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On the Quantification of
Eigenvalue Curve Veering:
A Veering Index
Eigenvalue curve veering is a phenomenon that has found relevance and application in a
variety of structural dynamic problems ranging from localization and stability studies to
material property determination. Contemporary metrics for quantifying veering can be
ambiguous and difficult to interpret. This manuscript derives three normalized indices in
an effort to reconcile the deficit; two of these quantify the physical conditions which
produce the behavior while the third provides a definitive measure of the overall intensity
of the effect. Numerical examples are provided to illustrate the application of the meth-
ods, which are expected to form a basis for the development of advanced analytical
tools. �DOI: 10.1115/1.4003189�
Introduction
The phenomenon of curve veering in eigenvalue loci has been

bserved in structural dynamics since detailed parametric studies
egan appearing in the 1960s, for example, Refs. �1,2�. With the
dvent of modern computational power, examples of the behavior
ow frequently appear in the literature. The first explicit experi-
ental demonstration was given in Refs. �3,4�, which also offer

ome historical background on the subject.
Principally, the description is applied to systems where two

igenvalue loci approach each other closely and suddenly veer
way again, each one taking on the trajectory of the other. All of
he properties of the two modes are swapped, including damping
atios, sensitivities, and eigenvectors �or eigenfunctions�. The
ransition is always smooth, albeit abrupt, and will be shown to be
n extreme manifestation of normal parametric variation. The ef-
ect is exploited by techniques for establishing the Poisson’s ratio
f orthotropic plates �5�, plays a role in localization �6–9�, and can
e used in flutter prediction �10�. Its use has been advocated for
nalytical model updating �11� and damage detection �12�, and its
resence can have a strong influence on dynamic response in sys-
ems with sensitive configurations �13�; in uncertain systems, it
as been observed that the marginal �14� as well as the joint
robability density functions �15� of the eigenvalues can change
ignificantly near the veering range.

Eigenvalue veering is a subset of a larger group of effects
aused by modal interactions, also encompassing frequency coa-
escence and mode shape localization. Perkins and Mote �16� dis-
ussed the different behaviors of converging eigenvalue loci,
hich may veer away, veer with one another, attract one another
efore coalescing, or simply cross one another following locally
ndependent trajectories. Triantafyllou and Triantafyllou �17� used
omplex analysis to present an alternative perspective on a range
f modal interactions. Afolabi �18� applied catastrophe theory to
inear vibrations to describe the nature of these behaviors. He also
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distinguished between the resulting geometric and elastic insta-
bilities, where the former is associated with curve veering and
results in localization, and the latter is associated with coalescence
and results in flutter instability. Seyranian and Mailybaev �19�
used perturbation theory to explore modal interactions, focusing
primarily on the so-called elastic stability conditions in the pres-
ence of eigenvalue coalescence. They went on to develop a com-
prehensive theory of eigenvalue interaction and the reader is re-
ferred to recent papers in collaboration with Kirillov in Refs.
�20,21�. In the field of structural optimization, the occurrence of
eigenvalue coalescence can be problematic and Seyranian et al.
�22� provided numerous references to studies in this area.

This paper limits its scope to conservative self-adjoint systems,
where it will be seen that the interaction of two modes will always
lead to veering away of the eigenvalue loci. The limiting case of
no modal interaction produces intersecting loci but as noted by
other authors �for a recent example, see Ref. �23��, real world
problems will never produce the perfect conditions required for
this behavior.

The problem of quantifying veering was historically made dif-
ficult by the subjective nature of its identification. Its most tan-
gible characteristic is the eigenvalue curvature or second deriva-
tive. Liu �24� suggested using critical values of the curvature or of
the eigenvector derivatives to classify veering but conceded that
the determination of these values would remain subjective. Per-
kins and Mote �16� derived “coupling factors” that they used to
identify the expected behavior of converging modes; these factors
provide great qualitative insight but quantitative interpretation can
be misleading.

The remainder of the literature cited above uses a known inter-
section of multiple eigenvalue loci as a basis for describing the
behavior of the modes. In contrast, this paper is concerned with
the identification of veering with no prior knowledge of the sys-
tem being studied. For this purpose, a nondimensional approach is
taken to provide universal identification of the behavior. The
method is based upon physically meaningful quantities and will
indicate the presence of veering even where limited range or
atypical context may obfuscate it. Sections 2 and 3 examine some
important characteristics of veering modes, which are applied in

Secs. 4 and 5 to derive two descriptive quantities. Section 6 pre-
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ents a discussion of these quantities and explains how they can
e combined to evaluate the behavior, and Sec. 7 gives a demon-
tration of their application.

Modal Coupling
Consider a self-adjoint, discrete, undamped structural dynamic

igenproblem. Fox and Kapoor �25� derived the eigenvalue sensi-
ivity with respect to the parameter � as

��i

��
= �i

T� �K

��
− �i

�M

��
��i �1�

here �i and �i are the eigenvalue and mass-normalized eigen-
ector of the ith mode, and M and K are the system mass and
tiffness matrices. The corresponding eigenvector sensitivity is
iven as

��i

��
= −

�i
T�M

��
�i

2
�i + �

r�i

�r
T� �K

��
− �i

�M

��
��i

��ir
�r �2�

here ��ir=�i−�r. Differentiating Eq. �1� with respect to � and
sing Eq. �2� yield

�2�i

��2 = �i
T� �2K

��2 − �i

�2M

��2 − 2
��i

��

�M

��
��i

+ 2�
r�i

��r
T� �K

��
− �i

�M

��
��i	2

��ir
�3�

quation �3� gives the second derivative, or curvature, of the ei-
envalue. If the ith and jth eigenvalues become close such that
�ij is very small, then the expression for curvature is dominated
y the corresponding term in the summation where r= j, and it is
his term that is responsible for the veering of the eigenvalue loci.
he numerator of that term is 2�� j

T���K /�� j�−�i��M /�����i�2,
hich is analogous to the coupling factor of Perkins and Mote

16�. For the purposes of this paper, the modal coupling shall be
efined slightly differently as

�ij = � j
T� �K

��
− �i

�M

��
��i �4�

xpanding this to the full set of modes, a sensitivity matrix can be
efined as follows:

� = �T�K

��
� − �T�M

��
�� �5�

here � is the complete matrix of eigenvectors ��1 �2 . . .�N�
nd � is a diagonal matrix of eigenvalues. The diagonal terms in

are the eigenvalue sensitivities and the off-diagonal terms are
he modal coupling. The latter can be interpreted as cross-
ensitivities, quantifying the contribution of each mode to the cur-
ature and eigenvector derivatives of the others. For an undamped
ystem, eigenvalue curve veering will be present wherever two
odes intersect, except in the physically improbable case of the

ross-sensitivities for those modes being exactly zero. In addition,
ecause of the squaring of the modal coupling term in Eq. �3� and
he opposing signs of ��ij and �� ji, the two eigenvalues will
lways veer away from one another.

Eigenvector Rotation
For proximate modes i and j, if 
��ij
� 
��ir
 for all r� i , j,
hen Eq. �2� can be approximated by
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��i

��
� −

�i
T�M

��
�i

2
�i +

�ij

��ij
� j �6�

From this equation �and the equivalent expression for �� j /���, it
is seen that the two vectors throughout veering can always be
represented by a linear combination of a single pair of vectors; as
they transform, they always remain in the same plane or subspace.

Suppose that a constant matrix A can be found such that
�ij

TA�ij =I for all values of �, where I is an identity matrix and
�ij is the N�2 matrix of A-normalized eigenvectors ��i � j�. In
this case, the two eigenvectors will always form an orthonormal
basis with respect to A, and their magnitude and orientation
within the subspace can be defined relative to a set of reference
eigenvectors by a single angle. Any two eigenvalue pairs in the
subspace can then be related by a rotational transformation such
that

�ik
�2� = �ik

�1�T, T = � cos��	� sin��	�
− sin��	� cos��	� 	, �	 = 	�1� − 	�2�

�7�

Here, and henceforth, bracketed superscripts denote quantities
corresponding with a specific value of the parameter �. Thus, �i

�n�,
�ik

�n�, and any other modal properties with the superscript �n� cor-
respond with the specific condition �=��n�. The absolute values of
the two angles 	�1� and 	�2� have deliberately been left arbitrary; a
suitable choice for the datum is examined in Sec. 4.

Equation �7� is a generalization of the simple system described
by Balmès �11�, and demonstrates that his observations may be
extrapolated to a large class of veering systems, contingent on the
existence of an appropriate orthonormalizing matrix and satisfac-
tory agreement with Eq. �6�. The latter occurs wherever two
modes approach closely. The former is achieved most readily by
keeping either the mass or the stiffness matrix constant, and these
two scenarios will be considered in the sections that follow.

4 Cross-Sensitivity Quotient
In this section, the variation of the modal coupling throughout

veering is investigated. A reduced sensitivity matrix for modes i
and j shall be defined as

�ij = �ij
T �K

��
�ij − �ij

T �M

��
�ij�ij = �
i � ji

�ij 
 j
	 �8�

where 
i is an equivalent expression for the eigenvalue sensitivity
��i /��. The case of stiffness variation and that of mass variation
will be treated separately.

4.1 Stiffness Variation. Considering a linear variation in the
stiffness matrix, the mass matrix remains constant and serves as
an orthonormalizing matrix, allowing the substitution of Eq. �7� in
Eq. �8� using �ij =�ij. Noting that �M /��=0 and using the no-
tation �K /���1�=�K /���2�=K�, this substitution produces

�ij
�2� = TT�ij

�1�T
K��ij

�1�T = TT�ij
�1�T �9�

�ij
�2� is a symmetric 2�2 matrix in which the off-diagonal ele-

ments are equal as follows:

�ij
�2� = � ji

�2�

= �ij
�1��cos2��	� − sin2��	�� − �
 j

�1� − 
i
�1��cos��	�sin��	�

= �ij
�0� cos�2� − 2�	� �10�

where

tan�2�� = �
�1�/2��1� �11�
ji ij
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�ij
�0�2

= �ij
�1�2

+ ��
 ji
�1�/2�2 �12�

nd �
 ji=
 j −
i. Keeping 	�1� constant as 	�2� changes, the cor-
esponding modal coupling �ij

�2� is seen to vary harmonically with
he orientation of the vectors. The maximum coupling is given by
q. �12� and this is used to define a corresponding set of reference
ectors �ij

�0� where 	�0�=0. Letting 	�2�=0 gives �ij
�2�=�ij

�0� and
ence from Eq. �10�, �=	�1�. From Eq. �11�, however, � is inde-
endent of 	�2� and depends only on 	�1� so that

� � 	�1�, ∀ 	�2� �13�

he angle � describes the angle between �ij
�0� and �ij

�1�. Now,
etting 	�2�=	�1�, the superscripts �1� and �2� are equivalent and
an be omitted so that Eqs. �10�–�12� become

�ij = �ij
�0� cos�2�� �14�

�
 ji/2 = �ij
�0� sin�2�� �15�

�ij
�0�2

= �ij
2 + ��
 ji/2�2 �16�

nd the eigenvector transformation is given by

�ij = �ij
�0�T, T = � cos � sin �

− sin � cos �
	 �17�

rom Eq. �15�, the angle � is zero when �
 ji=0 and the sensi-
ivities of the two modes are equal: effectively the point where the
igenvalue loci swap trajectories. This corresponds to the point
here the eigenvalues are closest, and since Eqs. �3� and �6� can
e written �2�i /��2�2��ij

2 /��ij� and ��i /�����ij /��ij�� j for
his case, it is also the point where the eigenvalue curvature and
igenvector sensitivity are greatest. The reference vectors thus
orm a veering datum set where the modal coupling is greatest and
he intensity of the veering is strongest. It follows that the modal
oupling, or cross-sensitivity, can be used to measure the local
ntensity of veering. This finding is in keeping with the observa-
ions of Sec. 2. Furthermore, the maximum cross-sensitivity is
asily computed from the modal properties for any �, and it is
onvenient to define a cross-sensitivity quotient as CSQij

��ij /�ij
�0��2. Using Eqs. �14�–�16�,

CSQij = cos2�2�� =
�ij

2

�ij
2 + ��
 ji/2�2 �18�

more general definition is afforded by examining the eigenvec-
or rotations. As �→ � � /4�, the modal coupling goes to zero
nd from Eq. �6� the vector rotation also halts. Thus, for an ide-
lized veering case �without interaction from other modes�, the
atum vectors are oriented exactly half way between their
symptotic limits.

4.2 Mass Variation. Now consider a linear variation in the
ass matrix with constant stiffness matrix. The stiffness matrix
ay be used as the orthonormalizing matrix such that

�ij
TK�ij = I, �ij = �ij�ij

−�1/2� �19�

here � is a diagonal matrix so the inverse square root needs no
urther clarification. Combining Eqs. �8� and �19� while noting
K /��=0 yields

�ij = − �ij
�1/2��ij

T �M

��
�ij�ij

�3/2� �20�

his matrix is not symmetric, and maximum values for �ij and � ji
ill not necessarily coincide. In order to define a cross-sensitivity
uotient for the two modes in the same manner as before, a sym-
etric matrix is defined in the form of an adapted sensitivity

atrix as follows:
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�ij
� = �ij

−�1/2��ij�ij
−�3/3� = − �ij

T �M

��
�ij �21�

Substituting Eq. �7� and again writing �M /���1�=�M /���2�=M�,

�ij
��2� = − TT�ij

�1�T
M��ij

�1�T = TT�ij
��1�T �22�

This is equivalent to Eq. �9� and, by analogy,

CSQij
� =

�ij
�2

�ij
�2

+ ��
 ji
� /2�2

=

�ij
2

�i
3� j

� �ij
2

�i
3� j

+
1

4
�
 j

� j
2 −


i

�i
2�2� �23�

Note that the eigenvalues are generally close at veering, and if
�i�� j, then ���� and CSQ��CSQ. Equations �18� and �23� are
valid for any symmetric, undamped structural eigenproblem with
linear variation of the mass or stiffness matrices.

5 Modal Dependence Factor
Veering is distinguished from other forms of parametric varia-

tion by the swapping of modal properties from one mode to an-
other. This is effected by a transformation of the eigenvectors
within a fixed subspace. If the vectors stray significantly outside
their subspace, it is an indication that they are interacting with
other modes. On this premise, a modal dependence factor �MDF�
is derived below to quantify the contribution of the interaction
between two modes to their total variation.

A measure of the conformity of the mass-normalized eigenvec-
tors to their subspace is found by comparing the �2-norms of Eqs.
�2� and �6� within the normal basis defined by the complete eigen-
vector set as follows:

Qij = − �1

2
�i

T�M

��
�i�2

+ ��ij/��ij�2

− �1

2
�i

T�M

��
�i�2

+ �
r�i

��ir/��ir�2

�24�

As before, considering a change in parameter � causing a varia-
tion of the stiffness matrix such that �M /��=0, Eq. �24� can be
written

MDFij = Qij
2 =

��ij/��ij�2

�
r�i

��ir/��ir�2
�25�

This equation requires knowledge of the modal parameters for all
the modes, but it is desirable that the modal dependence factor, as
with the cross-sensitivity quotient, may be computed using only
modal parameters for the two modes concerned. The eigenvector
derivative ��i /�� can be obtained in a computationally efficient
manner using only modal properties for the ith mode with Nelsons
method �26�. Transposing Eq. �2�, post-multiplying by M� j, and
noting the orthogonality properties gives

��i

��
TM� j = �ij/��ij �26�

Post-multiplying Eq. �2� again, this time by M���i /���, and re-
membering �M /��=0 gives

��i

��
TM

��i

��
= �

r�i

��ir/��ir�2 �27�
Combining Eqs. �25�–�27� yields
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MDFij =
� ��i

��
TM� j�2

��i

��
TM

��i

��

�28�

iving the contribution of the jth mode to the derivative of the ith
igenvector. From vector algebra and inner products, this is seen
o be equivalent to the square of the cosine of the angle between
he eigenvector derivative and the plane �ij in the normal coor-
inate system. The same approach may be taken for mass matrix
ariation with �K /��=0 to produce

MDFij
� =

� ��i

��
TK� j�2

��i

��
TK

��i

��

�29�

here �i is once more the stiffness-normalized ith eigenvector,
nd careful attention must be given to the correct normalization of
�i /�� when using Nelsons scheme.

In the case of several modes veering simultaneously, the MDFs
ay be summed to quantify the confinement of a vector within the

arger subspace. For the two mode scenario, the MDFs quantify
he validity of Eq. �6� and thus the quality of the assumptions

ade in the derivation of the CSQ.

Veering Index
Veering has been shown to occur in the presence of strong
odal coupling and proximate modes. Contrarily, subjective ob-

ervations of the behavior are most often made in systems with
eak modal coupling outside of the veering regions. In these cir-

umstances the eigenvalues must be closer to induce veering, pro-
ucing more rapid and hence more discernible instances of the
ffect.

The difficultly in quantifying the behavior lies in determining
hat values constitute strong modal coupling and close eigenval-
es. A better definition is afforded by considering the modal in-
eractions in the context of the complete system; to produce veer-
ng, the two modes must be close with respect to their coupling,
nd they must be isolated from the influence of other modes.
hese two requirements are quantified with the CSQ and the
DF, respectively. It is necessary and sufficient that they are both

lose to unity to produce veering.
A geometric interpretation is given in Fig. 1. From this the
DFs are seen to describe the extent to which the eigenvector

erivatives deviate from their subspace, while the CSQ describes
heir orientation relative to the veering datum within that sub-
pace. Thus, the MDFs determine whether the modes will veer,
nd on this presumption the CSQ determines whether they are

ig. 1 A geometric interpretation of the cross-sensitivity quo-
ient and modal dependence factors described by CSQij
cos2

„2�…, MDFij=cos2
„�i…, and MDFji=cos2

„�j…. Depicted is a
lane or subspace in the normal coordinate system containing

wo eigenvectors �i and �j. These vectors are separated from
he veering datum vectors for that subspace, �i

„0… and �j
„0…, by

ngle �. The corresponding eigenvector derivatives are pic-
ured forming angles �i and �j with the subspace.
eering.
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A veering index is proposed as the product of the CSQ and the
two MDFs as follows:

VIij = MDFij � CSQij � MDFji �30�

VIij
� = MDFij

� � CSQij
� � MDFji

� �31�
This index provides an unambiguous measure of the extent to
which two modes are swapping properties with each other. It is a
definitive indicator for the presence of veering between two
modes, based not upon subjective observations but on physically
relevant manifestations.

7 Examples
Three examples are presented here. The first is a simple two

degree of freedom �DOF� system which will demonstrate the prin-
ciples of the cross-sensitivity quotient. The second is a four DOF
system which has been chosen to demonstrate some of the more
surprising results obtained with the veering index. The third and
final example is a finite element �FE� discretization of a cantilever
plate, showing how the indices perform on a more typical physical
representation of a system.

7.1 Two DOF Example. Figure 2 shows a simple two DOF
arrangement, consisting of two grounded spring-mass systems
with a light coupling spring between them. In this example, k1
=k2�s. Away from veering, each mass dominates the motion for
its respective vibration mode. As m2 varies, the natural frequen-
cies of the two modes converge and veer, forming two symmetri-
cal mode shapes where m2=m1. The eigenvalue loci are plotted in
Fig. 3�a�. Because there are only two modes in this system, the
modal dependence factors MDF12 and MDF21 will always be
unity. In this case, the cross-sensitivity quotient and the veering
index are identical and are plotted using Eq. �23� in Fig. 3�b�. The
index provides a clear indication of the intensity of veering, cor-
responding with the behavior observed in the eigenvalue plot. The
“half-CSQ parameter bandwidth” has been marked, denoting the
region within which the CSQ exceeds 0.5. The effect of veering
on the eigenvalue loci is most pronounced in this range.

7.2 Four DOF Example. The second example is illustrated in
Fig. 4. It consists of two pairs of lightly coupled spring-mass
systems, as used in the first example, with an even lighter spring
coupling the two systems together. The masses are all equal in this
example and the parameter change � corresponds to a linear in-
crease in the stiffnesses of k1 and k2. The initial spring stiffnesses
k1−4 are chosen such that prior to veering, modes 1–4 are domi-
nated by the motion of DOFs 1–4, respectively, and the coupling
springs s1–3 introduce light modal coupling where s1=s2�s3.
With this arrangement, it is expected that mode 1 will be closely
coupled to mode 3 and that mode 2 will be closely coupled to
mode 4. Modes 1 and 4 may be lightly coupled while modes 2 and
3 should experience the least coupling. The eigenvalues are plot-
ted in Fig. 5�a�, where on first inspection modes 2 and 3 appear to
veer away from each other. In fact the observed veering is caused
by the concurrent interaction of mode pairs 1–3 and 2–4, and this
is clearly indicated by the veering indices in Fig. 5�b�. The only
curves to rise substantially above zero in this plot are those cor-

Fig. 2 Two degree of freedom spring-mass system with light
spring coupling s between the masses
responding to VI13 and VI24. Examining the cross-sensitivity quo-
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tients in Fig. 5�c� shows that as the two mode pairs veer, the
vectors swing close to the veering datums for other mode pair
combinations; the sharp peaks at ��77 correspond to pairs 2–3
and 1–4. Consultation of the modal dependence factors in Fig.
5�d�, however, confirms that while the factors for the veering
mode pairs stay close to unity, those for the spurious mode com-
binations remain small, ensuring a true representation of the
modal transformations in the veering index.

Increasing the coupling between the two spring-mass systems
so that s3=s2=s1 produces similar eigenvalue loci, as presented in
Fig. 6�a�. Referring to the veering indices in Fig. 6�b�, however,
reveals that the observed curvature is now attributable to the in-
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eraction of several mode pairs, in three distinct phases. First
odes 1 and 3 begin to veer. As mode 3 takes on the properties of
ode 1, its coupling to mode 2 increases. At the same time, the

nd and 3rd eigenvalues get closer and the combination of these
ffects causes those two modes to veer, taking the dominant role
n the variation. As these modes diverge again, the 2nd mode
tarts to veer with the 4th and the corresponding veering index
eaks. At no stage are any two modes interacting solely with one
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another and this is witnessed by the veering indices which are
always significantly below unity. The practical implications of the
low veering indices are manifested as a more generalized trans-
formation of the eigenvectors spanning the full subspace.

7.3 Cantilever Plate Example. The third example examines
a more realistic physical system in the form of a rectangular can-
tilever plate. The FE simulation employs thin plate approxima-
tions and only bending is considered, using three degrees of free-
dom at each node, as described by Warburton �27�. The plate is
comprised of 400 rectangular isotropic plate elements, forming a
20�20 grid. The system has 1323 DOFs. The nodes at the root of
the cantilever are fully constrained in translation and both rota-
tional DOFs.

The parameter to be varied is the aspect ratio of the plate. The
depth of the plate, denoted b and defined as the distance between
the root and the free edge, takes a constant value of 0.1 m. The
width of the plate, denoted a and defined as the distance between
the two opposing free edges, is varied between 0.05 m and 0.15
m. The thickness of the plate stays constant at 1 mm. The material
properties are chosen to simulate a generic steel, with a Young’s
modulus of 200 GPa, a density of 7800 kg m−3, and a Poisson’s
ratio of 0.3.

This example differs from the previous two examples in that the
parameter affects both the mass and stiffness matrices simulta-
neously. This condition violates the assumptions made in the deri-
vation of the veering indices. The approach taken here is to treat
the mass and stiffness modifications as two independent param-
eters for the purposes of calculating the indices; it is expected that
the modal coupling will generally be dominated by one or other of
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hese parameters, and the respective index will offer meaningful
ndications of the state of veering.

A further consequence of the choice of parameter is a nonlinear
ependence in both the mass and stiffness matrices. In computing
he veering indices for a given parameter value, the matrix varia-
ions are effectively linearized about that point. Thus, reasonable
esults can be expected in the vicinity of the veering datum but the
ccuracy would be expected to drop off away from this point. This
hortcoming does not necessarily impinge significantly on the ap-
licability of the indices and it should be noted that it only affects
he CSQ; the geometric interpretation of the MDF is not affected
y nonlinearity.

The first 24 natural frequencies computed by the FE code, �1
�24, are shown in Fig. 7. They are numbered in the order of
scending frequency at the left edge of the figure �where a /b
0.5� and they retain their numbering for all values of a /b, pro-
ucing some misleading results in the visible range of the graph
here, for example, �13��12. The figure shows regions of high
odal density, and while some modes are clearly seen to veer,

thers appear to cross. The tenth frequency locus, highlighted as
he bold line in Fig. 7, is taken as an example. On the left of the
gure, it veers with mode 13 while crossing the loci of modes 9
nd 11. In the center of the figure, it veers with mode 6, before
ontinuing to veer again with mode 13 on the right edge of the
gure. Before leaving the graph, it passes through the locus of
ode 8 twice, where mode 8 is itself in the process of veering
ith mode 9.
The veering indices for mode 10, VI10 1−VI10 24, are plotted in

ig. 8 with respect to both the mass and the stiffness variation.
he only curves which can be seen rising above zero are those
orresponding with the 6th and 13th modes, supporting the obser-
ations of veering in the frequency loci. It is also apparent that the
tiffness plays the dominant role in the veering of the frequency
urves; the indices for the stiffness parameter almost reach unity,
n contrast to those for the mass parameter which never rise above
.03. In situations such as this, where either the mass or stiffness
atrix dominates, Eq. �30� can be used with the full, simultaneous
ass and stiffness variation to produce a good approximation to

he relevant veering index. As noted at the end of Sec. 4, the
isparity between the CSQs in Eqs. �18� and �23� is small where
he eigenvalues are close. Accordingly, as with the effects of non-
inearity, the information derived in the veering region remains
ertinent. Outside of the veering region, the MDF ensures that the

Fig. 9 Mode shapes for the tenth mode o
„a… 0.58, „b… 0.75, „c… 1.12, and „d… 1.475. T
edge in these diagrams.
alue of the index is small.

ournal of Applied Mechanics
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Where mode 10 veers, its mode shape transitions to those of the
modes it veers with. Figure 9 shows the four stages of the pro-
gression of the mode shape, with the corresponding aspect ratios
indicated as dashed lines in Fig. 8. In the range studied, the fre-
quency locus of mode 10 also crosses those of four apparently
uncoupled modes, and their mode shapes are shown in Fig. 10. At
several crossing points, these modes are themselves in the process
of veering with one another; the mode shapes presented are not
from the exact crossing points but are instead the “clean” modes
sampled from nearby points, together representing the full sub-
space of the uncoupled modes. It is interesting to note that the
mode shapes for mode 10 are all antisymmetric, while the un-
coupled mode shapes are all symmetric. These results support
previous observations �2,16,28� that a symmetric mode’s fre-
quency locus will always cross that of an antisymmetric mode
while two symmetric modes or two antisymmetric modes will
generally veer.

8 Conclusions
Three new criteria have been derived to describe the modal

interactions in eigenvalue curve veering. The cross-sensitivity
quotient describes the state of veering of two modes within their
subspace, the modal dependence factor identifies the conformity
of the modes to that subspace, and the veering index combines the
two to give a definitive quantification of the intensity of veering.

Three examples have been included to demonstrate the perfor-
mance of the indices under different conditions. An important fea-
ture of the technique is that it requires only knowledge of the
modal properties for the two modes concerned, and at only a
single parameter value. The normalized values computed with
these expressions provide unambiguous measures of the physical
properties responsible for the behavior. Although the results are
insightful when considered in isolation, their principal application
is expected to be in the interpretation and extrapolation of less
esoteric quantities.

The techniques are currently limited to linear variations of the
mass or stiffness matrices. It is hoped that future work will pro-
duce more general expressions. Nonetheless, the veering indices
presented here have been shown to produce useful results for a
simultaneous nonlinear variation of the mass and stiffness matri-
ces despite a lack of mathematical rigor in this case.

To the best of the authors’ knowledge, the methods derived here

e isotropic plate, with aspect ratios a/b of
cantilever root is along the bottom right
f th
he
offer the first objective numerical quantification of veering. The
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echniques are expected to find application in a wide range of
arametric studies and provide a basis for the development of
dvanced analytical tools in fields such as model updating, dam-
ge detection, response suppression, and stability analysis.
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