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ABSTRACT

In this paper a new technique is proposed for updating parameters in a Finite Element (FE) model based upon modal
coupling. Modal coupling exists between vibration modes with respect to parametric variations and is often associated
with curve veering and vibration localisation. Examination of the modal coupling leads to the development of a
new set of system properties, providing a different emphasis for updating schemes. In particular, the properties convey
information about the system which cannot be deduced from the eigenvalues alone, yet can be measured experimentally
more accurately than the eigenvectors. This information is found to be especially useful in nominally symmetric or
periodic systems where parameters may be indeterminable using traditional techniques. It is thought that the new
methods may find particular application in the tuning of bladed rotor assemblies. The presentation begins with a
discussion of veering and localisation, and its manifestation in symmetric structures. The modal coupling and related
properties are then derived, in tandem with methods of extracting these quantities from experimental data. Next, the
FE model and updating scheme are outlined, and to conclude an experimental example is given, demonstrating the
arrival at a unique solution to an otherwise ambiguous updating problem.

Nomenclature

β angle between current eigenvector set and datum eigenvector set in the mass-normalised basis

δj arbitrary system parameter

κijk modal coupling for ith and kth eigenvalues with respect to parameter δj

λi ith eigenvalue

µλ mean eigenvalue at the veering datum

σiji sensitivity of ith eigenvalue to parameter δj

∆δj discrepancy between current parameter value and datum parameter value, δj − δj

∆λki separation of kth and ith eigenvalues, λk − λi

∆σkji difference in sensitivities of modes k and i to parameter δj , σkjk − σiji

Λik diagonal matrix of ith and kth eigenvalues

Φik matrix of ith and kth mass-normalised eigenvectors

Σijk sensitivity matrix for ith and kth modes

p quadratic curve fit parameters describing veering characteristics

q linear curve fit parameters describing mean eigenvalue locus

K stiffness matrix
M mass matrix
S veering characteristic sensitivity matrix used in updating scheme

T rotational transform matrix
• overbar denotes properties at the veering datum



1 INTRODUCTION

Localisation [1] and eigenvalue curve veering [2] are two phenomena that are commonly observed under parametric variation
of a dynamic system, particularly in symmetric or periodic structures [3]. Both behaviours are related to the interaction
of the vibration modes within the metasystem formed by the inclusion of the parameter dynamics. As two eigenvalue
loci converge they may veer suddenly away from one another, simultaneously swapping properties and then continuing on
their exchanged trajectories. In these regions the mode shapes must transform rapidly but smoothly from one to another.
This interaction is facilitated by modal coupling with respect to the parameter variation [4] (unrelated to the coupling
sometimes associated with non-proportional damping). Perturbation of symmetric or periodic structures will often induce
such modal coupling, distorting the mode shapes and producing localised vibrations.

While the manifestation of these behaviours is often inconsequential, occuring only for very specific configurations, there
are situations in which the ramifications are significant. Notably, localisation may lead to far greater vibration levels than
predicted by idealised models, for example in turbine rotors [5]. Similarly, the modal interactions may provide indicators
of other behaviour such as stability [6]. In the modelling of such systems it is important that the veering and localisation
behaviour is represented accurately.

Finite element (FE) model updating, when applied intelligently, provides a means of adapting numerical models to account
for unknown physical parameters. Sometimes these are introduced as a result of simplified models, where the behaviour
of a complex substructure may be adequately represented by only a few elements. Alternatively, the parameters could be
difficult to measure individually and thus better determined using the updating process. The measured data from dynamic
testing is compared to the analytical results and the discrepancies are minimised to produce a more accurate numerical
representation of the system.

Most commonly, the eigenvalues are used as the measured data in updating schemes. Dependent upon the nature and
number of the parameters being updated, the eigenvalues alone may not be sufficient. This is particularly true for symmetric
structures where many parameters may have identical influences on the eigenvalues, thus rendering the updating problem
ill-conditioned. In this case the natural frequencies may be complemented by the mode shapes, although this data is
generally considered to be less reliable.

This paper derives new quantities, directly related to the modal coupling, which may be used to update a model to produce
an accurate representation of the veering behaviour. They take advantage of the accuracy of the measured eigenvalues
and the qualitative insights offered by the eigenvectors. The application of these quantities in a sensitivity-based updating
scheme is described, and a method for obtaining the values from experimental data is outlined before demonstrating the
technique with respect to real experimental data.

2 BACKGROUND

The analysis of the modal interactions herein is based upon the transformations of the eigenvectors throughout a veering
region. Extending the observations of Balmès [7], a complementary paper by the authors in these procedings [8] explains
how a wide class of veering modes may be described in terms of eigenvector rotations within a fixed subspace. The
pertinent findings are summarised below for linear stiffness variations, as will be observed in the later sections of this
paper.

For proximate modes, the transformations of the eigenvectors can be expressed approximately as a simple rotation within
a fixed subspace of the normal basis:

Φik = ΦikT, T =

[

cos β −sin β
sin β cos β

]

(1)

where Φik is the mass normalised eigenvector matrix for the ith and kth modes. For perfectly isolated modes with no
interaction with other modes, the vectors rotate asymptotically through 90◦. The midway point in this rotation will be
referred to as the veering datum, and it is at this point that the eigenvalue sensitivities are equal, the curvature is maximum



and the rate of eigenvector rotation is highest. The vector set Φik will be used to denote this datum set and the overbar
will consistently denote properties at the datum.

A sensitivity matrix for modes i and k can be defined as

Σijk = ΦT
ik

dK

dδj

Φik − ΦT
ik

dM

dδj

ΦikΛik =

[

σiji κijk

κkji σkjk

]

(2)

where M and K are the mass and stiffness matrices, Λik is a diagonal matrix of the ith and kth eigenvalues, the diagonal
terms are the sensitivities of the eigenvalues to parameter δj and the off-diagonal terms are the modal coupling responsible
for the veering behaviour. The variation of these properties with the vector rotations is described by

sin (2β) = ∆σkji/2κijk (3)

cos (2β) = κijk/κijk (4)

κ2
ijk = κijk

2 + (∆σkji/2)
2

(5)

where ∆σkji = σkjk − σiji and κijk is the maximum, or datum, value for the modal coupling. The next sections build on
this foundation to derive other characteristic quantities of the veering system.

3 VEERING PARAMETER DATUM

A subset of the equations of motion for an undamped dynamic system is given by

KΦik − MΦikΛik = 0 (6)

Considering a linear variation of the stiffness matrix, the datum configuration is expressed as K = K + dK
dδK

∆δK where

∆δK = δK − δK . The equation of motion for the datum system can then be written

(

K +
dK

dδK

∆δK

)

Φik − MΦikΛik = 0. (7)

A constant mass matrix is assumed so that the transformation of the mass-normalised eigenvectors takes the form of a

rotation, β, in the orthonormal basis thus defined. Premultiplying by Φik
T

and using eqn. (1) gives

TT ΦT
ik

(

K +
dK

dδK

∆δK

)

ΦikT − Φik
T
MΦikΛik = 0. (8)

Applying orthogonal relationships to eqn. 8 and using eqn. (2) with dM
dδK

= 0, the modified eigenvalues can be expressed
in terms of the initial modal properties so that

Λik = TT ΛikT + TT ΣiKkT∆δK (9)

where the diagonal elements of the matrix equation give

λi =λicos2(β) + λksin2(β)

+
(

σiKicos2(β) + 2κiKkcos(β)sin(β) + σkKksin2(β)
)

∆δK (10)

λk =λisin
2(β) + λkcos2(β)

+
(

σiKisin
2(β) − 2κiKkcos(β)sin(β) + σkKkcos2(β)

)

∆δK , (11)

and the off-diagonal elements identically prescribe

∆λkicos(β)sin(β) +
(

∆σkKicos(β)sin(β) + κiKk(cos2(β) − sin2(β))
)

∆δK = 0 (12)



where ∆λki = λk − λi. Rearranging the latter and applying trigonometric identities allows the determination of the
parameter variation required to produce a given vector rotation,

∆δK = −
∆λkitan(2β)

∆σkKitan(2β) + 2κiKk

, (13)

and substitution of eqns. (3–5) gives the veering parameter datum as

δK = δK −
∆λki∆σkKi

4κ2
iKk

. (14)

4 EIGENVALUES

It is now possible to determine the eigenvalues at the veering datum. Rearranging eqns. (10) and (11) and applying
trigonometric identities gives

λi =
λi + λk

2
−

∆λki

2
cos(2β)

+

(

σiKi + σkKk

2
−

∆σkKi

2
cos(2β) + κiKksin(2β)

)

(

δK − δK

)

(15)

λk =
λi + λk

2
+

∆λki

2
cos(2β)

+

(

σiKi + σkKk

2
+

∆σkKi

2
cos(2β) − κiKksin(2β)

)

(

δK − δK

)

. (16)

(17)

Using eqns. (3–5),

λi =
λi + λk

2
−

∆λki

2

κiKk

κiKk

+

(

σiKi + σkKk

2

)

(

δK − δK

)

(18)

λk =
λi + λk

2
+

∆λki

2

κiKk

κiKk

+

(

σiKi + σkKk

2

)

(

δK − δK

)

. (19)

Substituting eqn. (14),

λi =
λi + λk

2
−

(σiKi + σkKk)∆λki∆σkKi

8κ2
iKk

−
∆λkiκiKk

2κiKk

(20)

λk =
λi + λk

2
−

(σiKi + σkKk)∆λki∆σkKi

8κ2
iKk

+
∆λkiκiKk

2κiKk

. (21)

A useful quantity is the separation of the eigenvalues at their closest point, the veering datum. From the difference of
eqns. (20) and (21),

∆λki

∆λki

=
κiKk

κiKk

. (22)

This simple result provides a powerful means of determining the minimum eigenvalue separation of two veering modes.

Finally, the mean eigenvalue at the veeering datum is easily found from eqns. (20) and (21) as

µλ =
λi + λk

2
=

λi + λk

2
−

(σiKi + σkKk)∆λki∆σkKi

8κ2
iKk

. (23)



5 VECTOR ROTATION RATE

The aim of this study is to determine updating variables which succinctly characterise the behaviour of two veering modes.
The mean eigenvalue, parameter value and eigenvalue separation at the veering datum are all useful quantities but do not
convey all of the necessary information.

The maximum modal coupling, κiKk, seems an obvious choice for describing the coupling between the modes. Significantly,
it conveys the direction of rotation of the eigenvectors, which is critical in differentiating between symmetric parameters.
In practice, however, the modal coupling at the peak of veering will often show little variation over a wide range of coupling
configurations. From eqns. (3–5), in the limit, β → 45◦ and κiKk → 0 so κiKk → ∆σkKi. Thus, the maximum modal
coupling is simply a measure of the difference in gradients of the two asymptotic eigenvalue loci and does not provide any
real measure of the actual coupling between the modes.

Instead, the parameter chosen to represent the coupling is the rate of eigenvector rotation within the subspace, dβ/dδK .
It is related to, but not entirely equivalent to, the eigenvector sensitivities. Importantly, the maximum rotation rate,
dβ/dδK , occurs at the veering datum and conveys both the magnitude and sign of the coupling. Rearranging eqn. (14)
and differentiating yields

dδK

dβ
=

∆σki

4κ2
iKk

d∆λki

dβ
+

∆λki

4κ2
iKk

d∆σki

dβ
. (24)

Eqns. (3), (4) and (22) produce

∆σki = 2κiKksin(2β) and ∆λki =
∆λki

cos(2β)
(25)

so that differentiating gives

d∆σki

dβ
= 4κiKkcos(2β) and

d∆λki

dβ
= 2

∆λki

cos2(2β)
sin(2β). (26)

Substituting eqns. (3), (4) and (22) again,

d∆σki

dβ
= 4κiKk and

d∆λki

dβ
=

∆σki∆λki

κiKk

. (27)

Combining eqns. (27) and (24) and rearranging yields

dδK

dβ
=

∆λki

κ2
iKk

(

(∆σki/2)2 + κ2
iKk

κiKk

)

, (28)

and using eqn. (5) this becomes
dδK

dβ
=

∆λki

κiKk

. (29)

The eigenvector rotation rate is then given by

dβ

dδK

=

(

dδK

dβ

)

−1

=
κiKk

∆λki

(30)

and the maximum rotation rate by
dβ

dδK

=
κiKk

∆λki

. (31)

Although this function is the most physically recognisable, it is discontinuous across ∆λki = 0, making its inverse, dβ
dδK

−1

,
more suitable for updating schemes.



6 UPDATING SCHEME

A sensitivity-based updating scheme is to be employed for this study, as described by Friswell and Mottershead [9]. The
premise is to gather experimental data from a series of tests, varying an independent parameter such that the results capture
the modal properties throughout a veering region. The veering characteristics described above may then be calculated
(as detailed in the next section), and one or more updating parameters (separate from the independent parameter) may
be determined. In order to accomplish this task, the sensitivities of the veering characteristics must be determined with
respect to the updating parameters.

The first step is to obtain the derivative of the eigenvalue sensitivities and modal coupling, contained within the sensitivity
matrix. Differentiating eqn. (2) with respect to an arbitrary parameter δp and remembering dM

dδK
= 0 produces

dΣiKk

dδp

=

[

dσiKi

dδp

dκiKk

dδp

dκkKi

dδp

dσkKk

dδp

]

=
dΦik

dδp

T dK

dδK

Φik + ΦT
ik

dK

dδK

dΦik

dδp

, (32)

where the parameters δK and δp are assumed to be independent so that d2
K

dδKdδp
= 0. The eigenvalue derivative dΦik

dδp
is

best obtained with Nelson’s method [10]. The eigenvalue derivatives are obtained with Fox and Kapoor’s equation [11],
and the following relationships are noted:

d∆λki

dδp

=
dλk

dδp

−
dλi

dδp

(33)

d∆σki

dδp

=
dσk

dδp

−
dσi

dδp

. (34)

The sensitivity of the maximum modal coupling is determined by differentiating eqn. (5) to produce

d

dδp

κ2
iKk = 2κiKk

dκiKk

dδp

+
∆σki

2

d∆σki

dδp

(35)

and hence
d

dδp

κiKk =
κiKk

κiKk

dκiKk

dδp

+
∆σki

4κiKk

d∆σki

dδp

. (36)

The sensitivity of the minimum eigenvalue separation is found by differentiating eqn. (22), yielding

d∆λki

dδp

=
κiKk

κiKk

d∆λki

dδp

+
∆λki

κiKk

dκiKk

dδp

−
∆λkiκiKk

κ2
iKk

dκiKk

dδp

. (37)

It is now possible to determine the derivative of the maximum vector rotation rate, or more specifically its inverse, from
eqn. (31):

∂

∂δp

(

dβ

dδK

−1)

=
1

κiKk

d∆λki

dδp

−
∆λki

κ2
iKk

dκiKk

dδp

. (38)

Similarly the derivative of the datum parameter value is found by rearranging and differentiating eqn. (14) to give

dδK

dδp

=
∆σki∆λki

4κ4
iKk

∂

∂δp

κ2
iKk −

∆σki

4κ2
iKk

d∆λki

dδp

−
∆λki

4κ2
iKk

d∆σki

dδp

. (39)

Finally, eqn. (23) is differentiated to give

dµλ

dδp

=
1

2

(

dλi

dδp

+
dλk

dδp

)

−
∆λki∆σki

8κ2
iKk

(
dσi

dδp

+
dσk

dδp

)

−
(σi + σk)∆σki

8κ2
iKk

d∆λki

dδp

−
(σi + σk)∆λki

8κ2
iKk

d∆σki

dδp

+
(σi + σk)∆λki∆σki

8κ4
iKk

d

dδp

κ2
iKk. (40)



Eqns. (14), (23), (31), (38), (39) and (40) may be combined to produce the necessary sensitivity calculations for the
updating scheme. Importantly, these calculations may be performed using the modal results from a single eigensolution,
performed anywhere in the region of the veering datum. The characteristics of the veering behaviour are captured in the
single solution without the need for iterative solutions, making the scheme computationally efficient.

7 EXPERIMENTAL DATA PROCESSING

To implement this technique, experimental data must be obtained for a range of independently controlled parameter values
spanning the veering region. Curve fitting methods are then used to extract the veering characteristics from the data.
The curve fitting is performed using the eigenvalue separation, ∆λki, computed directly as the difference of the measured
eigenvalues. From eqns. (5), (14) and (22),

∆λ2
ki = (4κ2

iKk)δ2
K − (8κ2

iKkδK)δK + (4κ2
iKkδ

2

K + ∆λ
2

ki). (41)

Thus in the vicinity of the veering, ∆λ2
ki should be described by a quadratic in the controlled parameter δK . The least

squares curve fit is obtained from

p =















δ
(1)
K

2
δ
(1)
K 1

δ
(2)
K

2
δ
(2)
K 1

...
...

...

δ
(n)
K

2
δ
(n)
K 1















+ 

























∆λ
(1)
ki

2

∆λ
(2)
ki

2

...

∆λ
(n)
ki

2



























(42)

where bracketed superscripts denote the experimental data point, + denotes the pseudo-inverse such that

A+ = (AT A)−1AT , (43)

and

p =







4κ2
iKk

−8κ2
iKkδK

4κ2
iKkδ

2

K + ∆λ
2

ki







. (44)

From eqn. (44) the veering properties |κiKk|, δK and ∆λki may be established in turn, and all that remains is to
determine the the sign of κiKk. This is not possible from consideration of the eigenvalues alone, and the eigenvectors
must be consulted.

There are several methods available for establishing the sign of κiKk, the simplest being inspection of the eigenvector
rotations. Having established a set of reference vectors, the eigenvector orientations can be determined using a dot product
with each of the reference vectors. Their rotation should be plotted as a smooth curve, and from eqn. (30), positive modal
coupling corresponds with positive dβ/dδK (and hence negative vector rotation direction as β is the angle from Φik to

Φik). This distinction allows the determination of parameters which would otherwise be insoluble due to symmetry.

In order to describe the veering eigenvalue curves fully, two more properties are required; these are both provided by the
mean eigenvalue locus, which traces a straight line under linear stiffness variation. The least squares solution is

q =













δ
(1)
K 1

δ
(2)
K 1
...

...

δ
(n)
K 1













+ 





















µ
(1)
λ

µ
(2)
λ
...

µ
(n)
λ























(45)

where µ
(n)
λ = (λ

(n)
i + λ

(n)
k )/2. The most obvious properties, and those which are adopted here, are the gradient of this

line and the mean eigenvalue at the veering datum, given by

dµλ

dδK

= q1 and µλ = δKq1 + q2. (46)



(a) Top view (b) Section X-X

Figure 1: Cross-braced rectangular frame used for updating tests.

8 WELDED FRAME EXAMPLE

It is anticipated that model updates based on the veering properties will produce the best results when these properties
are used in conjunction with more commonplace updating variables, notably the eigenvalues. For this example, however,
the veering properties will be used in isolation to demonstrate their utility. To this end, an experimental rig in the form
of a cross-braced rectangle is employed. The structure is seen in Fig. 1. Two bolts in one of the cross-members allow
tensioning of the structure which induces stress-stiffening, a geometric nonlinearity whereby the transverse stiffness of
slender elements is affected by axial loading. A detailed description of the experimental setup and results may be found in
reference [2]. The critical finding is that several eigenvalue loci intersect as the loading is varied, and those of modes 5 and
6 are found to veer around 3500N. This is in contrast to the symmetric analytical model where the loci cross. Differences
in the weld stiffnesses joining the members at the corners are the most likely cause for discrepancies and this example will
seek to determine these parameters.

To perform the updating computations as detailed above, the tangent stiffness derivative dK
dδK

must be known. Again, full
details of the numerical model may be found in reference [2], and a numerical finite difference technique is now used to
obtain the tangent stiffness derivative:

dK

dδK

=
K(n+1) − K(n)

δ
(n+1)
K − δ

(n)
K

(47)

where the bracketed superscipts refer to the load step.

The squared eigenvalue separation is plotted in fig. 2. The quadratic trend is clear, but the mild nonlinearity of the
structural loading causes a shift over the course of the loading range. For this reason the data points used in the curve
fitting should be limited to the vicinity of the veering. In contrast, it is desirable to include sufficient points so as to
produce a reliable estimate of the true curve.

Fig. 3 shows the variation of the modal properties as the load range is expanded to encompass more data points. It is
found that between the 1000N and 3000N ranges the estimates settle to reasonable values before diverging to the invalid
global least squares fit. Accordingly modal property values are chosen based on the estimates from this range, as indicated
in fig. 3. These values produce the quadratic curve in fig. 4, corresponding with the eigenvalue loci in fig. 5. They exhibit
a good approximation, with significant differences emerging only at the outermost extents of the loading spectrum.
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Figure 2: Experimentally determined eigenvalue separation of modes 5 and 6 in the welded frame.

In the FE model, the weld stiffnesses connecting the diagonal members to the rest of the frame are parameterised using the
cross-sectional width of short beam elements at the ends of each member. Using traditional eigenvalue-based techniques
the symmetry of the structure prevents the determination of a unique solution to the update for more than one corner.
Inclusion of the vector rotation rate resolves this difficulty, as the sign of the rotation rate differentiates between the effects
of symmetrical parameters. Despite the additional information given by the vector rotation rate, the structure is almost
symmetrical about two axes, so it is still not posssible to update all four parameters simultaneously. This information
deficiency would likely be resolved by incorporting the veering properties for two further modes, but this example will
simply consider the two parameter pairs separately. It has been recognised that the welds do not form perfectly rigid joints,
so the four parameters are initialised to 70% of the full stiffness.

To update two parameters at least two measured quantities must be used. The first of these will be the maximum vector
rotation rate. For the second, two quantities will be considered here in turn: the veering parameter datum and the mean
eigenvalue at veering. The sensitivity matrix to be used in the update is then

S =











∂
∂δA

(

dβ
dδK

−1
)

∂
∂δB

(

dβ
dδK

−1
)

∂
∂δC

(

dβ
dδK

−1
)

∂
∂δD

(

dβ
dδK

−1
)

∂δK

∂δA

∂δK

∂δB

∂δK

∂δC

∂δK

∂δD
∂µ

λ

∂δA

∂µ
λ

∂δB

∂µ
λ

∂δC

∂µ
λ

∂δD











(48)

where the subscripts A-D refer to the welds at locations A-D in fig. 1(a), and where only two columns and two rows of
the matrix are used in any given update.

The sensitivity matrix for the first iteration is

S =





−473.7 473.7 −420.9 420.9
358.0 358.0 260.5 260.5
2061 2061 1670 1670



 . (49)

From this it is clear that the vector rotation rate is the only parameter differentiating the symmetric parameters from one
another. In addition it is seen that the two sets of symmetric parameters have similar sensitivities, confirming that the
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Figure 3: Veering properties extracted from the experimental data using data points from varying load ranges, centered

approximately about the veering datum. The values chosen for the updates are indicated by the dashed lines.

4-parameter problem is still ill-conditioned. Accordingly, only the first two parameters will be considered in this example,
corresponding to the weld stiffnesses at each end of the non-tensioned member (that is, the member which does not
contain the tensioning mechanism).

The parameters are first updated using the vector rotation rate in conjunction with the veering parameter datum. Fig. 6(a-c)
shows the parameter values and the updating variables’ convergence history. As expected for equal numbers of parameters
and variables, the variables converge exactly. The updated parameter values suggest that the weld stiffness is greater
in the top left corner than the bottom right. Visual examination of the two welds in fig. 7 does not provide a rigorous
confirmation of this result, although the weld bead does appear thicker in the top left corner and the base metal errosion
greater in the lower right corner.

The updated FE model is then loaded incrementally to produce the eigenvalue loci in fig. 8(a). These are seen to reproduce
the experimental trends well, although the eigenvalues are higher than those obtained in the expermental data.

Performing the update with respect to the mean eigenvalue at veering instead of the veering parameter datum produces
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Figure 4: The quadratic curve produced with the chosen veering property values. The fit is very good in the veering

region, at the expense of the fit at the extents of the loading range.
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Figure 5: The eigenvalue loci produced by the mathematical veering model (–). The upward inclined sections of the

experimental frequency loci (◦) display significant nonlinear behaviour outside of the veering region.

similar results, seen in fig. 6(d-f), with the top left corner stiffer than the bottom right. Both weld stiffness parameters
are seen to be lower to compensate for the high eigenvalues obtained in the first example, producing the eigenvalue loci in
fig. 8(b). The compromise is that the veering parameter datum no longer matches that of the experiment. It is expected
that a more extensive future study will incorporate enough experimental data to identify a unique solution matching all
of the veering characteristics: an expectation that is justified by the successful separation of two symmetric parameters in
the current results.
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(d) Parameter convergence
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Figure 6: Parameter values and convergence history for the welded frame, updated using the eigenvector rotation rate and

the veering parameter datum [(a)-(c)] or the mean eigenvalue at the datum [(d)-(f)]. Dotted lines indicate experimentally

obtained values.

(a) Bottom right (A). (b) Top left (B).

Figure 7: Welded joints in the corners; these weld stiffnesses are used as parameters in the model update.
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Figure 8: The eigenvalues of the updated FE model compared to those of the experimental data. The eigenvector rotation

rate was used in conjunction with the veering parameter datum or the mean eigenvalue at veering to produce these results.

9 CONCLUSIONS

This paper has demonstrated the use of FE model updating to successfully reproduce characteristics of veering modes in
dynamic systems. The examples presented are based upon very limited experimental data and consequently are incapable
of updating all of the necessary parameters to reconcile the results exactly. It is seen, however, that the principles are
sound and will produce excellent results when used in conjunction with a full experimental data set.

The updating scheme takes advantage of some quantities derived herein, specifically characterising the veering modes.
In particular, the maximum rate of eigenvector rotation within a fixed subspace is found to be the most representative
quantity for describing the severity of the veering. This quantity has the added advantage of being able to differentiate
between variations in symmetric parameters; something that is often difficult to accomplish without careful mode shape
measurements. This advantage has been demonstrated clearly in the results presented.

The computational derivation of the quantities is achieved efficiently using a single eigensolution, without the need to
iterate solutions over the veering region. Similarly, robust techniques are described for determining the quantities from a
range of experimental tests over the veering range. The theory has only been applied to stiffness variations but analogous
derivations exist for mass variations. It is thought that the methods will provide efficient means for analysing a wide range
of localisation and veering problems.
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