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ABSTRACT

The interaction of vibration modes subject to parametric variation has long been observed to cause curious effects,

notably those of localisation and frequency curve veering. These phenomena have great significance in practical

applications: localisation is responsible for unexpectedly high levels of response in periodic structures, for example in

turbine rotor assemblies, and frequency curve veering has shown correlation with a variety of critical behaviours, for

example in the stability analysis of helicopter vibrations. This paper presents an in-depth analysis of the behaviour and

derives new system properties with respect to parameter perturbations. The properties offer a different perspective on

the interaction of vibration modes and the fresh insight is demonstrated with reference to some example problems. Two

normalised criteria are suggested to standardise the approach to such problems. Combining these criteria produces a

veering index which is proposed as a definitive measure of the presence and intensity of curve veering.

Nomenclature

α angle between arbitrary reference eigenvectors and transformed eigenvectors in the normal coordinate system

β angle between arbitrary eigenvectors and reference datum eigenvectors in the normal coordinate system

δj arbitrary parameter

δK parameter representing linear stiffness matrix variation

κijk coupling between ith and kth modes with respect to variation of parameter δj , alternatively “cross-sensitivity”

λi ith eigenvalue

φi ith mass-normalised eigenvector

σiji sensitivity of ith eigenvalue to parameter δj

∆λik separation of ith and kth eigenvalues, λi − λk

∆σkji difference in eigenvalue sensitivies with respect to δj for kth and ith modes, σkjk − σiji

Λ diagonal matrix of eigenvalues

Λik diagonal matrix of ith and kth eigenvalues

Φ full eigenvector matrix

Φik matrix of ith and kth eigenvectors

Ψik matrix of ith and kth stiffness-normalised eigenvectors (in explicit contexts normalised using A instead of K)

Σj sensitivity matrix, where diagonal terms are eigenvalue sensitivities and off-diagonals are modal coupling with
respect to parameter δj

Σijk submatrix of full sensitivity matrix, containing rows and columns corresponding to ith and kth modes

k lumped stiffness

m lumped mass



s small coupling spring stiffness

A arbitrary constant matrix

CSQijk cross-sensitivity quotient for modes i and k with respect to variation of parameter δj

I identity matrix

K stiffness matrix
δM parameter representing linear mass matrix variation

M mass matrix
MDFijk modal dependence factor for modes i and k with respect to variation of parameter j

Qijk quantity describing the validity of the assumption of a fixed subspace as modes i and j vary under variation of
parameter δj

T rotational transform matrix
VIijk veering index for modes i and k with respect to parameter variation j
′ denotes properties of modes after parameter variation

• bar denotes reference datum quantities

∗ denotes properties adapted to stiffness-normalised analysis

1 INTRODUCTION

Localisation is a phenomenon that has oft been observed in periodic structures, where small disturbances in the periodicity
may lead to the confinement of one or more vibration modes to small regions. The first rigorous experimental demonstration
was that of Hodges and Woodhouse [1]. Significantly, the behaviour can be induced through almost imperceptible
perturbations to the symmetry yet leads to far greater vibration loads than those predicted analytically. Such problems are
encountered commonly, for example, in bladed disc assemblies in turbomachinery [2].

Eigenvalue curve veering has an interesting history of discovery, with the rigour of early calculations (for example, [3]) called
into question [4] before exact solutions were found exhibiting the behaviour [5]. Its most straightforward manifestation is
observed when two eigenvalue loci, traced by a system under parametric variation, converge upon one another only to veer
abruptly away again. The loci swap trajectories and the modes swap properties. The proliferation of detailed parametric
studies facilitated by the advent of modern computing power has produced a slew of examples in the literature (for example
the surface veering of Plaut et al. [6]) and an experimental correlation is presented by du Bois et al. [7]. It has been shown
in recent studies to be useful in predicting stability in rotorcraft and other rotating blade assemblies [8].

Veering and localisation are intrinsically linked; while it is possible to observe veering without localisation, the reverse is
rarely true. In fact, it was the gross distortions of otherwise predictable mode shapes in transition regions that apparently
attracted much of the criticism directed towards the early theoretical predictions of veering and it is the self same distortions
that lead to localisation, or more accurately the lack thereof. Thus, the authors believe that a holistic approach as adopted
in works such as those of Pierre [9] and Triantafyllou and Triantafyllou [10] will aid in the understanding of both phenomena.

Critically, the authors believe that quantitative measures are required if the behaviour is to be studied, manipulated
or exploited successfully. Several authors have made efforts to quantify veering. An adept methodology is set out by
Perkins and Mote [5], who derive “modal coupling factors” to determine the behaviour of converging modes. While
the term “modal coupling” is sometimes associated with the coupling induced through non-proportional damping, the
systems discussed here are undamped. Paradoxically, by definition, modes are uncoupled within an undamped system.
The parametric variations extend the scope of the system, however, and within this metasystem the modal properties are
coupled. The coupling factors provide a good qualitative description of the metasystem and as will be seen they form
important quantities in the analysis, but on their own the values do not provide significant insight. Recognising a need
to identify veering regions, Liu [11] proposed using the eigenvector derivatives or the second derivatives of the eigenvalues
to quantify the behaviour. Once again, however, the significance of the values would need to be interpreted on a case by
case basis.



The approach taken in this paper is to use quantities derived from the modal coupling in conjuction with an analysis of
the eigenvector transformations to produce a universal description of veering. Two non-dimensional quantities are derived
to describe the behaviour in terms of tangible effects and when combined these provide a single, unambiguous measure of
the presence and severity of veering. It is thought that this will facilitate the advancement of both veering and localisation
studies.

The present analysis is limited to self-adjoint, undamped systems with linear matrix variations, with the intention of
generalising the method in a later paper. Each concept is demonstrated first for variations of the stiffness matrix, where
the motives behind the approach are clearest, before introducing the analogous methods for mass matrix variation.

2 MODAL COUPLING

Consider a self-adjoint, discrete, undamped structural dynamic eigenproblem. Fox and Kapoor [12] derive the eigenvalue
sensitivity to a parameter δj as

dλi
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= φTi

(
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dδj
− λi

dM

dδj

)

φi (1)

where λi and φi are the eigenvalue and mass normalised eigenvector of the ith mode and M and K are the system mass
and stiffness matrices. The corresponding eigenvector sensitivity is given as
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where ∆λir = λi − λr. Differentiating eqn. (1) with respect to δj and using eqn. (2) yields
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where d2λi

dδ2
j

is the second derivative, or curvature, of the eigenvalue. If the ith and kth eigenvalues become close such

that ∆λik is very small then the expression for curvature is dominated by the corresponding term in the summation
where r = k, and it is this term that is responsible for the veering of the eigenvalue loci. The numerator of that term is

2
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, which is analogous to Perkins and Mote’s “coupling factor” [5]. For the purposes of this paper

the “modal coupling” shall be defined slightly differently as

κijk = φTk

(
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− λi

dM

dδj

)

φi. (4)

Expanding this to the full set of modes, a sensitivity matrix can be defined:

Σj = Φ
T dK

dδj
Φ − Φ

T dM

dδj
ΦΛ (5)

where Φ is the complete matrix of eigenvectors, [φ1, φ2...φN ], and Λ is a diagonal matrix of eigenvalues. The diagonal
terms in Σj are the eigenvalue sensitivities and the off-diagonal terms are the modal coupling, which can be interpreted
as cross-sensitivities representing the influence of each mode on the derivatives of the other modes’ properties.

3 EIGENVECTOR ROTATION

For proximate modes i and k, if ∆λik << ∆λir for all r 6= i, k then eqn. (2) can be approximated by
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From this equation (and the equivalent expression for dφk

dδj
) it is seen that the two vectors throughout veering can always

be represented by a linear combination of a single pair of vectors; as they transform, they always remain in the same plane
or subspace. Furthermore, the validity of this assumption can be quantified for each mode by comparing the ℓ2-norms of
eqns. (6) and (2) within the normal basis:
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and noting that the summed term in the denominator is easily computed using a single column of the sensitivity matrix in
eqn. (5).

Figure 1: Orthogonal mode

shape vectors, for jth and kth

modes, transforming into new

modes within their subspace.

Suppose that a constant matrix, A, can be found such that Ψ
T
ikAΨik = I for all

values of δj , where I is an identity matrix and Ψik is the N×2 matrix of A-normalised
eigenvectors, [ψi, ψk]. In this case, the two eigenvectors will always form an orthonormal
basis with respect to A, and their magnitude and orientation within the subspace can
be defined relative to a set of reference vectors by a single angle. This is illustrated in
fig. 1, and can be expressed

Ψ
′
ik(Ψik, α) = ΨikT, T =

[

cos α −sin α
sin α cos α

]

. (8)

This is a generalisation of the system described by Balmés [13] and demonstrates that
his observations may be directly extrapolated to any veering system, contingent on the
existence of an appropriate orthonormalising matrix and satisfactory agreement with
eqn. (6). The latter is generally true for proximate modes. The former is achieved
most readily by keeping either the mass or stiffness matrix constant and these two
scenarios will be considered in the sections that follow.

4 CROSS-SENSITIVITY QUOTIENT

In this section the variation of the modal coupling throughout veering is investigated. A reduced sensitivity matrix for
modes i and k shall be defined as
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where σiji is equivalent to the eigenvalue sensitivity, λi,j . Considering a linear variation in the stiffness matrix, represented
by δK , the mass matrix remains constant and serves as an orthonormalising matrix, allowing the substitution of eqn. (8)

in eqn. (9) using Ψik = Φik. Noting that dM
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where Σ
′
iKk and dK

dδK

′
are the sensitivity and stiffness matrices corresponding to the eigenvectors Φ

′
ik produced by a change

in δK . Σ
′
iKk is a symmetric 2×2 matrix in which the off-diagonal elements are equal:
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and ∆σkKi = σkKk − σiKi. The modal coupling is seen to vary harmonically with the orientation of the vectors. The
maximum coupling is given by eqn. (13) and this is used to define a corresponding set of reference vectors, Φik. Setting
Φ

′
ik = Φik gives κ′iKk = κiKk and hence from eqn. (11) α = β, so that eqn. (12) describes the angle between Φik and

Φik. Setting Φ
′
ik = Φik gives κ′iKk = κiKk and α = 0, so that eqn. (11) produces

κiKk = κiKkcos (2β) (14)

From eqn. (12) the angle β is zero when ∆σkKi = 0 and the sensitivities of the two modes are equal: effectively
the point where the eigenvalue loci swap trajectories. This corresponds to the point where the eigenvalues are closest,

and since eqns. (3) and (6) can be written d2λi

dδ2
K

≈ 2(κ2
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= 0) it is also the point where the eigenvalue curvature and eigenvector sensitivity are greatest. These

reference vectors form a veering datum set where the modal coupling, or cross-sensitivity, is greatest. The cross-sensitivity
thus provides a useful measure of the intensity of veering, its square being proportional to the eigenvalue curvature. The
maximum cross-sensitivity over a range of δK is easily computed from the modal properties for any single value of δK ,
and it is convenient to define a cross-sensitivity quotient as CSQiKk = (κiKk/κiKk)

2
. Using eqns. (13-14),

CSQiKk = cos2(2β) =
κ2

iKk

κ2
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2
. (15)

A more general definition is afforded by examining the eigenvector rotations. As β → ±π
4
, the modal coupling goes to

zero and from eqn. (6) the vector rotation also halts. Thus for an idealised veering case (without interaction from other
modes), the datum vectors are oriented exactly half way between their asymptotic limits. This definition is used to derive
a CSQ for the case of mass matrix variation as follows.

Consider a linear variation in the mass matrix, represented by δM , with constant stiffness matrix. The stiffness matrix may
be used as the orthonormalising matrix such that

Ψ
T
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− 1

2
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where Λ is a diagonal matrix so the inverse square root needs no further clarification. Combining eqns. (9) and (16) while
noting dK
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= 0 yields
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This matrix is not symmetric, and maximum values for κiMk and κkMi will not necessarily coincide. In order to define a
cross-sensitivity quotient for the two modes in the same manner as before, a symmetric matrix is defined in the form of
an adapted sensitivity matrix:

Σ
∗
iMk = Λ

− 1

2

ik ΣiMkΛ
− 3

2

ik = −Ψ
T
ik

dM

dδM
Ψik. (18)

Substituting eqn. (8) and remembering dM
dδM

= dM
dδM

′
,

Σ
∗
iMk

′ = −Ψ
′T
ik

dM

dδM

′

Ψ
′
ik = −T

T
Ψ
T
ik

dM

dδM
ΨikT = T

T
Σ

∗
iMkT. (19)

This is equivalent to eqn. (10) and, by analogy,
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Note that the eigenvalues are generally close at veering, and if λi ≈ λk then κ∗ ≈ κ and CSQ∗ ≈ CSQ. Eqns. (15) and
(20) are valid for any symmetric, undamped structural eigenproblem with linear variation of the mass or stiffness matrices.



5 MODAL DEPENDENCE FACTOR

Veering is distiguished from other forms of parametric variation by the swapping of modal properties from one mode to
another. This is effected by a transformation of the eigenvectors within a fixed subspace. If the vectors stray significantly
outside their subspace, it is an indication that they are interacting with other modes. On this premise, a modal dependence
factor (MDF) is derived below to quantify the contribution of the interaction between two modes to their total variation.

Eqn. (7) gives an exact measure of the conformity of the mass-normalised eigenvectors to their subspace. As before,
considering a change in parameter δK causing a variation of the stiffness matrix such that dM

dδK
= 0, eqn. (7) can be

written
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iKk =
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2

(21)

This equation requires knowledge of the modal parameters for all the modes, but it is desirable that the modal dependence
factor, as with the cross-sensitivity quotient, may be computed using only modal parameters for the two modes concerned.
The eigenvector derivative, dφi

dδK
can be obtained in a computationally efficient manner using only modal properties for

the ith mode with Nelson’s method [14]. Transposing eqn. (2), post-multiplying by Mφk and noting the orthogonality
properties gives
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Post-multiplying eqn. (2) again, this time by M
dφi

dδK
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Combining eqns. (21-23) yields
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giving the contribution of the kth mode to the derivative of the ith eigenvector. From vector algebra and inner products,
this is seen to be equivalent to the cosine of the angle between the eigenvector derivative and the plane Φik in the normal
coordinate system. The same approach may be taken for mass matrix variation with dK

dδM
= 0, to produce

MDF∗
iMk =

(

dψi

dδM

T
Kψk

)2

dψi
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T
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where ψi is once more the stiffness-normalised ith eigenvector, and careful attention must be given to the correct normal-
isation of dψi

dδj
when using Nelson’s scheme. In the case of several modes veering simultaneously, the MDFs may also be

summed to quantify the confinement of the vector within the larger subspace.

6 VEERING INDEX

Veering was shown in section 2 to depend on two factors: the modal coupling and the eigenvalue separation. Veering
occurs in the presence of strong modal coupling and proximate modes. Contrarily, the behaviour is most often observed
in systems with weak modal coupling outside of veering regions. In these circumstances the eigenvalues must approach
closely in order to induce veering, producing more rapid and hence more discernible instances of the effect. In contrast, the
gradual veering resulting from higher modal coupling generally involves greater eigenvalue separation and wider parameter
ranges such that veering is less remarkable and disrupted by other modal interactions.



Figure 2: A geometric interpretation of the cross-sensitivity

quotient and modal dependence factors described by

CSQijk = cos2(2β), MDFijk = cos(γi) and

MDFkji = cos(γk). Depicted is a plane or subspace in the

normal coordinate system containing two eigenvectors φi and

φk. These vectors are separated from the veering datum

vectors for that subspace, φi and φk, by angle β. The

corresponding eigenvector derivatives are pictured forming

angles γi and γk with the subspace.

The difficulty in quantifying the behaviour then lies in de-
termining what values are considered to be strong modal
coupling and small eigenvalue separation. The MDFs and
CSQ provide two alternative descriptive quantities. The
MDFs give a measure of the proximity of the modes in
terms of their influence on each other relative to the in-
fluence of the other system modes, encompassing both
the eigenvalue separation and the modal coupling. The
CSQ indicates the proximity of two veering modes relative
to their closest approach. These normalised quantities
put the measurements into context and independently
allow meaningful conclusions on the state of veering to
be drawn.

A geometric interpretation is given in fig. 2. From this
the MDFs are seen to describe the extent to which the
eigenvector derivatives deviate from their subspace, while
the CSQ describes the eigenvector orientation relative to
the veering datum within that subspace. Thus the MDFs
determine whether the modes can veer and the CSQ de-
termines whether they are veering. It is necessary and
sufficient that they are both close to unity to produce
veering.

To determine the presence of veering, a veering index is proposed as the product of the CSQ and the two MDFs:

VIiKk = MDFiKk × CSQiKk × MDFkKi (26)

VI∗iKk = MDF∗
iKk × CSQ∗

iKk × MDF∗
kKi (27)

In essence, the veering indices computed with eqns. (9), (15), (24), (26), (20), (25) and (27) are a measure of the extent
to which two modes are swapping properties with each other. In addition to the insight gained directly from the veering
indices, they are expected to prove a useful aid in the interpretation of more observable results, an example of which is
given in a separate paper found in these proceedings.

7 EXAMPLES

Two examples are presented here: the first is a simple 2 degree of freedom (DOF) system which will demonstrate the
principles of the veering quotient. The second example has been chosen to demonstrate some of the more surprising results
obtained with the veering index.

Figure 3: Two degree of freedom spring

mass system.

Fig. 3 shows the 2 DOF system, consisting of two grounded spring-mass
arrangements and a light coupling spring between them. In this example
k1 = k2 >> s. Away from veering, each mass dominates the motion
for its respective vibration mode. As m2 varies, the natural frequencies of
the two modes converge and veer, forming two symmetrical mode shapes
where m2 = m1. The eigenvalue loci are plotted in Fig. 4(a). Because
there are only two modes in this system, the modal dependency factors
MDF1m2 and MDF2m1 will always be unity. In this case, the cross-
sensitivity quotient and the veering index are identical and are plotted using
eqn. (20) in Fig. 4(b). They provide a clear indication of the intensity
of veering. The “half-SCQ parameter bandwidth” has also been marked,
denoting the region within which the SCQ exceeds 0.5. The effect of veering
on the eigenvalue loci is most pronounced in this range.
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Figure 4: 2 DOF system plotted for k1 = k2 = 3, m1 = 2, s = 0.0625 and m2 = 1...3. Dotted lines indicate the half-SCQ

parameter bandwidth.

Figure 5: Four degree of freedom spring

mass system with light spring couplings

s1−3 between the masses.

The second example is illustrated in fig. 5. It consists of two pairs of lightly
coupled spring-mass arrangements as used in the first example, with an
even lighter spring coupling the two systems together. The masses are all
equal in this example and the parameter change δj corresponds to an equal
linear increase in the stiffnesses of k1 and k2. The initial spring stiffnesses,
k1−4, are chosen such that prior to veering modes 1-4 are dominated by
the motion of DOFs 1-4 respectively. The coupling springs, s1−3, introduce
light modal coupling and s1 = s2 >> s3. The eigenvalues are plotted in
fig. 6(a), where modes 2 and 3 appear to veer away from each other. Before
veering these modes correspond to the motion of DOFs 2 and 3, which have
extremely low coupling in comparison to that between DOFs 1 and 3 and
DOFs 2 and 4. Consequently, the veering observed in fig. 6(a) is in fact
caused by the modes pairs 1-3 and 2-4. This is clearly indicated by the
veering indices in fig. 6(b) where the only curves to rise substantially above
zero are those corresponding to VI1j3 and VI2j4. Examining the cross-
sensitivity quotients in fig. 6(c) shows that as the two mode pairs veer the
vectors swing close to the veering datums for other mode pair combinations; the sharp peaks at δj ≈ 77 correspond to
pairs 2-3 and 1-4. Consultation of the modal dependency factors in fig. 6(d), however, confirms that while the MDFs for
the veering mode pairs stay close to unity, those for the spurious mode combinations remain small. The high CSVs do not
impact significantly on the modal variation and this is reflected in the veering indices.

Increasing the coupling between the two spring-mass systems so that s3=s2=s1 produces similar eigenvalue loci, presented
in fig 6(a). Referring to the veering indices in fig. 6(b), the observed curvature is now seen to be attributable to interaction
between several modes, in three distinct phases. First modes 1 and 3 begin to veer. As mode 3 takes on the properties of
mode 1 its coupling to mode 2 increases. At the same time the 2nd and 3rd eigenvalues get closer and the combination
of these effects causes those two modes to veer, taking the dominant role in the variation. As these modes diverge again
the 2nd mode starts to veer with the 4th and the corresponding veering index peaks. At no stage are any two modes
interacting solely with one another and this is witnessed by the veering indices which are always significantly below unity.
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Figure 6: 4 DOF system plotted for m1 = m2 = m3 = m4 = 1, s1 = s2 = 0.6, s3 = 0.05, k1 = 0.1 + 0.03δj ,
k2 = 0.75 + 0.03δj , k3 = 2.2, k4 = 3.2 and δj = 1...150.

8 CONCLUSIONS

The distinguishing characteristic of eigenvalue curve veering lies in the swapping of properties from one mode to another.
This is effected through the transformation of the eigenvectors within their subspace. The methods presented here allow
analysis of the mechanisms through which veering is manifested, resulting in three normalised criteria. The cross-sensitivity
quotient describes the state of veering of two modes within their subspace, the modal dependence factor identifies the
conformity of the modes to that subspace, and the veering index combines the two to give a definitive quantification of
mode veering. An important feature of the technique is that it requires only knowledge of the modal properties for the
two modes concerned at a single parameter value. This method produces insightful results when used in isolation but its
principal application is expected to be in the interpretation and extrapolation of less esoteric quantities, for example in
localisation and stability studies. A further example is demonstrated by the authors with regard to model updating in a
second paper in these proceedings.
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Figure 7: The 4 DOF system plotted for s1 = s2 = s3 = 0.6.
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