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Abstract
Real-time dynamic substructuring, also referred to as mechanical hardware in the loop, model in the loop,
or hybrid numerical-physical testing, is gaining increasing interest from industrial sectors as a practical
means of testing components of large structures under realistic operating conditions. Such tests commonly
employ hydraulic actuation with force or displacement feedback to couple thephysical substructure to the
numerical model of the system being tested. A significant challenge in this typeof configuration lies in
the cancellation of the transfer system dynamics. The control electronics and hydraulics as well as the
measurement equipment and feedback mechanisms all introduce their own dynamics to the system which
need to be compensated for in order to provide meaningful results. This paper details efforts that have been
made to model the transfer dynamics of a hydraulic actuator and its controllersand to employ these models
in the cancellation of the transfer dynamics. Several models are proposed, ranging from first order transfer
functions to more complete process models, and their performance is assessed in qualification tests as well
as simple substructuring exercises.

1 Introduction

Real-time dynamic substructuring is an experimental technique which is rapidly attracting interest in a num-
ber of fields. Improvements in the availability of actuation hardware, computingpower and control tech-
niques have recently allowed significant advances in the fidelity of these hybrid dynamic simulations.

The technique variously goes by the names “experimental dynamic substructuring”, “mechanical hardware-
in-the-loop testing”, “model-in-the-loop testing”, “real-time hardware-in-the-loop testing”, “real-time pseudo-
dynamic testing”, “hybrid dynamic testing”, and assorted permutations of these terms. Drawing from two
established experimental testing platforms, hardware-in-the-loop (HiL) and substructured pseudo-dynamic
testing (PDT), the method combines the advantages of numerical modelling and simulation with those of
experimental testing to allow large and complex structures to be tested in the laboratory under realistic oper-
ating conditions.

The principle behind the method is to split a structure into two or more substructures. At least one of these
substructures will be a physical piece of hardware while the remainder ofthe substructures will be simulated
numerically. The physical substructure(s) will either be a critical part, where its exact performance is to be
studied, or will be a complex system which is difficult to model numerically. Alternatively it may simply
have unknown characteristics which are most easily determined experimentally. In contrast, the pertinent
features of the numerical substructure will generally be well understoodand easily modelled. Reasons
for omitting these parts from a physical study are usually based around thelogistics of laboratory testing:
the parts could be too large to fit in a laboratory, too expensive, or they could have demanding load and
displacement requirements for which the test equipment is unavailable. The latter may include distributed
forces, coupled aero- or hydro-dynamic forces, or simply forces and displacements which are too large or
too numerous for the available test equipment.
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Real-time dynamic substructuring differs from HiL and substructured PDT inthe critical nature of the ex-
perimental coupling between the numerical and physical parts. For example, HiL is used to evaluate real
electronic hardware with simulated operating conditions. Here, the coupling between the two systems is
comprised of electrical connections, which will closely match those of the in-service equipment. There are
no significant elements in the interface which will introduce spurious behaviour. Like real-time dynamic
substructuring, PDT is concerned with structural dynamics, where instead of electrical signals, forces and
displacements are passed between the substructures. Here the interfaceis comprised of force and displace-
ment transducers, with actuation devices (typically hydraulic or electromagnetic) providing displacement on
the physical side. The control and response of the actuators, combinedto some extent with the signal pro-
cessing from the transducers, introduce significant dynamics into the coupled physical-numerical system. In
PDT the tests are not conducted in real time, and these dynamics can effectively be eliminated. In real-time
dynamic substructuring, however, the real-time response is critical and theextra dynamics will have a detri-
mental effect on the accuracy of the test results. Compounding this effect, the extent to which the results are
affected is very difficult to determine without a reference system for comparison (and the existence of such
a system would obviate the need for the real time dynamic substructuring).

Early attempts to counter the problems of the transfer dynamics centred around compensating for a perceived
delay in the system, as in the experiments of Horiuchiet al. [1] and Darbyet al. [2]. Wallaceet al. [3]
extended this idea in the development of an adaptive delay and gain compensation method, using polynomial
based forward prediction to counter the delay, and Bonnetet al. [4] performed similar tests for a range
of delay compensation strategies. Other studies have used used lag compensation instead, inverting a first
order transfer function to form a feedforward controller [5]. Theseefforts produce measurable performance
improvements, but they are ultimately limited due to the nature of the dynamics of the actuators, valves and
control hardware. The behaviour of these components can not be fullyrepresented by a simple delay or first
order lag. Plummer [6] develops a more appropriate model for a hydraulic actuation system, resulting in a
fifth order transfer function plus delay. He also comments on sources of nonlinearity including the valve flow
gain and the displacement sensitivity of the main cylinder stiffness. While comprehensive, such a model
requires extensive resource to characterise all of the components, and it may prove difficult or practically
impossible to measure some of the necessary quantities in the course of a realtime substructuring exercise.

Standard feedback control approaches may also be taken, minimising the error between the demand signal
and the measured load or displacement. Proportional, integral and derivative (PID) controllers are commonly
employed in this capacity as the proprietary controllers supplied with the actuation equipment. These often
form an inner loop controller with further control applied as an outer loop.Other linear state feedback
approaches such as LQR are equally applicable here.

The topology of the system lends itself immediately to model reference adaptivecontrol (MRAC), as the
physical system must follow the dynamics of the numerical model as closely aspossible. Stoten and Hyde [7]
use minimal control synthesis (MCS), a variant of the MRAC approach, to create an adaptive linear controller
with state error feedback and forward loop gain. This effectively combines the benefits of the feedforward
and feedback systems discussed above with an adaptive scheme to tune their parameters. The MCS algorithm
has the additional advantage of being asymptotically stable.

The work contained herein starts from the premise that successful real-time dynamic substructuring needs
to be supported by a high-performance feedforward controller. While error feedback can be used to take
up the slack, reducing errors from disturbances (both random noise-based and systematic), the objective
as far as possible is that there are no errors to correct. The feedbackof physical measurements into the
numerical system means that it is difficult to create a feedback controller whose dynamics will not interact
with those of the system being simulated. Thus it is desirable to reduce the influence of such dynamics
from the outset. Specifically, it is important that a suitable topology is chosen for the feedforward controller,
even where adaptive control is used. This paper investigates severalmodels of the transfer system dynamics,
incorporating first and second order transfer functions as well as delay, and uses these to create open loop
controllers to minimise the forward path errors. The models span a void between the simple lag or delay
models described above and the fifth order plus delay described by Plummer[6]. They are supplemented by
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a feedback controller in the form of the proprietary PID controller.

In the next section the equipment is described, highlighting some interesting features of the test piece and
offering a detailed investigation of the characteristics of the complete physical rig. In Section 3, parametric
models of the transfer system dynamics are fitted to the test data and these areused to create feedforward
controllers for transfer dynamics cancellation. Their performance is evaluated using prescribed test signals.
A real-time dynamic substructuring framework is then laid out in Section 4, and the controllers’ efficacy is
assessed.

2 Equipment Characterisation

2.1 Description

The physical substructure used for these studies is a hydraulic orifice damper. It was chosen arbitrarily,
but has several features which make it interesting in this context. Firstly, it isrelatively ’stiff’ with respect
to velocities, such that relatively small velocities can require high forces. This means that the limits of
the actuator’s performance will be tested, and the control problem becomes more critical. Secondly, it has
a nonlinear force-velocity relationship due to the turbulent oil flow inducedby the small piston orifice.
Thirdly, the high forces are accompanied by high fluid pressures which lead to significant compressibility in
the damper. Fourthly, the device includes poppet valves which open up additional, parallel flow paths when
the pressure difference exceeds a given threshold. Finally, operational wear has lead to the development of a
non-trivial amount of backlash, or free play, in the bearings used to mount the damper. All of these factors
combine to produce a device with parametric uncertainty and a full state dependent input-output relationship.
The damper features are illustrated in the experimental data in Fig. 1, produced in response to a nominally
sinusoidal piston displacement. The data are normalised for commercial reasons. As well as the features
described in the caption, it can be seen that the response is skewed froma symmetric profile (as would be
seen for a purely velocity-sensitive device) by compressibility and elasticitywithin the damper.
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Figure 1: Features of the damper manifested in experimental data: (A) backlash; (B) transient effects due to
force/pressure reversal (could be induced by PID controller response to backlash, compressibility effects, or
cavitation); (C) poppet valves limiting damping forces; (D) pressure overshoot on opening of poppet valves.
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The interface between the damper and the numerical substructure is facilitated by a HydropulsTM 25kN
servohydraulic actuator. The damper is mounted in line with the actuator, in a frame comprised of a rigid steel
floor, two heavy duty angle brackets and an I-beam. The displacement ofthe actuator piston is measured by
means of an internal linear variable differential transformer (LVDT), and the force is measured using a 25kN
force transducer forming the coupling between the actuator piston and the damper rod. An Instron Labtronic
8800 provides the inner-loop control of the actuator, using a serial PIDcontroller in displacement control
mode, shown in Fig. 2. The PID gains used for the results in this section are proportional: KP =30dB,
integral:KI =0.5s−1, derivative:KD =0s. The outer-loop control is provided by a dSpace DS1103 board,
with analogue connections to the Labtronic 8800. In the first instance this outer-loop control consists purely
of displacement demand signals, with no feedback. In Section 3, feedforward control is added, followed in
Section 4 by substructuring feedback.

Figure 2: Serial PID controller used for inner loop displacement control.

2.2 Dynamic Response

The displacement response is influenced not only by the tuning of the inner-loop PID controller, but also
by the dynamics of the servovalves, pistons, and hydraulic power train ofthe actuator. To a lesser extent,
the electrical systems will also contribute to errors in the displacement trackingin the form of latency and
discretisation. To quantify the response of the actuator, a set of single-harmonic displacement demands are
applied and the actual displacement is measured for each. The harmonic input signals cover a range of
frequencies and amplitudes. In each case the response is given time to settleto a steady periodic state before
the measurements commence. A sampling frequency of 1kHz is used throughout.

Initially, a linear response is assumed and a fine mesh of data points is used to determine transfer function
surfaces for the system. This identification is performed both with the damper removed and with the damper
installed using two different orifice configurations: the standard orifice and a new, larger orifice. The transfer
functions can be seen in Fig. 3, with the amplitudes normalised to the test range (suffice to say that displace-
ments are of the order of millimetres). The empty rig exhibits a more or less flat response surface to around
50Hz, beyond which it resembles a heavily damped second order response. On first inspection it does not
vary significantly with the amplitude of the harmonic excitation. Similarly, the damper with the large orifice
demonstrates second order characteristics with no pronounced variationover the range of amplitudes tested.
In this case, somewhat surprisingly, the response is less damped. It appears that the large orifice does not
offer significant damping, while the overall characteristics of the damper contribute to the resonance of the
system. Using the damper with the standard, small orifice produces a more damped response again at low
amplitudes. This time, however, a markedly different response is seen at higher amplitudes, demonstrating
pronounced nonlinearity.

Fig. 4 gives a clearer picture of the behaviour of the rig with the standard damper at higher amplitudes.
Supporting the indisputable evidence of nonlinearity already seen, the curves in Fig. 4 show a behaviour
in keeping with a nonlinear spring hardening characteristic. It is found that the onset of the high amplitude
response coincides with the activation velocity for the poppet valves in the damper, which lower the damping
constant. This feature would be expected to produce an effect similar to theobserved spring hardening
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(a) Empty rig.
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(b) Larger orifice.
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(c) Standard damper.

Figure 3: Transfer function surfaces for three different rig configurations: one with no damper mounted, one
with the standard damper mounted, and one with a modified damper with larger orifice.

characteristic. Another interesting feature of Fig. 4 is that while the gain curves appear to show a second
order response, the phase curves extend well beyond the -180◦ that would be expected of a second order
system. This is discussed in more depth in Section 3.1.

Further information regarding the nature of the nonlinear response is obtained through examining the power
spectral densities (PSDs) of the measured displacement signals for eachof the demand signal frequencies.
Each of the measured response signals are split into 8 segments, windowedwith a Hamming function and a
fast Fourier transform (FFT) is applied to produce PSD surfaces showing the response spectrum across the
excitation range. Fig. 5 offers some illuminating examples. In each, the dominant response is the excita-
tion frequency, but the harmonics of this frequency also show clearly elevated response levels. In the low
amplitude examples, there is little response at any other frequency. This is particularly true for the empty
rig, where even the harmonics are hard to discern. The disturbances to these signals are therefore periodic
distortions of the waveform, with the empty rig demonstrating a near perfect reproduction of the demand
signal. The high amplitude examples show much greater pollution of the frequency spectrum, with strong
harmonic components in addition to more general excitation. It seems that the level of structural response in
the whole rig is so large as to violate linear assumptions. In particular, the distinct nonlinear curves depicted
in Fig. 4 are associated with a strong band at around 40Hz which spans thewhole response spectrum.

The important observations from this section are:

• Firstly, the response of the hydraulic actuator to displacement demands is heavily dependent upon the
physical substructure being tested.
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Figure 4: Transfer functions of the rig with the standard damper mounted, showing the onset of nonlinear
artefacts.

• In addition to this, nonlinearities in both the rig and the test piece can be significant so linear control
strategies may be inadequate.

• Finally, nonlinearity needs to be considered not only in the context of the macroscopic signal ampli-
tude, but also in terms of the signal distortion throughout the piston stroke.
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(a) Empty rig, small amplitude. (b) Empty rig, large amplitude.

(c) Larger orifice, small amplitude. (d) Larger orifice, large amplitude.

(e) Standard damper, small amplitude. (f) Standard damper, large amplitude.

Figure 5: Power spectral densities for the three different rig configurations, given for the smallest and largest
amplitude excitations in the test range. The colourbar scale is logarithmic, base10.
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3 Transfer Dynamics Cancellation

3.1 Process Model Identification

In this section, approximate models are derived for the transfer dynamics:the dynamics of the hydraulic
actuator, its controllers, and its interaction with the test piece. Ideally the outerloop controller for the
actuator would be capable of operating independently of the test piece dynamics, but this capability is well
beyond the scope of the current work.

From the investigations of the foregoing chapter, the transfer dynamics gain can for the most part be repre-
sented by a second order transfer function. In some cases, a first order approximation may suffice. It was
also noted, however, that the phase shifts through more than 180◦ over the frequency range, indicating that
higher order dynamics are in fact present. One method for incorporatingthe effect of these higher order
dynamics is to augment the transfer functions with a pure delay. Correspondingly, the four process models
investigated here are a first order transfer function (G1(s)), a second order transfer function (G2(s)), a first
order transfer function with delay (G1D(s)) and a second order transfer function with delay (G2D(s)). These
are represented in the frequency domain as:

G1(s) =
K

τps + 1
G2(s) =

K

s2 + 2ζω0s + ω2
0

G1D(s) =
Ke−τds

τps + 1
G2D(s) =

Ke−τds

s2 + 2ζω0s + ω2
0

(1)

Each process model has between two and five parameters which need to beidentified, from the following
selection:K is the DC gain,τp is the first order time constant,ζ is the damping ratio,ω0 is the undamped
natural frequency, andτd is the time delay. These parameters are determined from the empirical transfer
function estimates using a nonlinear optimisation algorithm, where a time domain error-based cost function
is minimised with respect to the model parameters.

Before any outer loop control was developed, the PID controller was tuned manually to provide the optimum
response with the damper in place. The PID gains used for the remainder ofthe tests documented here
are proportional:KP =30dB, integral:KI =0.2s−1, derivative:KD =3.6ms. New transfer functions are
identified, once again using a sampling rate of 1kHz and identifying the Fourier coefficients of the input and
response signals over an integer number of periods at each excitation frequency. It is important to realise
that these are only transfer function approximations to the full, nonlinear system response. It is because of
the system nonlinearity that the stepped sine excitation approach is adopted (in favour of broadband, chirp or
sweep excitation, for example). Four amplitudes are tested but this time the high response regime is avoided,
with the demand signals covering only half the amplitude range of the previous tests.

The identified process models are compared with the empirical transfer functions in Fig. 6. Each figure
displays the process model being used and the parameters used to obtain thebest fit curves. The first order
transfer function is the least effective at reproducing the measured data, with the phase diverging at 10Hz and
the gain starting to drop before that. Even at low frequencies the gain shows discrepancies. The second order
transfer function performs better, with the phase in close agreement until around 30Hz and the gain starting
to diverge at around 10Hz. Despite these limited correlations, it is clear thatneither function accurately
reproduces the transfer dynamics. When a delay is added to the processmodel, however, the correlation is
dramatically improved, and both the first and second order process modelswith delay offer a convincing
embodiment of the significant dynamic features.
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3.2 Process Model Inversion

To take advantage of these models in an open-loop controller, they must be inverted. In theory a transfer
function can not be inverted for control applications if the denominator is ofa higher order than the nu-
merator. In practice, however, approximately numerical evaluation of such functions is relatively easy. The
difficulty lies in the inversion of a delay. There is a wealth of control literatureon the topic of delay com-
pensation. Chen and Ricles [8] give a brief review of available strategieswith emphasis on those currently
used in real time dynamic substructuring, and develop a methodology for the analysis of such systems. Here,
the polynomial forward predictive algorithm used by Wallaceet al. [3] is employed, and combined with the
inverse first- and second-order transfer functions.

At each time step the forward predictive algorithm takes a sample set of data points from the displacement
demand history, and uses these to fit a least squares polynomial curve. The polynomial is evaluated at a
forward time specified by the identified delayτd, and the resulting signal is used as the input to the inverse
transfer function. The parameters which can be used to tune the performance of the predictive stage are the
sampling period,Ts, spanned by the data sample set, the number of points,ns, used for the least-squares fit,
and the order of the polynomial. For these tests a sixth order polynomial was chosen arbitrarily. The effects
of changes to the sampling period and number of data points are investigated later, although the number
of data points was ultimately limited by the minimum time step that could be achieved with the dSpace
controller as configured.

The sixth order polynomial identification is obtained from

a6

a5

a4

a3

a2

a1

a0


=


(−(ns − 1)∆t)6 (−(ns − 1)∆t)5 . . . −(ns − 1)∆t 1
(−(ns − 2)∆t)6 (−(ns − 2)∆t)5 . . . −(ns − 2)∆t 1

...
...

. ..
...

...
0 0 . . . 0 1


+ 

x−(ns−1)∆t

x−(ns−2)∆t
...

x0

 (2)

wherext is the demand signal at timet relative to the current time,∆t = Ts/(ns − 1) is the time step
used for the data sampling, and+ denotes a pseudo-inverse. Note that the pseudo-inverse only needs tobe
performed once and can be reused at each time step. The forward predicted signal is then given by

xτd
= a6τ

6
d + a5τ

5
d + a4τ

4
d + a3τ

3
d + a2τ

2
d + a1τd + a0. (3)

Inverting the first and second order transfer functions from Eqn. (1) and converting back to the time domain
gives

r =
1
K

(τpẋτd
+ 1) r =

1
K

(ẍτd
+ 2ζω0ẋτd

+ ω2
0xτd

) (4)

and the derivatives of the demand signal are estimated as

ẋτd−δ/2 = xτd
− xτd−δ (5)

ẋτd−3δ/2 = xτd−δ − xτd−2δ (6)

ẍτd
≈ ẍτd−δ = ẋτd−δ/2 − ẋτd−3δ/2 (7)

ẋτd
= ẋτd−δ/2 + ẍτd−δδ/2 (8)

(9)

whereδ is the controller time step. These derivatives could equally be found using the derivatives of Eqn. (3).
Measurement noise should not cause difficulties with the derivative calculations as the displacement demand,
x, is either a smooth prescribed signal or it comes from a numerical substructure model which serves as a
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filter for the physical measurements. To complete the control, the signalr is passed to the inner-loop PID
controller.

The inverted process models are tested by applying the same set of harmonicdemand signals as used in
the identification stages above. For these tests, the forward predictive algorithm is not necessary: the test
signals are knowna priori, and so the delay compensation consists simply of time shifting the known signal
by τd. The transfer functions produced are seen in Fig. 7. The performance of the first order model is the
least impressive, with the gain deviating from unity and the phase increasingfrom zero at the same points
that the parametric model deviates from the measured data in Fig. 6(a). In thisregard, however, it has
performed as well as can be expected. The second order model showsbetter performance and corresponds
equally well with the behaviour expected from the identification procedure.The two delayed models show
exceptional performance, with gains close to unity and phase close to zerothroughout most of the test regime.
A surprising result is that the first order plus delay model performs betterthan the second order plus delay
model, with the latter’s gain deviating more significantly at the high end of the frequency spectrum.
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4 Real-time Dynamic Substructuring

The foregoing sections detail the identification of appropriate process models for the transfer dynamics, and
the implementation of these models in open-loop controllers to reduce the influence of the transfer dynamics.
In this section, a real-time dynamic substructuring exercise is undertaken to evaluate the performance of the
inverse process models in practice. The numerical substructure developed here is simple, being comprised
of only two degrees of freedom (DOFs). Nonetheless, this setup introduces challenges beyond those faced
in the earlier tests:

• The coupling between the numerical simulation and the physical system is now full and reciprocal. So
far the physical displacements have been determined by the numerical controllers but there has been
no feedback. Now the measured forces at the interface are fed back into the numerical system. In
this situation, significant lag in displacement tracking can produce artificial negative damping in the
numerical-physical system, leading to instability and divergence.

• Because the dynamics of the hybrid system are now influenced by the physical forces, the nonlin-
earities and discontinuities of the real hardware will produce distortions to the sinusoidal numerical
excitations. It is unknown to what extent these will affect the linear assumptions made in the transfer
dynamics cancellation methods.

• The real-world feedback also means that the displacement demand signal isno longer predetermined.
In the foregoing tests the advance signal used to compensate for delay was simply a time-shifted
duplicate of the known demand signal. Here, the forward predictive algorithm will be put through its
paces.

4.1 Numerical Substructure

The numerical substructure consists of the two-DOF lumped spring-mass-damper system seen in Fig. 8. In
addition, a model of the physical substructure is created, so that the two can be interchanged in operation.
The damper model is discussed further in the next section. The numerical substructure is represented by two
second order transfer functions, one for each mode of the two-DOF system. This approach has been adopted
to provide a framework to allow the future simulation of larger systems, which mayhave many degrees of
freedom but only a limited subset of significant modes to be modelled. When thedSpace controller code is
compiled, the transfer functions are transformed into a state space representation to be solved using a 4th
order explicit Runge-Kutta ordinary differential equation (ODE) solver.

The creation of the transfer functions begins with a finite element (FE) modelof the structure, in the form of
the mass, stiffness and damping matrices,M, K andC. The equations of motion are given by

Mẍ(t) + Cẋ(t) + Kx(t) = f(t) (10)

wheref(t) is the external force vector,x(t) is the displacement vector, andẋ andẍ are its first and second
derivatives respectively. Because of the second order transfer function system adopted, only real mode shapes
can be accommodated and the FE model must be proportionally damped, so that

C = αM + βK. (11)

The displacement vector can be expressed in terms of the modal displacements,q(t), such that

x(t) = Φq(t) (12)

whereΦ is a matrix whose columns are the system eigenvectors. Substituting Eqn. (12) into Eqn. (10),
premultiplying byΦT and using Eqn. (11) along with the orthogonality conditions gives a diagonal matrix
equation comprising the independent modal equations of motion:

Iq̈(t) + (αI + βΛ)q̇(t) + Λq(t) = ΦT f(t) = p(t) (13)
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Figure 8: The numerical substructure, pictured with the physical and simulated physical substructures.

whereΛ is a diagonal matrix of eigenvalues,λii = ω2
ii, ωii is the undamped natural frequency of modei

andp(t) is a vector of modal forces. From Eqn. (13), the relevant modal equations can be extracted and
converted to transfer functions of the form

Hi(s) =
qi(s)
pi(s)

=
1

s2 + (α + βλi)s + λi
. (14)

The numerical substructure’s algorithm is then comprised of three stages:firstly, convert the external forces
to modal forces withpn(t) = Φn

T f(t) (N.B. f(t) includes both the structural excitation source and the force
feedback from the physical substructure). Secondly, determine the modal displacements from the transfer
functionsHi(s). Thirdly, convert the modal forces back to spatial coordinates usingx(t) = Φnqn(t). In
these stages,Φn, pn(t) andqn(t) are reduced matrix and vectors corresponding to the modes of interest.
Depending on the forcing applied and the displacement outputs needed, only a select few rows ofΦn may
be required.

If a displacement excitation is to be used, the corresponding row and columnis removed from Eqn. (10) (as
the force at this DOF is now irrelevant), andf(t) is augmented by a force due to the motion of the input
DOF:

f(t) = f−a(t)−Maẍa − Caẋa −Kxa (15)

wheref−a is the external forcing vector with theath coordinate removed,Ma, Ka and Ca are theath

columns of the mass, stiffness and damping matrices andxa is theath displacement coordinate. If necessary,
it is then a simple matter to compute the force at theath DOF from theath row of Eqn. (10).

4.2 Physical Substructure Model

A model of the physical damper is included to help provide stability to the system and to allow a smooth
transition to the fully coupled state once the desired operating conditions are attained. The switch from
fully numerical to hybrid physical-numerical operation is explained in Section4.4 below. The damper is
modelled as a symmetric piston with compressible fluid, and orifice flow which can be characterised as a
serial laminar-turbulent flow path. The model has a single state variable in theform of the pressure difference
between the chambers,∆p, and the fluid properties are treated as lumped parameters for each chamber. From
reference [9] the model can be written

∆ṗ =
Beff (V1 + V2)

V1V2

[
Aẏ − sign(∆p)

2c2

{
−c1 +

√
c2
1 + 4c2|∆p|

}]
(16)
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whereBeff is the effective fluid compressibility (also accounting for elasticity of the damper body),V1 and
V2 are the fluid volumes in chambers 1 and 2, respectively,A is the piston area,̇y is the piston velocity, and
c1 andc2 are the laminar and turbulent flow coefficients. Most of these quantities aremeasured from the
physical device, while the flow coefficients are determined experimentally. Assuming small piston motions
about a central position,V1 ≈ V2 ≈ V0. Substituting into Eqn. (16) and integrating with respect to time gives

∆p =
4Beff

V0

[
Ay − 1

2c2

∫
sign(∆p)

{
−c1 +

√
c2
1 + 4c2|∆p|

}
dt

]
. (17)

This equation can be transcribed to the simulation diagram in Fig. 9. The poppet valves are included by
means of a second loop, identical to the bottom loop of the main orifice flow, butwith larger flow coefficients.
The continuous activation of the poppet valves is simulated with a tanh function, governed by a first order
transfer function of∆p representing the poppet dynamics. These latter dynamics are not modelled accurately,
and are included more to promote numerical stability than to capture the detail of the damper response.

Fig. 10 compares the simulated damper forces to the measured damper forcesfor two examples, both at
3.5Hz. The displacement demand is nominally the same for the simulated and real dampers, although only
the standard inner loop PID control is employed for the real damper, meaning that the actual displacement
suffers some distortion.

Figure 9: Simulation diagram for the damper model.
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Figure 10: Simulated damper forces compared to measured forces on a force-velocity plot, subject to the
same nominal displacement input.
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4.3 Hybrid System Overview

In creating a hybrid numerical-physical system, it is useful to have an estimate of the expected system
behaviour before commencing tests on the full rig. To this end, a model of thecoupled system is created.

The two-DOF numerical substructure has already been characterised interms of modal transfer functions.
Here, a variation on that approach is taken, casting the transfer functions instead in terms of the mass,
damping and stiffness properties of the substructure. Note that while this is asimple process for the two-
DOF case, the strategy outlined in Section 4.1 is more versatile and can be applied easily to much larger
systems. The equations of motion for the two masses are

m1ẍ1 + c1(ẋ1 − ẋ0) + c2(ẋ1 − ẋ2) + k1(x1 − x0) + k2(x1 − x2) = 0 (18)

m2ẍ2 + c2(ẋ2 − ẋ1) + k2(x2 − x1) + f(ẋ2) = 0 (19)

The functionf(ẋ2) is the force generated by the damper. For this analysis, a simple linear approximation
of the damper is made. It is taken to be a linear viscous damper in series with a spring (to represent the
compressibility), as pictured in Fig. 8. The parameterskd and cd are approximated from empirical data
under mid-range operating conditions. The equations describing this system are

f = kdx3 (20)

f = cd(ẋ2 − ẋ3). (21)

Differentiating Eqn. (20) and substituting into Eqn. (21) produces

cdḟ + kdf = kdcdẋ2 (22)

and transforming to the frequency domain yields

f =
cdkds

cds + kd
x2. (23)

Now transforming Eqns. (18) and (19) to the frequency domain and manipulating the three equations, ex-
pressions for the displacementsx1 andx2 can be found in terms of the displacement excitation atx0:

x2 =
(k1 + c1s)(k2 + c2s)(cds + kd)

(m1s2 + (c2 + c1)s + k2 + k1)((m2s2 + c2s + k2)(cds + kd) + cdkds)− (k2 + c2s)2(cds + kd)
x0

x1 =
(k2 + c2s)x2 + (k1 + c1s)x0

m1s2 + (c2 + c1)s + k1 + k2
(24)

The roots of the denominator in the expression forx2 yield the five complex poles of the theoretical hybrid
system. Assuming the vibrational modes are underdamped, this will lead to two second order pairs of
complex conjugate poles and a single first order pole.

Using the above methods, a system was designed with features appropriateto the frequency range of interest.
The transfer functions can be seen in Fig. 11, along with the information about the poles. Both poles are
located under 10Hz, where the controllers are all thought to be stable, but this does not diminish the quality of
the demonstration; where the controllers perform badly the real substructured system can resonate or diverge
even without poles of the nominal system in the vicinity.

4.4 Substructure Coupling and Stability Controls

To complete the substructuring rig, all that is needed is the coupling between the numerical and physical
systems. Two switches are employed for this purpose, both of them taking continuously variable values from
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Figure 11: Transfer functions and properties for the theoretical hybrid system. fd is the damped natural
frequency in Hz,ω0 is the undamped natural frequency in rad/s, andζ is the modal damping ratio. The mode
with fd = 0 is a first order pole withs = −ζω0.

0 to 1. The first switch governs the displacement coupling between the two substructures, while the second
governs the force coupling.

With the displacement switch set to zero, the physical substructure remains at rest, regardless of what the
numerical substructure is doing. When it is set to 1, the physical substructure tries to track the numerical
displacement, with the aid of the transfer dynamics cancellation. Values between 0 and 1 scale the physical
displacement proportionally.

When the force switch is at zero, the forces fed back into the numerical substructure are determined by the
simulated damper outlined in Section 4.2. When this switch is set to 1, the measured force is fed back to
the numerical substructure. This is the critical setting in the coupling, because when the numerical model
is subject to real-world loads, any lag in the real-world displacement tracking can lead to spurious energy
injections into the system. This in turn can cause instability and divergence. The exact force feedback is
determined by

f = γfp + (1− γ)fn (25)

wherefp is the measured force from the physical damper, andfn is the force in the simulated damper.

A stability trip switch is also implemented, to catch any instabilities before they risk damaging the hardware.
This trip switch detects discrepancies in the energy transfer seen by the physical system and that seen by the
numerical system at the interface. Both sides of the interface will be subject to the same measured force,
more or less simultaneously, but the velocities of the physical and numerical systems will differ, dependent
upon the quality of the displacement tracking. Thus not all the power absorbed by the physical damper will
necessarily leave the numerical substructure, and in some cases the numerical substructure may even see a
net input of power from the damper (which would ideally be physically impossible). Of course, the reverse
is also possible and the most common scenario encountered in the course of these tests is that of a rapid,
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artificially induced power flow backwards and forwards between the two substructures. The magnitude of
the flow will often grow steadily, even though the net energy transfer remains at zero.

The instability detection facility thus measures themagnitude of the power discrepancy between the two
systems, regardless of the direction it flows. The power difference is squared then low-pass filtered, so
that transient power spikes in either direction are ignored but persistentdiscrepancies are registered. Once
a threshold is passed, the force switch,γ, is changed continuously but quickly to zero, and the simulated
damper resumes the task of providing the force feedback.

4.5 Substructuring Tests

To test the efficacy of the proposed inverse process models, prescribed displacement signals are applied to the
numerical model, at the input denotedx0 in Fig. 8. Once more a set of periodic, single-harmonic signals are
chosen. While such simple signals are unlikely to be encountered in fully fledged substructuring exercises,
they do have a number of advantages in the context of this evaluation.

The most obvious advantageis their simplicity. Faced with a steady, periodic input at a single frequency, the
response is easy to interpret: primarily, a periodic response should be expected. If this is not attained then
either the system dynamics are chaotic, or the test rig and physical hardware has a time-variant component.
Assuming a periodic response is achieved, this choice of signal will readilyhighlight any nonlinearities, as a
linear system would respond only at the excitation frequency. Furthermore, where the systemis found to be
more or less linear, the response to any other signal can be constructed from a superposition of the response
to sinusoidal inputs. In any case, the transfer dynamics cancellation techniques employed here are all based
on the assumption of an approximately linear system, so it is their ability to performunder these conditions
that is of primary interest.

A further advantage of harmonic signals is that a systematic test sequence can be planned, thus covering a
broad range of operating conditions, and helping to isolate the causes of any unexpected results. Simulta-
neously, however, this is a disadvantage: to cover all possible operatingconditions in this manner would
require an exhaustive set of signals. For example, all of the tests conducted here will use zero offset, thus ob-
scuring any sensitivity of the response to the mean displacement. The most convincing argument for the use
of harmonic excitation, however, is that it permits an analysis of the phase response. As has been discussed,
phase is important because too much phase lag will lead to instability. Put succinctly, stepped sine excitation
is the best choice for performing a linear analysis, while simultaneously highlighting the existence of and
minimising the influence of nonlinearity.

For this evaluation, several sets of harmonics are used, each set covering a range of frequencies at a single
amplitude. From Fig. 11, the response at the interface,x2, is expected to drop off rapidly after the second
natural frequency at 6.3Hz. Thus the excitation amplitudes must increase for the higher frequencies in order
to avoid the measurements dropping below the noise threshold. The frequency bands are chosen to overlap,
providing results for the two extremes of excitation levels in several frequency bands. In these regions, the
amplitudes are limited at the top end of the spectrum by acceptable acoustic noiselevels in the lab, and at
the bottom end by the signal noise floor. Fig. 12 shows a typical example of the numerical and physical
displacements at DOF 2.

The gain and phase results can be seen for each of the four inverse process models in Fig. 13. The dark lines
represent the substructuring results, while in the background the thick pale lines indicate the trend of the
verification tests from Section 3.1. The results using the first and second order process models match those
of the verification tests quite reliably, although the new tests are limited to 40Hz instead of 100Hz. (This is
because of the rapidly diminishing response of DOF 2 beyond this frequency.) In these first two examples,
the only difference in the setup is the presence of the substructure with force feedback. In contrast, however,
the two process models that incorporate delay match the verification tests only up until around 10Hz, after
which they diverge rapidly. (For this reason these tests were halted earlyat 30Hz.) The difference here is
that the inverse process models can no longer rely on time-shifted versionsof the known demand signals
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Figure 12: Typical displacement-velocity-force results for the numericaland physical substructures at their
interface, using a second order transfer function for the process model and exciting the system at 8.6Hz.

but must now rely on the capabilities of the forward predictive algorithm. Evidently, this algorithm does not
perform well beyond 10Hz; this shortcoming will be examined in more depth presently. As a consequence,
however, the latter two process models struggle to outperform even the pure first order transfer function, with
the displacement tracking from both of them deteriorating beyond about 10Hz. The second order transfer
function offers the best results, with acceptable gain and phase agreement beyond 20Hz. It is interesting to
note that despite testing the upper and lower limits of the permissible excitation amplitudes, relatively little
discrepancy is seen in the overlapping sections of the response curves.

The transfer function-style results presented so far only convey partof the picture. A metric is needed to
describe how well the measured response agrees with the numerical model.A straightforward correlation
was considered but it was found that the signal noise distorted the resultsat lower amplitudes. Instead, the
root mean square (RMS) value of the error was investigated. This produces higher error values for higher
amplitudes, but this is physically representative and not just an artefact of the measurement methods. The
results are shown in Fig. 14. The RMS values are normalised to one standard deviation of the signal noise,
and it can be seen that as the frequency increases and the substructure response decreases, the RMS error
for many of the curves disappears into the noise floor. Comparing the results from the first and second order
transfer functions, it is difficult to define one as having better performance than the other. The second order
function produces better results at higher frequencies, but has markedly higher responses in the 5-10Hz band.
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Figure 14: RMS error in physical substructure displacement for the four process models over a range of single
harmonic excitation signals. The RMS values are normalised to the standard deviation of the measurement
signal noise.
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As would be expected following the gain and phase results, the RMS plots forthe two models with delay
show large errors for frequencies above 10Hz. In contrast, however, the RMS errors reported below 10Hz are
all around half the corresponding errors in the first two models. As before, there is no significant difference
in performance to be observed between the two delayed models. The exception to this is in the range above
12Hz, but the performance of both controllers has already been shownto be unreliable at these frequencies.
From this analysis it appears that the delay in the latter two models does contribute to better performance,
albeit contingent upon the capabilities of the forward predictive algorithm.

To investigate the limitations of the polynomial forward predictive method, its predictions are tested over
a range of frequencies using a known demand signal. The predictions are compared with the time shifted
demand signal and the gain and phase relationship is documented in Fig. 15. Two sets of curves are shown.
The first set is determined using the forward predictive parameters usedfor the previous tests, in particular
a sample period ofTs = 0.1s. The second set is created after experimenting with the parameters to produce
the best results, and settling on a sample period ofTs = 0.01s. The first curves are seen to degrade shortly
after 10Hz, corresponding with the drop in performance in the previous tests. In contrast, the second set of
curves remain acceptable until around 40Hz. In changing the sample period to 0.01s it was also necessary
to drop the number of sample points from 20 to 10 due to the sampling frequencyof 1kHz on the dSpace
board, but this does not seem to have had an adverse affect on the predictions.
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Figure 15: Gain and phase of fundamental harmonic of forward predictive signal with respect to a known
sinusoidal input signal with forward predictive time constant optimiseed forthe second order transfer func-
tion.

With these new forward predictive parameters, it is thought that the transfer function plus delay process
models should significantly outperform their pure transfer function counterparts. Future work will first test
this hypothesis, before performing a more thorough investigation of the effect of the forward predictive pa-
rameters. Other delay compensation techniques will also be investigated, as the forward predictive capability
seems to be the limiting factor in improving the performance of these controllers.

5 Conclusions

Four open-loop linear controllers have been proposed to help reduce displacement tracking errors in real-
time dynamic substructuring caused by the transfer dynamics in hydraulic actuation plant. Rigorous testing
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has shown that these controllers all have the capacity to make significant improvements compared to using
the existing inner-loop PID controllers in isolation. Preliminary results suggest further improvements should
be readily achievable using better delay compensation methods as part of aninverse process model. This
should form the basis of further work on this topic as it is the key factor limiting the performance observed
in these tests.

Despite the successes noted here, the investigations have shown that onlyso much can be achieved using
linear controllers. Both the actuation rig and the physical substructure being tested can act as sources of
significant nonlinearity. In addition, the work has shown that the macroscopic demand amplitude is not the
main concern in this regard, but instead it is nonlinear variations and discontinuities throughout each stroke
that lead to tracking errors. Importantly, this is not a problem which can be tackled by adaptive algorithms
as they will not react fast enough for variations on this time scale.

One approach would be to produce detailed and more realistic process models for the hydraulic plant, in-
corporating nonlinearities directly. Such an approach would ideally be augmented with state measurements
from within the hydraulic plant, for example pressures and valve spool locations. If state measurements are
not directly available, some form of state observer could be employed to this end. A less demanding proposal
would be to take advantage of available measurements such as force and displacement at the output and to
investigate the benefits of gain scheduling.

An ultimate goal of real-time experimental dynamic substructuring should be to minimise the influence of
the physical hardware being tested on the control strategy. After all, oneof the motivating factors behind
using real-time substructuring in the first place lies in testing pieces of hardware about which little is known
to start with. Hopefully some of the results presented here will provide insights to help move towards this
goal.
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