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ABSTRACT

The manifestation of mode veering in structural dynamic problems has been the subject of much debate in recent
years. Initially regarded as an anomolly occurring predominantly as a result of numerical discretisation errors, it is now
recognised as a phenomenon occurring in a wide range of exact analytical solutions. Myriad theoretical studies have
explored the characteristics of the behaviour but despite this, supporting experimental data is scarce. A numerical and
experimental investigation of mode veering is undertaken here. Structural loading is used to induce striss-stiffening
effects in a redundant truss. Geometric nonlinearities are included in a static FE analysis to obtain a tangent stiffness,
which is then used in a linear dynamic solution. The eigenvalues and eigenvectors are compared to the experimental
data in the vicinity of a mode veering, where the behaviour of the real structure is found to correspond well with the
theoretical observations. Practical implications of real-world mode veering are discussed.

Nomenclature

λi ith eigenvalue

φi ith eigenvector (mass normalised)

θ structural parameter

ε perturbation to structural parameter

εx, εy axial and transverse elemental strain

A cross-sectional area
CFij coupling factor between modes i and j

E Young’s modulus

KE elastic stiffness matrix

KG geometric stiffness matrix

KT tangent stiffness matrix

L length

u, v axial and transverse beam displacements

K stiffness matrix
M mass matrix

1 INTRODUCTION

Changes in dynamic response through structural parameter variation are routinely characterised in plots of the eigenvalue
loci over the parameter range of interest. It is common for adjacent loci to follow intersecting trajectories. For self-adjoint
eigenproblems, as encountered in general structural dynamic work, the loci in these regions will either be seen to cross or
veer suddenly away from each other.



Since the first theoretical observations of mode veering [1–6], the combination of a lack of experimental evidence and
discrepancies between results from different numerical and analytical techniques [5, 6] has prompted debate about the
existence of veering in practical systems. It is now well established that although veering can be an aberration produced by
spatial discretisation and poor damping models (see [6, 7]), there exist systems for which exact analytical solutions exhibit
the phenomenon [8]. The following sections will summarise the theoretical characteristics of mode veering and go on to
present finite element (FE) and experimental results to support these ideas.

The structure used to demonstrate the behaviour is a redundant truss. The parameter varied is the internal pre-stress,
which induces an effect known as stress stiffening. This is a manifestation of geometric nonlinearity, whereby the transverse
stiffness of a beam or shell is affected by applied axial or membrane loads. This has been used for millennia in stringed
musical instruments, where the pitch is varied by tensioning the strings. It is also illustrated by the well-known Euler
buckling instability, a special case of the generalised result provided by Warburton [9]. Slender structures are designed
primarily to carry only axial loading. As such, the effect of stress stiffening on static displacement is usually minimal.
The dynamic response of the structure, however, can be greatly influenced by the change in transverse stiffness. This was
exploited as far back as 1936, when Stephens [10] explained how the natural frequencies of a structure can be used to
determine the load carried in its members.

Internal pre-stressing of a framed structure will cause some members to experience compression while others are placed
in tension. The contrasting effects on stiffness of the members creates a structure with both rising and falling natural
frequencies, ideal for studying the interactions of the modes as they converge. The advantage of using a continuously
adjustable parameter such as pre-stress is also evident when the small range of parameter values over which veering occurs
is considered.

2 A BRIEF REVIEW OF MODE VEERING

Mode veering is characterised by the sharp transition of two convering eigenvalue loci to new trajectories. After veering,
each locus continues on the path previously followed by the other. As well as the rapid change in eigenvalue sensitivities,
it has long been known that the mode shapes undergo violent changes as they veer, described elegantly by Leissa [6]:
“figuratively speaking, a dragonfly one instant, a butterfly the next, and something indescribable in between.” The modes
effectively swap with each other, each one taking on the characteristics of the other. It is for this reason that rapid mode
veering in experimental results will often go undetected: If data is only recorded for parameter values either side of the
veering region, and not for the narrow band within the veering region, it is almost indistinguishable from a crossing.

Modes in symmetric structures are always symmetric or antisymmetric with respect to that symmetry. Webster [11] and
Petyt and Fleischer [5] both note that a symmetric mode’s frequency locus will pass through that of an antisymmetric
mode, with the two modes coexisting at the same frequency, yet two symmetric or two antisymmetric modes will generally
veer. Any imperfections will remove the symmetry, producing weak modal coupling so that all proximate loci will tend to
exibit veering.

Some efforts have been made to establish and define the conditions under which veering occurs. Perkins and Mote [8]
derive perturbation expressions for the eigenvalues of two proximate modes and determine “coupling factors” to quantify
the eigenfunction coupling. For a symmetric, self-adjoint, matrix eigenproblem the coupling factors are given by
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where θ is the parameter, φi and φj are the two eigenvectors, λi is the ith eigenvalue and M and K are the system mass
and stiffness matrices. It is assumed that the two eigenvalues are close to each other and distant from other eigenvalues,
meeting the criterion

|λi − λj | ≤ ε{ min
r,s 6=i,j

|λr − λs|} (2)

where ε is a perturbation to the parameter, θ, of the same order of magnitude as the veering region. In this case the
behaviour of the loci depends on the coupling factors: without coupling the loci are locally independent and free to cross;



otherwise, for self-adjoint problems, the coupling factors will be positive and the curves will veer away from each other.
This provides a useful tool for ascertaining whether two modes will cross or veer and how abrupt the changeover will be.
Small coupling factors correspond with rapid veering, while large coupling factors represent more gentle transformations.

Another useful characterisation is to examine the eigenvector rotations of the two modes, responsible for their aesthetically
bizarre transformatons. Balmès [12] expressed system properties for a three degree of freedom lumped-mass system in
terms of two eigenvalue perturbations and a rotation angle, θ, and demonstrated that as two of the modes went through
a veering region the eigenvectors both rotate in their plane by the angle θ. It can be demonstrated that as any two modes
veer, provided their proximity to each other is much greater than to any other modes, they will remain roughly in the
same plane, or subspace, and both rotate by the same angle in the normal coordinate system. The total angle of rotation
undergone throughout a veering is related to the severity of the veering. The more violent the veering, the greater the
rotation, tending to a maximum total of 90◦ as the coupling factors go to zero and the veering becomes a crossing. This
means that the more rapid the veering, the closer the resemblance between the pre-veering mode shapes and the swapped
post-veering mode shapes.

3 REDUNDANT TRUSS EXAMPLE

3.1 Experimental Setup

(a) Experimental setup (b) Schematic layout

Figure 1: The redundant frame with tightening mechanism in one of the diagonal members. The two diagonals are not

connected where they cross. The corner joints are rigidly welded.

The experimental arrangement can be seen in Fig. 1(a). A redundant structure was designed in the form of a cross-
braced rectangle, shown schematically in Fig. 1(b). The corner joints are welded, as this connectivity introduces the least
uncertainty to the structure. Two bolts in one of the diagonal members pass either side of the other cross-beam so there
is no contact between the two members. When the bolts are tightened, they shorten that member, resulting in a load
transmitted throughout the structure, with the diagonal members in tension and the outside members in compression. To
simplify the FE analysis the beams are arranged to behave as a 2-dimensional system. The second moment of area of each
beam in the plane of the structure is far smaller than that perpendicular to the plane so the vibration modes out of plane
will occur at much higher frequencies than those in plane. All of the beam centrelines lie in one plane to avoid coupling
between in-plane and out-of-plane modes.

In light of the discussion in section 2 it is relevant to note that the structure does not have reflectional symmetry due
to the considerably lower stiffness of the tensioning mechanism compared to that of the solid cross-member. It does,
however, have rotational symmetry.



The framework is suspended by rubber bands to approximate free vibration conditions and fourteen accelerometers are
attached. In order to control the loading of the structure, strain gauges are mounted on top and bottom of the adjustable
member. By balancing the two gauges it is possible to ensure that no bending moment is induced in the structure by
uneven tightening of the two tensioning bolts. LMS spectral aquisition software [13] is used with a single shaker to supply
broadband excitation to the structure and obtain the FRFs and modal response. The modal characteristics are identified
using a least squares complex exponential parameter estimation technique in the time domain with multiple degrees of
freedom. The mode shapes are simplified to real approximations and this is justified by noting that the damping will be
very low throughout this structure and the complex parts of the mode vectors will be negligible. The modes are expanded
using a reversed Guyan reduction technique [14, pp.68-69] and mode correlation between load cases is automated using a
MAC-based algorithm [14, pp.56-57].

3.2 Finite Element Model and Results

The FE model uses 6 two-dimensional Euler-Bernoulli beam elements to represent each member. The tightening mechanism
is represented by a further 3 elements. The static loading is modelled by removing the coupling between the bolts and
the frame at one end of the mechanism. The free end of the frame is fully constrained and the free end of the bolts is
constrained in the transverse and rotational degrees of freedom (DOFs), leaving the axial DOF unconstrained. A load is
then applied axially to this end. Once the static solution is obtained, the two free ends can be rigidly joined again and the
constraints removed to obtain the free dynamic response.

3.2.1 STRESS STIFFENING

Geometric nonlinearities are characterised on a load-displacement graph by the changing gradient of the curve. The
stiffness at a given point is represented by the tangent to the curve and referred to as the tangent stiffness. The approach
adopted here is to first use a nonlinear static analysis to determine the tangent stiffness for a given load case. Then,
assuming small dynamic loads and displacements, the tangent stiffness is used to obtain a linear dynamic solution for this
load case.

Geometric nonlinearity is commonly included in static structural problems [15], and is generally split into two categories:
stress stiffening and large deformation. In finite element analyses, the latter is usually subcategorised further into large
elemental rotations and large elemental strains. Stress stiffening is the most important factor for lower loads and small
deformations, where its effect on dynamic response is belied by its relative insignificance in static solutions. As structural
deformation increases it becomes necessary to take elemental rotations into account, but the further complication of large
elemental strain is easily avoided in simple models through refinement of the spatial discretisation. It is common to derive
a geometric stiffness matrix based on axial load which, when added to the elastic stiffness matrix KE , gives the tangent
stiffness:

KT = KE + KG

The elements used in this analysis are simple two-dimensional Euler-Bernoulli beam elements [16, p.81] with six degrees of
freedom: two translational and one rotational at each end. Jennings [17] uses a series of transformations to include both
stress stiffening and large deformation effects in the stiffness matrix. He derives an exact solution and a computationally
efficient approximation based on second order expansions of the axial strain term. Using his second order approximation
a geometric stiffness matrix can be formed in terms of the axial and transverse end displacements:
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EA

L

















0 εy 0 0 −εy 0

εy

(

εx +
3

2
ε2

y

)

0 −εy −
(

εx +
3

2
ε2

y

)

0

0 0 0 0 0 0

0 −εy 0 0 εy 0

−εy −
(

εx +
3

2
ε2

y

)

0 εy

(

εx +
3

2
ε2

y

)

0

0 0 0 0 0 0

















where
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L
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L

(3)

and u and v are the axial and transverse displacements, E is the Youngs Modulus, A the cross-sectional area and L the



length of the beam.

Closed form solutions for general nonlinear structural problems are rare and iterative techniques are usually employed. A
common method, employed here, is to calculate the displacement at small load intervals using linear theory, evaluating a
new tangent stiffness at each step. Newton-Raphson iterations [18, pp.277-280] are employed to reduce the residual force
at each load increment.

As with the experimental data, modes are correlated between load steps using a MAC-based algorithm.

3.2.2 RESULTS
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(a) Initial FE model
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(b) Perturbed FE model

Figure 2: Eigenfrequency loci plotted with varying load from finite element data. A small initial perturbation of the side

members results in significantly different behaviour close to the buckling load.

The eigenfrequency loci for the initial FE model are plotted in Fig. 2(a) with load steps of 300N. The FE model was taken
close to buckling at 6800N and it was found that the eigenfrequiency loci near buckling are very sensitive to the initial
configuration. As an example, Fig. 2(b) shows the results for the same model run with an initial transverse curvature in
the long outside members in the form of a half sine wave. The initial displacement of the beam centres is just 0.185% of
the member length but produces a marked change in the dynamic behaviour close to buckling. This is attributed to the
higher failure load of the ideal structure compared with the perturbed model. The ideal structure deforms linearly before
suddenly buckling; in contrast, the onset of buckling begins earlier and more gradually in the perturbed structure.

The loci appear to cross in several places. The point where modes 5 and 6 meet will be examined in detail. Their mode
shapes are illustrated in Fig. 3 where it can be seen that mode 5 has ‘even’ rotational symmetry and mode 6 has ‘odd’
rotational symmetry. They are therefore expected to cross rather than veer, and this is seen to be the case in Fig. 4(a). In
a practical structure, perfect symmetry can not be achieved, so an arbitrary imperfection is introduced to the FE model.
This takes the form of a 1% increase in the cross sectional area of two outside members, affecting the calculation of
the mass and axial stiffness (but not the transverse or bending stiffness). This is seen in Fig. 4(b) to produce weak
coupling between the two modes and cause them to veer instead of crossing. The mode shapes are shown at several stages
throughout the veering in Fig. 5(a). As expected, after veering each mode takes on the form of the other through a
smooth rotation of the eigenvectors, demonstrated in Fig. 7(a). It’s interesting to note that the rotation is not through a
full 90◦, so the mode shapes are slightly different from those present before veering. Also, after veering, mode 6 is roughly
180◦ out of alignment with mode 5 before the veering:

φ6|post−veering ≈ −φ5|pre−veering

Ordinarily this is of little interest as the scaling of the mode shapes is arbitrary so positive and negative modeshapes are
equivalent but with mode veering it is important as it is indicative of which direction the eigenvectors have rotated. This
in turn reflects the variation of the dynamic response throughout veering. The significance of this in terms of the overall



mode 5: 68.6Hz

mode 6: 77.8Hz

Figure 3: The fifth and sixth

vibration modes of the

unloaded frame

response is dependent upon the proximity of the loci and thus the severity of the
veering. When the eigenvalues are very close, only the subspace occupied by the two
vectors is relevant to the total response, and this remains almost constant throughout
veering, regardless of the vector orientations within that subspace. This is recognised
by Balmès [12], and further discussion of system response with regard to proximate
eigenvalues is undertaken by Igusa [19]. If the veering is more gradual and the loci
further seperated then their rotation becomes more relevant in terms of overall response,
but the behaviour is then closer to normal eigenstructure variation and can not be
described so well by veering characteristics and assumptions.

3.3 Experimental Results

The structure was tensioned, tightening the bolts incrementally by hand until the point
was reached where further tightening produced little increase in the strain measurements
and the structure was deemed to have buckled. Comparing the observed eigenfrequency
loci from Fig. 6(a) with the initial FE model in Fig. 2(a), the two graphs clearly follow
the same trends for low loads but differences emerge as the buckling load is approached.
It was noted during the experiment that the buckling mode closely resembled that of
the perturbed structure and, accordingly, the experimental eigenfrequencies correspond
well with those in Fig. 2(b).

Focusing again on the fifth and sixth modes, close examination of the curves in Fig.
6(b) reveals unequivocally that the loci for these two modes veer away from each other.
Comparing the experimental results with those for the FE model, it is found that the veering is much more gradual than
in the analytical solution, occuring over a greater range of loading and with a greater seperation of the loci at their closest
point.

The expanded mode shapes captured from the experiment are seen in Fig. 5(b) to match very closely those produced
in the numerical model, although not at the same loads. A further discrepancy lies in the transformation of the modes.
This is most obvious for the third (middle) set of mode shapes in Fig. 5, where the 5th analytical mode corresponds to
the 6th experimental mode and vice versa. A clearer picture of this behaviour is obtained by comparing the experimental
vector rotations with the FE rotations in Fig. 7, where it can be seen that the vectors rotate in the opposite direction.
This highlights the relevance of the sign of the eigenvectors, as discussed earlier. The direction and rate of eigenvector
rotation is governed by the coupling between the two modes, in this case the asymmetry of the structure. It is clear in
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(a) Symmetric model exhibits crossing
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(b) Asymmetric model exhibits veering

Figure 4: Close examination of the interaction between modes 5 (–) and 6 (- -) in the symmetric and asymmetric FE

models.
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Figure 5: Variation of mode shapes as modes 5 and 6 approach each other and veer away. After veering mode 5 takes on

the original form of mode 6 and vice versa. One mode shape is always inverted after veering.

this example that although the veering bears similarity to that of the FE model (as would any veering involving these two
modes), the arbitrary asymmetry introduced does not match that of the actual structure. An updated model is needed,
based on appropriate parameters, to match the rate and direction of the eigenvector transformations. It is possible that
the eigenvector rotation could form a useful part of the objective function in an updating algorithm, particularly as it is
very sensitve to small parameter changes.
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Figure 6: Experimental eigenfrequency loci plotted with varying load.
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(b) Experimental results

Figure 7: The rotation of the 5th (–) and 6th (- -) eigenvectors in the normal coordinate system relative to the initial

orientation of mode 5.

4 CONCLUSION

Mode veering is now established as a physical phenomenon occurring in real structures. The experimental results presented
here confirm the veering behaviour of a real system to correspond with that predicted by finite element modelling.
Applications of mode veering in response suppression are limited, as strong veering occurs only when the eigenvalues
are extremely close, and in these circumstances the system response is generally affected very little by the presence of
veering. An understanding of veering and the sensitive parameter dependence in these regions will, however, be necessary
whenever proximate modes are studied, in both analytical and experimental situations. In addition to its general use this
will be particularly relevant to, and may even find specific application in, control systems and model updating algorithms.
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