, mechanical wear, or variable operating conditions. It also has an apparently unique

advantage over other adaptive TVAs on account of the distributed mass and stiffness arrangement.

This configuration leads to a theoretically infinite number of absorber modes, each at a different

frequency, and each of which can be tuned using the same axial load parameter. As such, the ar-

rangement caters ideally for systems where a selection of modes may be problematic dependent on

operating conditions. Using a single system it is possible to address the suppression of any mode in
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the primary structure by selecting a nearby absorber load. The use of only one device for this purpose

reduces the complexity and weight compared with the combination of adaptive-passive devices that

would usually be required to address such a situation.

8.6 Conclusions

This chapter has focused on the application of stress stiffening to response suppression in practical

structures. Tools have been developed to determine optimum actuator placements for achieving spe-

cific control requirements, and strategies have been proposed for the independent deterministic control

of multiple modes.

An FEM analysis of the Lynx tail boom was undertaken with the objective of identifying a means of

suppressing response levels for the low frequency modes, close to the rotor frequency of 22 Hz. These

were found to be low order bending modes of the tail, making the most effective loading configuration

an axial compression of the whole tail boom. The analyses show that significant alterations to the

natural frequencies can not be achieved without inducing local panel buckling: a compressive load of

3.5×106 N produces a 1% change in the 3th and 4th modes, nominally at 18Hz and 26Hz, but local

panel buckling first occurs at 2.5×105 N.

An alternative strategy is proposed, employing a tesioning cable running the length of the tail boom

as a tuned vibration absorber. The absorber can be adaptively tuned by modulating the tension. A

novel aspect of this configuration is that the distributed mass in the cable produces multiple absorber

modes, allowing the absorber to be tuned to a selection of tail boom modes using only a narrow force

band. The FE model has successfully demonstrated the application of these concepts to suppress the

first 6 vibration modes, covering the 0–50 Hz range.
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Figure 8.28: Waterfall plots showing the variation of the FRFs with load, up to 30% of the first buckling load. Captions indicate excitation-response.
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Figure 8.29: Response contours for the tail boom for loads spanning 30% of the first buckling load. Light regions denote high response. Captions indicate
excitation-response.
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(a) horiz-horiz (b) horiz-vert

(c) vert-horiz (d) vert-vert

Figure 8.30: Waterfall plots for the 18 Hz mode. Captions indicate excitation-response.

(a) horiz-horiz (b) horiz-vert

(c) vert-horiz (d) vert-vert

Figure 8.31: Response contours for the 18 Hz mode. Light regions denote high response. Captions
indicate excitation-response.
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Figure 8.32: Illustration of the 18 Hz modal interactions mimicking a traditional TVA. Captions
indicate excitation-response points.

Figure 8.33: Examples of suitable response regions for TVA implementation. Antiresonances bisect
the natural frequencies in the highlighted regions.
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Figure 8.34: Response contours for the 0–5 kN range.
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Chapter 9

Conclusions and Future Work

In chapter 1 the goals of this thesis were set out. The objective was to investigate the possibilities of

using structural loading to beneficially manipulate dynamic response. The desired outcome was the

proposal of methods that could be employed in an adaptive control scheme to reduce vibration levels

in rotorcraft.

Existing work in vibration control has focused on three principal methodologies: passive, active and

adaptive techniques. The former are the longest standing and designs have evolved close to the

performance limitations of the technology. The benefits offered by active methods are already being

exploited in today’s rotorcraft and much work in the field has been, and continues to be, focused in

this area. In comparison, adaptive methods offer the advantages of lower power requirements and

greater stablity; as such they have been the subject of recent research in many engineering sectors,

but have yet to find favour in aerospace applications. Amongst the myriad adaptive methodologies

being investigated, the idea of using internal loading to this end has been largely overlooked. The

mechanisms by which loading affects dynamic response are well understood, but the system-wide

implications are again something that has received only limited attention.

The approach taken here was to first perform a full investigation of the influence of loading on dynamic

response. The preliminary examinations of the behaviour in chapter 3 verify the theoretical models,

explore the applicability of several simplifying assumptions, uncover some unforeseen effects and iden-

tify charcteristics of the behaviour which may be exploited in novel response control techniques.

In the early studies, modal interactions are identified as an important feature of the response variation,

and chapters 4–6 present extensive investigations into the phenomenon of eigenvalue curve veering

and the related eigenvector transformations. Experimental and numerical studies are described in

chapter 4, which goes on to derive tools for the identification and quantification of the behaviour.

Chapter 5 considers the physical manifestations of curve veering, and compares the indices developed

in the foregoing work to contemporary metrics. The veering studies are concluded in chapter 6 with

a practical exposition of the concepts, applied to the solution of an otherwise onerous class of finite

element model updating problems.
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9.1. STRESS STIFFENING INVESTIGATIONS

Building on the theoretical basis of the early chapters, a proof-of-concept demonstration of an adaptive

response suppression system is developed in chapter 7. The analytical and experimental investigations

then culminate in the evaluation of adaptive response suppression methodologies for rotorcraft de-

ployment in chapter 8. The finite element studies from the Lynx helicopter tail boom show promising

results for an adaptive tuned vibration absorber concept employing a stress-stiffened cable.

A detailed synopsis of the significant findings is given below. The contributions made to the field

are grouped under the four main topics of the research: general stress stiffening, eigenvalue curve

veering, adaptive response tuning, and rotorcraft-specific implementations. The final section explores

directions for future work arising from the thesis.

9.1 Stress Stiffening Investigations

Using simple structures to eliminate sources of uncertainty, a range of numerical methods have been

tested. Where mildly nonlinear regions are encountered, the most computationally efficient scheme was

found to consist of large load steps and Newton-Raphson iterations. For linear static loading regimes,

however, the powerful simplification offered by the assumption of a linear variation in the geometric

stiffness has been found to be justifiable. This is important in the application of the analytical tools

and control schemes developed in this thesis.

An already well-established concept within structural dynamics is that of uncertainty in the modelling

of joints. The studies here have not only highlighted the relevance of these concerns in even the

simplest of assemblies, but have undertaken inquiries into a seldom documented fork of this body of

research. The investigations relate to the effects of loading on joint parameterisation. It is common

practice to represent complex joint interfaces with a reduced set of parameters, and much attention

has been devoted to the accurate characterisation of their behaviour in this manner, yet none of the

literature sets forth a standard approach for modelling the variation of joint parameters with load.

The studies of section 3.3 demonstrate that loading has an important and systematic effect on the

joint parameters. The influence of these variations is of comparable significance to stress stiffening

in beams, plates and shells, and as such it makes a critical contribution to any dynamic model of a

loaded structure. Although not the first of its kind, the work conducted here presents one of few joint

loading models in the literature: in this case that of a stressed pin joint. The demonstration invites

the development of further joint loading models to form part of a standard approach, complementing

the established geometric nonlinear methods.

The most pertinent results from the stress stiffening studies, with respect to the objectives of the thesis,

are presented in section 3.4. They establish the viability of manipulating both the resonances and

the antiresonances of a structure through internal loading, and highlight some special cases involving

curve veering that are exploited in later chapters.

224



CHAPTER 9. CONCLUSIONS AND FUTURE WORK

9.2 Eigenvalue Curve Veering

Despite historical doubts over its existence and more recent allusions to its irrelevance, eigenvalue

curve veering has found application in niche fields and is beginning to show universal application with

the increasing trend towards parametric analyses. Much of the difficulty in understanding its impor-

tance is associated with the difficulty in its detection in experimental data. Abrupt instances of the

behaviour are easily overlooked or discounted as erroneous, while more gradual instances may appear

unremarkable. In contrast, however, its presence has been shown to have a marked effect on system

response under certain configurations. In section 4.3, explicit experimental evidence demonstrating

its manifestation has been presented for the first time.

Some efforts have been made in the literature to develop methods for the identification of veering,

but with no rigorous definition of veering available these methods are ambiguous at best, and often

misleading. Section 4.4 considers the factors that contribute to the behaviour, and derives physically

meaningful properties to quantify it. Three normalised criteria presented: the modal dependence

factors (MDFs) quantify the confinement of a mode to the veering subspace, and thus measure the

extent to which two modes can veer. The cross-sensitivity quotient (CSQ) compares the eigenvector

alignment with the veering datum vectors to give a measure of the instantaneous intensity of veering.

Combining the two MDFs and the CSQ produces a veering index, which is the first and only indicator

available for definitive identification and quantification of veering.

In chapter 5, the ideas behind the veering index are used to create a set of tools for determining the

modal properties at the veering datum. The datum properties can be computed from the results of a

single eigensolution, which does not itself need to be computed at the veering datum, and properties

such as the datum eigenvalue separation can be used to provide a dimensionalised measure of the

modal coupling. Instead of describing the local coupling for an arbitrary parameter configuration, the

datum properties give a more meaningful, holistic description of the degree of modal interaction. The

chapter finishes with an evaluation of the new veering index and the datum property computations,

and compares them to other contemporary metrics. The comparison highlights the clear advantages

of the new methods.

One application of these holistic coupling descriptions is in finite element model updating. In particu-

lar, the eigenvector rotation rate achieves a maximum at the veering datum and this datum value has

been shown to to offer the most complete measure of the modal coupling. The vector rotations, and

hence veering, have not only a magnitude but also a sign with respect to a set of reference vectors,

and this feature allows the property to differentiate between equivalent parameter perturbations in

symmetric systems. Chapter 6 describes a novel updating procedure based on the vector rotation

rates. Importantly, the methods use quantitative information only from the eigenvalues, which can be

determined with relative certainty, and augment this with qualitative information from the eigenvec-

tors. The scheme demonstrates robust differentiation between symmetric parameters, and arrives at

a unique solution to an otherwise ambiguous updating problem.
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9.3 Adaptive Response Tuning

An adaptive response suppression strategy is presented in chapter 7, using an embedded actuator

to effect stress stiffening. The reduction in response is achieved by manipulation of the natural

frequencies and antiresonances, whose positions are stipulated based on estimates of the narrowband

excitation frequency. The required actuation for a given excitation is determined from FRFs obtained

in pre-operational tests, and the system is fully automated with the excitation as the only external

input. The adaptive system operates at a lower bandwidth than fully active implementations, giving

it advantages in terms of reduced power requirements and inherent dynamic stability.

The primary objective of the deployment was resonance avoidance; this target was met in both the

preliminary test results of section 7.6 and the final tests in section 7.8. A secondary objective was

to position antiresonances to produce further benefits at key locations. This task was found to be

difficult to implement in the preliminary tests, due in part to the accuracy of the measurements, and

also to the variability in the structural response characteristics over the course of the tests.

The compromises made to the primary objective in trying to meet the secondary objective were not

justified by the performance gains, so the final tests were instead focused solely on resonance avoidance.

Generalising on the scope of the earlier tests, the results in section 7.8 show that an active element is

capable of influencing the response of a structure at locations that are both distant from the actuator

and outside the load path of the actuator. The successful proof-of-concept experiments are thought

to be the first demonstration of stress stiffening effects applied to the adaptive control of vibration.

9.4 Rotorcraft Implementation

The final chapter of work in this thesis applies all the tools and methods developed in the foregoing

studies to the problem of rotorcraft dynamics. The analyses are conducted using an FE model of a

Lynx Mk 7 helicopter as a test case.

Before embarking on the helicopter studies, section 8.2 sets out a general methodology for the design

of stress-stiffening based adaptive vibration control systems. An important development to come out

of the discussions is the stress stiffening influence diagram. Section 8.2.1 outlines the method for

producing the diagram, which gives a visual representation of the influence of stress stiffening in each

of the structural elements on the variation of each of the natural frequencies. The resulting diagram

is shown to contribute valuable information to preliminary assessments of actuator placements.

The Lynx studies are confined to the tail boom, in order that existing experimental data from the

boom can be used to validate the model. In section 8.3 the low order modes are seen to be well

correlated. Three configurations are tested for the load-based response tuning demonstration. Two of

these arrangements employ supplementary tensioning wires to apply global compressive forces to large
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sections of the tail: firstly to the main boom and secondly to the tail fin. The third arrangement takes

advantage of the existing 8C struts between the fin and boom to apply loading. All three methods

produce changes in the dynamic response, with the main boom wire effecting the greatest change per

unit load. A significant obstacle in the application of this technique, however, is the manifestation

of local panel buckling modes. In section 8.4 it is found that the loads required to produce a 1%

change in the natural frequencies were generally an order of magnitude higher than these buckling

loads. This observation effectively precludes the implementation of the technique, unless a distributed

loading system is introduced along with the associated weight penalty.

Instead of pursuing the direct manipulation of the natural frequencies, section 8.5 reports a different

approach. A useful discovery emerging from the preceding studies is that the vibration modes of the

tensioning wires interact with those of the tail boom itself to produce veering eigenvalue curves at the

intersections. These interactions can mimick the effects of a tuned vibration absorber (TVA), with

the advantage of being continuously tunable through adaptive tensioning of the cable. Furthermore,

and in contrast to traditional TVA configurations, the cable has a distributed mass which results in

multiple absorber modes. It was demonstrated that over a load range of less than 15% of the buckling

load, all of the modes under 50 Hz can be cancelled by adaptively tuning the nearest cable mode to

each natural frequency. Thus the adaptive TVA can ensure a minimal response for any excitation

frequency in this band.

9.5 Future Work

The work described in this thesis has opened many lines of inquiry, and finite time constraints have

necessarily curtailed the investigations. A selection of the most fruitful prospects for continued devel-

opment have been identified, and these are outlined in turn below.

9.5.1 Stressed Joint Models

The early studies on stress stiffening in chapter 3 demonstrated a need for sensible loaded joint models.

While stress stiffening in beams, plates and shells is well understood, the effects of loading on joints is

generally neglected in nonlinear solutions. The new work has shown that the influence of joint loading

effects on the dynamic response is important, and the ability to model the dynamics of stressed

structures will be contingent on accurate load-sensitive joint modelling. It is suggested that future

investigations are focused on creating a standard approach to modelling stress-induced stiffening in

joints, such that the effects may be conveniently included in geometric nonlinear solution methods.
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9.5.2 Veering Index

The veering index and related criteria developed in chapter 4 have been shown to provide valuable

descriptions of the interactions between modes. The current derivation is limited in scope, however,

and to provide a universal tool the analysis should be extended to non-self-adjoint eigenproblems,

and those involving damping. These generalised methods will need to embrace a new set of modal

interactions, including mode coalescence, and modes that veer with each other instead of away from

one another.

9.5.3 Modal Coupling in Model Updating

The model updating scheme demonstrated in chapter 6 was a success, but there remains work to be

done to rigorously prove its advantages over traditional methods. Firstly, where possible, a direct

comparison of results from the new scheme should be made with results from methods involving

the eigenvectors and antiresonances. This set of tests will require a purpose-built rig where the

“unknown” parameters can be pre-determined prior to the model updating trials. Secondly, the new

techniques purport to offer advantages in both the quality and quantity of the measurements required

to ascertain the same results as the traditional techniques. Using a purpose-built rig once more, it

would be instructive to determine how many sensors are required to produce the same quality of

parameter estimates as with the eigenvector-based methods, and how much measurement noise is

needed to corrupt the estimates for each case.

9.5.4 Model Updating for Multiply Symmetric Structures

Continuing with the model updating, it has been shown in chapter 6 that the behaviour at an inter-

section of a symmetric and an antisymmetric mode can be used to identify a single set of symmetric

parameters. What remains to be demonstrated is how this feature can be extended to determine

multiple symmetries, for example those of a bladed disk assembly. Preliminary examinations have

revealed that the interactions from a similar symmetric-antisymmetric mode pair do not contribute

any new information, so the choice of modal interactions is important. A structured approach to such

problems needs to be formulated for future studies.

9.5.5 Adaptive Response Tuning: Frequency Estimation

The adaptive response tuning demonstration in chapter 7 produced a reduced response but this reduc-

tion could have been further improved by overcoming shortcomings in the drive frequency estimation.

The peak-picking method used for the studies here was seen to produce poor results on occasion, par-

ticularly where the excitation was near resonance. Suggestions for improving the frequency estimates

involve curve fitting the measured data, incorporating measurement data from multiple locations,
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and filtering the estimate with band-pass and Kalman filters. A comparative investigation of these

different techniques is proposed as the next step in the development of this system.

9.5.6 Adaptive Response Tuning: Response Profile

Another concern regarding the adaptive system in chapter 7 is its reliance on measured response

profiles, which will produce poor results in the presence of structural variability. An improvement

on the performance could be obtained once more with a Kalman filter. Using a Kalman filter, the

reference response curves for the controller can be continuously updated to match the measured

response throughout the operation of the system. Further experiments are needed to evaluate this

configuration.

9.5.7 Stress Stiffening Influence Diagram

In section 8.2.1, a methodology was set forth for producing stress stiffening influence diagrams, to

assist with preliminary actuator placement studies. This tool was implemented for beam elements in

an ANSYS macro, and shown to be a useful visual aid. The task that remains is to implement the

same functionality for plate and shell elements, so that it is available for a wide range of studies.

9.5.8 Distributed Loading for Natural Frequency Manipulation

The Lynx tail boom studies of chapter 8 showed discouraging results with regard to direct manipulation

of the natural frequencies, due to the early onset of local panel buckling. If this method is to be

successful it will rely on the application of distributed loading. It is suggested that the implementation

of such a scheme is investigated to determine the viability of the approach.

9.5.9 Adaptive Tuned Vibration Absorber

The most promising results to emerge from the Lynx studies in chapter 8 are those of the adaptive

tuned vibration absorber. The finite element studies indicate that a cable running the length of the

tail can function effectively as a tuned vibration absorber, and that the tension of the cable can be used

as an adaptive tuning parameter. It is suggested that experimental demonstrations are undertaken to

validate these results. The next step would then be to apply the tools of chapters 4–5 to the design

of the cable and attachments, to maximise the coupling between the cable and tail boom modes, and

to reduce the loading required to achieve response cancellation at all the natural frequencies.
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Appendix A

Continuous Analytical Beam Model

The analysis that follows is based upon derivations which can be found in many texts. For example,

Euler buckling loads and static stability are discussed by Morley [276] and White et al. [277], and the

dynamics of loaded and unloaded beams are explored by Warburton [278].

Consider the beam shown in figure A.1(a). It is constrained at either end by pin joints and subject to

a compressive axial load, P . The displacement along its length is represented by the function v(x, t).

The free body diagram for a small section of the beam, length δx, can be seen in figure A.1(b). The

inertial force term is included as ρAδx∂
2v
∂t2 , where ρ is the material density, A the beam cross-sectional

area, and t is time. Resolving moments about the centre of the section gives

S +
1

2

∂S

∂x
δx =

∂M

∂x
+ P

∂v

∂x

where S and M are the internal shear force and moment, respectively. In the limit, as δx → 0, this

becomes

S =
∂M

∂x
+ P

∂v

∂x
(A.1)

Next, resolving vertically produces
∂S

∂x
+ ρA

∂2v

∂t2
= 0 (A.2)

Combining eqns. (A.1) and (A.2) gives

∂2M

∂x2
+ P

∂2v

∂x2
+ ρA

∂2v

∂t2
= 0

and from Euler-Bernoulli beam bending theory, the moment is defined in terms of the Young’s mod-

ulus, E, the second moment of area, I, and the curvature by

M = EI
∂2v

∂x2

so

EI
∂4v

∂x4
+ P

∂2v

∂x2
+ ρA

∂2v

∂t2
= 0 (A.3)
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A.1. EULER BUCKLING

This is the general equilibrium equation for a Euler-Bernoulli beam. Note that at this stage the end

constraints have not been considered so eqn. (A.3) is valid for any boundary conditions.

PP
x

y

v(x, t)

L

(a) Pinned beam configuration.

P

P

v

v + ∂v
∂x

δx

S

S + ∂S
∂x

δx

M

M + ∂M
∂x

δx

δx

ρAδx ∂2v
∂t2

(b) Free body diagram, including inertial force.

Figure A.1: Slender beam with pin jointed end constraints, subject to an axial compressive load

A.1 Euler Buckling

Straightforward derivations for the Euler buckling loads of beams with various end constraints are

provided by White[277]. The approach taken here is slightly more involved but provides a general

solution for any boundary conditions. It also demonstrates more clearly the relationship between the

Euler buckling load and the dynamic behaviour of a beam under axial compression.

To obtain the Euler buckling load, the static stability of the beam is considered. There exists a

critical axial load Pcrit for which the beam, when displaced, will not move. At a lesser load the

material stiffness will overcome the load and return the beam to its straight, undeformed state. At a

greater load the stiffness will be insufficient to support the beam and it will buckle. Pcrit is therefore

a neutral stability point for the structure. It represents the point at which the stiffness of the beam

is effectively zero.

The system being considered is time-invariant so all time derivatives are zero. Eqn. (A.3) then becomes

EI
∂4v

∂x4
+ P

∂2v

∂x2
= 0

Integrating twice with respect to x yields

EI
∂2v

∂x2
+ Pv = Cx+D (A.4)

where C and D are constants determined by the boundary conditions. Considering the homogeneous

form,

EI
∂2v

∂x2
+ Pv = 0

the complementary function, vcf , is found by substituting v = Berx + (Berx)∗ (where B ∈ C) to
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produce the auxiliary equation

EIr2 + P = 0

The roots of this equation are

r = ±
√

− P

EI

so that

vcf = Beiλx +B∗e−iλx (A.5)

= B1sin(λx) +B2cos(λx) (A.6)

where

λ =

√

P

EI

A particular integral is assumed,

vp = B3x+B4

making the general solution to eqn. (A.4)

v = B1sin(λx) +B2cos(λx) +B3x+B4 (A.7)

Eqn. (A.7) remains valid for any end constraints. Now using pinned boundary conditions of v =

d2v/dx2 = 0 at x = 0 and x = L it is found that B2 = B3 = B4 = 0 and

B1sin(λL) = 0

This condition has two solutions: The trivial solution is B1 = 0 where there is no deflection. The

second solution is

λL =

√

P

EI
L = nπ , n = 1, 2, 3, ...

Rearranged, this is seen to be the familiar Euler Buckling result for a pinned beam:

P =
n2π2EI

L2
, n = 1, 2, 3, ... (A.8)

Eqn. (A.8) describes all the possible loads for neutral stability of the beam, each with a corresponding

mode shape. The critical buckling load, Pcrit, is given by the lowest of these loads, where n = 1.

A.2 Natural Frequencies of an Unloaded Beam

Consider once again the pin-jointed beam shown in figure A.1, this time without the load P but

undergoing small unforced lateral oscillations (in the y-direction). If P = 0 then the second term of
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eqn. (A.3) is omitted, giving

EI
d4v

dx4
+ ρA

d2v

dt2
= 0

From here the derivation follows the same method used in above, similar to that used by Warburton[278].

The displacement v(x, t) is split into two components, the mode shape V (x) and a time-dependent

oscillation, to give v = V sin(ωt + α). As before, a mode shape of V = Berx + B∗er
∗x is assumed.

This produces the auxiliary equation

EIr4 − ρAω2 = 0

with roots

r = ±

√

±ω
[

ρA

EI

]
1
2

The generalised mode shape of the beam for any end conditions is therefore described by

v = Bae
iλx +B∗

ae
−iλx +Bbe

λx +Bce
−λx

= B1sin(λx) +B2cos(λx) +B3sinh(λx) +B4cosh(λx) (A.9)

where

Ba ∈ C

Bb, Bc ∈ R

λ =

[

ρAω2

EI

]
1
4

(A.10)

Again using pinned boundary conditions of v = d2v/dx2 = 0 at x = 0 and x = L, it is found that

B2 = B4 = 0 so

B1sin(λL) +B3sinh(λL) = 0

and

−k2B1sin(λL) + k2B3sinh(λL) = 0

The only nontrivial solution is if B3=0 and

λL =

[

ρAω2

EI

]
1
4

L = nπ , n = 1, 2, 3, ...

This can be arranged to give the nth natural frequency,

ωn =
(nπ

L

)2

√

EI

ρA
, n = 1, 2, 3, ... (A.11)

A.3 Natural Frequencies of a Beam Under Axial Loading

The beam from figure A.1 is examined once more, this time under axial load and undergoing small

unforced lateral oscillations. For this system, all the terms of eqn. (A.3) are included. As before,
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V = Berx +B∗er
∗x is used with v = V sin(ωt+ α) in eqn. (A.3) to produce the auxilliary equation

EIr4 + Pr2 − ρAω2 = 0

Solving, the roots are given by

r = ±



− P

2EI
±

√

(

P

2EI

)2

+
ρAω2

EI





1
2

so

V = B1sin(λ1x) +B2cos(λ1x) +B3sinh(λ2x) +B4cosh(λ2x) (A.12)

where

λ1 =





√

(

P

2EI

)2

+
ρAω2

EI
+

P

2EI





1
2

(A.13)

and

λ2 =





√

(

P

2EI

)2

+
ρAω2

EI
− P

2EI





1
2

(A.14)

This is the most general result for a beam with any end conditions. If no axial force is present, P = 0

and λ1 = λ2 = λ, making eqns. (A.12–A.14) the same as eqns. (A.9–A.10).

Continuing with eqn. (A.12), applying pinned end constraints v = d2v/dx2 = 0 at x = 0 and x = L

yields B2 = B3 = 0,

B1sin(λ1L) +B3sinh(λ2L) = 0

and

−λ2
1B1sin(λ1L) + λ2

2B3sinh(λ2L) = 0

The only nontrivial solution is B3 = 0 and

λ1L =





√

(

P

2EI

)2

+
ρAω2

EI
+

P

2EI





1
2

L = nπ , n = 1, 2, 3, ...

Rearranged, this produces the same result as Warburton[278] for the nth natural frequency of a pinned

beam:

ωn =
(nπ

L

)2

√

EI

ρA

(

1 − PL2

n2π2EI

)

, n = 1, 2, 3, ... (A.15)

Substituting in Pcrit from eqn. (A.8) for the first mode,

ω2
1 =

EI

ρA

(π

L

)4
(

1 − P

Pcrit

)

(A.16)

It is seen that, for the pinned-pinned case, the square of the natural frequency has a linear relationship

with the ratio P
Pcrit

. Using an analogy with the one degree of freedom system in figure 2.1 with natural
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frequency given by ω0 =
√

k
m , the effective mass of the beam is given by m = ρAL and the effective

stiffness is then

k =
π4EI

L3

(

1 − P

Pcrit

)

As P approaches Pcrit, the effective stiffness of the beam drops to zero, and so does the natural

frequency.

A.4 End Constraints

It has been shown how the buckling load of a beam is derived from the same equations as the

natural frequency and how, for a pinned beam, the two properties are related. The pinned-pinned

end conditions form a special case, where the mode shape for both static and dynamic deflections

is an identical sine function. For different end conditions, the solutions are not so simple and the

static mode shape differs from the dynamic mode shape. For these conditions, the convenient linear

relationship in eqn. (A.16) does not apply.

Roark[279] warns that even slight changes in end constraints have a marked effect on the critical

buckling loads and, by implication, on the magnitude of the stress stiffening effect. It is noted that

this is less important in the case of columns and beams than in the case of thin plates but, despite this,

the estimation of constraints remains a significant parameter for theoretical analysis. Blevins [280]

offers a thorough treatment of the dynamic solutions for a range of end constraints.
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The Wheatstone Bridge

Strain gauges respond to extension with a change in electrical resistance. The changes in resistance

are small so appropriate conditioning equipment must be used; the usual choice is a Wheatstone

Bridge [281] (which should perhaps be attributed instead to Christie [282]). The bridge is illustrated

in figure B.1(a). It consists of four resistors, one of which is the strain gauge. The others are called

dummy resistors. Together these form a balance such that the voltage measured is zero when all

resistances are equal.

Variations in the gauge resistance cause small deviations from zero which can be measured accurately

with a sensitive voltmeter. If all the resistors have equal nominal values and the change in gauge

resistance is assumed to be negligible compared to the total resistance, the strain is ascertained using

the equation

ǫ =
2Vm
GVs

(B.1)

where Vm is the measured bridge voltage, Vs is the supply voltage and G is the gauge factor which

relates the resistance changes to strain.

Because the measurements are sensitive to small changes in resistance, the temperature of the gauges

and connecting wires can affect the accuracy of the readings. In particular, long wires connecting

the gauge to the bridge should be avoided. Where this is not possible, an alternative arrangement

is to connect two wires to one end of the gauge, one of which connects to the voltmeter and the

other connects to the dummy resistor as in figure B.1(b). The resistance of the long wire going to the

voltmeter is inconsequential as there is negligible current flowing, while equal changes to the resistance

of the remaining two wires will now compensate for one another, lying as they do either side of the

balance.

A further precaution often employed is to introduce a dummy strain gauge in place of a dummy

resistor as seen in figure B.1(c). This is mounted on an unstressed surface of the same material as

that of the active gauge, such that both gauges experience similar temperatures. In this manner, most

of the inaccuracies introduced by temperature changes are eliminated. If the gauges are intended to
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(a) standard quarter-bridge (b) 3 wire quarter-bridge arrangement

(c) half-bridge with dummy gauge (d) full-bridge average strain arrangement

Figure B.1: Wheatstone Bridge configurations. In all cases the bottom right resistor is an an active
strain gauge, while the plain boxes represent ordinary dummy resistors.

measure bending, then it is common practice to use the same configuration as figure B.1(c), but now

with the two gauges mounted either side of a beam or plate.

One final configuration deserves mention: in the configurations described so far, only one side of the

bridge has been used; these are referred to as half-bridge configurations. It is sometimes desirable to

use a full-bridge configuration, one such example being in the measurement of average axial strain. The

setup pictured in figure B.1(d) will allow the measurement of the average strain, while compensating

for any bending which might distort the reading from a single gauge.
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Appendix C

Experimental Mass Property Determination

The mass and inertia properties of a linear ball screw actuator are required for its inclusion in an

FE model. The actuator is assumed to be rigid in comparison to the rest of the structure, so that it

may be represented in terms of the mass, mass moments of inertia, and the location of the centre of

mass (CoM). The mass is measured with a set of weighing scales and the location of the CoM is then

determined using moments of inertia. The setup is seen in figure C.1 and the location of the CoM

between the two supports is given by the weight distribution:

dA
dA + dB

=
RB

RA +RB
, (C.1)

where the symbols are defined in figure C.2. To pinpoint the CoM this procedure is repeated for three

orientations of the actuator.

The mass moments of inertia are determined using a trifilar pendulum arrangement as shown in

figure C.3. The theory behind the method is described by du Bois et al. [154]. The pendulum is

displaced and released to perform free rotational oscillations about its vertical axis, and the period of

oscillation is used to compute the moment of inertia of the actuator. This method is convenient for

the calculation of Iyy and Izz, as labeled in figure C.4, but not for measurement of the inertia about

the actuation axis Ixx as it poses difficulties in balancing the actuator on the trifilar plate. The third

moment of inertia is instead determined using a compound pendulum method with the actuation arm

resting on bearings and the actuator oscillating under gravity.
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(a) (b)

Figure C.1: Two of the configurations used for determining the location of the centre of mass for the
actuator.

Figure C.2: Illustration of the quantities used
in the centre of mass calculation for the actu-
ator. Figure C.3: The actuator sitting on the trifilar

plate in the arrangement used for determining
the mass moment of inertia.

Figure C.4: The coordinate system used for the actuator when defining the inertial properties.
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