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The research presented in this paper investigates the possibility of precise experimental

identification of steady damper characteristics. The paper considers velocity sensitive

and nominally symmetric hydraulic dampers. The proposed identification methodology

is based on a piecewise constant velocity excitation. One goal of the paper is to analyze

the transient nature of the damper response in the context of finite permissible piston

displacements and first order transient effects due to elastic elements in the damper

structure. The proposed methodology is formalized in a framework suitable for

experimental design, allowing the detailed study of steady state damper performance.

The second goal of the paper is to demonstrate the practical application of the proposed

methodology. It is applied to the case of a safety critical hydraulic damper used for

stability augmentation in production helicopters. The research work presented shows

that this methodology can be used for identification in a finite but relatively wide range

of piston velocities. The case study demonstrates a successful example of damper

property identification where the resulting characteristics prove useful as a tool for

model validation. Finally, the identification results are related to the results of a more

traditional test with harmonic piston excitation.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

It is shown in the published literature, for example [1–3], that complex fluid dynamics phenomena occurring in
hydraulic dampers can be, in the low frequency range (from 0 to 30 Hz according to Duym [4] and Yung and Cole [5]),
efficiently modelled on the basis of hydraulic system theory, described in Ref. [6]. This theory addresses first order dynamic
effects observed particularly in the damper velocity-force characteristics in the form of the ‘‘hysteretic’’ loops. These loops
are manifestations of the internal dynamic relationships and the physical effects occurring typically in high-pressure
hydraulic systems, [7,8], which include fluid compressibility [6], fluid inertial effects [9] and other dynamic effects.
Hydraulic system theory can accommodate these effects during the modelling process and it has traditionally been used in
the damper and hydraulic actuator modelling communities for the last few decades, [1,10]. Moreover, this theory is
amenable to other physical domains such as mechanical [11] and thermal domains [12]. Also, it is often used in the context
of multi-disciplinary [13] and mechatronic studies [14].

Important elements in hydraulic system modelling are steady state models of the flow transporting or restricting
elements such as pipes, valves, orifices or leakage paths. Characterisation of these elements was a traditional field of
ll rights reserved.
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Nomenclature

AO cross-sectional area of the orifice
AP cross-sectional area of the symmetric piston
B constant isothermal bulk modulus of a

hydraulic fluid
Beff effective bulk modulus
BG gas or air bulk modulus
Ca coefficient of the general exponential

pressure-flow model
CD discharge coefficient
ci coefficient of the general polynomial

pressure-flow model
c1,c2 coefficient of the laminar and turbulent

pressure-flow models
DL,DQ coefficient of the linear and quadratic

force–velocity damper model
d normalised piston stroke
dC mean diameter of the damper cylinder
E Young’s modulus of the damper cylinder

material
FD damper force
~F
7

D identified steady level of the overall damper
force

FD,h hydraulic component of the damper force
Ff friction force
f �1 inverse function to function f

G1,G2,G3 laminar, turbulent and laminar–turbulent
pressure differential convergence coefficients

h C wall thickness of the damper cylinder
K1,K2 coefficients of the damper model representing

Maxwell viscoelastic unit
kC ,kP stiffnesses of the cylinder and piston damper

attachment points
ki ith exponent in the polynomial pressure-flow

model
lO orifice pipe length
mP mass of the damper piston
NF number of flow paths between the damper

chambers
Nj number of pressure reducing segments in jth

flow path
NS number of polynomial terms in the polynomial

pressure-flow model
NV number of test points
p,P absolute and homogeneous pressure
pi pressure in ith damper fluid chamber

Q volumetric flow rate
Qj flow rate through jth flow path
Qj,k flow rate through kth pressure reducing seg-

ment located in jth flow path
Qb,QN,QP flow rates due to fluid compressibility, flow

transfer and piston displacement
RðdÞ function of normalised piston stroke and

piston starting position
T time interval
T7 positive and negative slope half-periods for the

time interval T

Tmax,Tlim maximum test time and limit test time for the
damper piston travel

TR relaxation time
t physical time
V lumped volume of the hydraulic fluid
VC,VG volume of the container and the total volume

of the gas or air entrapped in the container
V0,i,Vi initial and variable volume of ith hydraulic

chamber
V composite volume function
WP constant piston velocity
YP amplitude of the triangular piston excitation
yP , _yP , €yP piston displacement, velocity and acceleration
a exponent in the exponential pressure-flow

model
b fluid compressibility factor related to the fluid

bulk modulus, b=1/B
b0,F ,beff nominal and effective fluid compressibility
Dp pressure difference between two damper

chambers
Dpj pressure difference in jth flow path
Dpj,k increment in the pressure difference in jth

flow path due to kth pressure reducing
segment

m dynamic fluid viscosity
r density of hydraulic fluid
f normalised pressure difference
jðDpÞ adjusted measure of the pressure difference
jP phase of the triangular piston displacement

excitation
O angular frequency of triangular piston excita-

tion
Eð3Þ auxiliary function for the triangular waveform

generation
tri ð3Þ function generating the triangular waveform
9 3 9 absolute value
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experimental hydraulic studies [15,16], and recently also computational fluid dynamics investigations (e.g. [17]). Another
important element in hydraulic system modelling describes the transient or dynamic effects in hydraulic systems, for
instance those caused by fluid compressibility and other elastic effects [6]. The combination of the two basic elements
mentioned is usually used along with the laws of conservation to provide system dynamic equations, with pressures
frequently representing the dynamic states (for example Refs. [2,3,9–11]).

The goal of this paper is to evaluate a framework for experimental characterisation of damper behaviour. The approach
adopted here focuses on the characterisation of velocity-sensitive hydraulic dampers. Semi-empirical characterisation of
the components is known to be used in hydraulic system modelling. For example, Ferreira et al. [18] applied this approach
in the case of static and dynamic servo-valve modelling and Hayashi et al. [19] used an experimentally determined and
parameterised representation of the relief valve discharge coefficient. In the current paper, a similar approach is used to
address the problem of damper modelling.
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The three physical effects that tend to interact during standard damper tests are the elastic effects in the damper (e.g.
fluid compressibility), the hydraulic resistance, and to some extent also mechanical friction between moving damper parts.
The primary interest of the research presented in this paper is the isolation of the steady state damper responses from their
transients. Historically, the two approaches used to identify such results are: (a) a ‘‘filtering’’ approach and (b) a steady
component excitation. The ‘‘filtering’’ approach was originally applied by Duym [4] and it was used recently by Yung and
Cole [5]. This approach tries to identify a subset of the experimental data that is least affected by compressibility and other
dynamic effects, while assuming standard test conditions. If prescribed test conditions can be applied, the alternative
approach uses a form of the excitation that attempts to establish steady flow conditions in the damper. In the case of
velocity-sensitive devices this is constant velocity excitation.

Constant velocity excitation, or iso-kinetic excitation, is a natural choice to consider in damper investigations. The
concept of the constant-velocity excitation and its application in damper characterisation was investigated by Basso [20]
and Basso and Fanti [21]. The work summarised in [20] introduced the general concept and applied it within the
framework of displacement–velocity force maps, characterising the global performance of dampers. The methodology was
applied in [21] for the identification of displacement–velocity force maps of two devices: a shock absorber and a mountain
bike front fork. Both works, [20,21], primarily focused on experimental issues, instrumentation and identification the
context of displacement–velocity force maps [22].

The focus of the current work is on the formalisation of the constant velocity excitation methodology, and the
demonstration of its use on an industrially applied device. The original motivation to employ constant velocity excitation
comes from a specific experimental damper configuration with strong interaction between the transient and the steady
state fluid flow effects, described in Ref. [23]. High flow resistance of the primary flow path required special treatment to
allow identification and validation of the damper model. This paper addresses the problem of the response unsteadiness
under the realistic conditions of non-zero effective fluid compressibility and finite volume in the tested dampers.
Furthermore, the methodology and mutual relationship between the test factors are formulated within the scope of the
test signal’s amplitude-period envelope, visualised by means of a logarithmic chart. This representation allows the formal
design of experiments in the context of the relevant constraints. A demonstration of this approach is performed on a lag
damper, used for stability purposes in helicopter rotors.

The organisation of the remainder of this paper is as follows: Section 2 provides a theoretical basis for the experimental
considerations. Section 3 represents the central part of this paper. It proposes the experimental procedure, provides a basis
for evaluation of the response unsteadiness, and summarises the experimental factors in the test design. Section 4
demonstrates the use of the proposed method on the industrial damper. The conclusions are presented in Section 5.

2. General theoretical considerations

2.1. Damper model

The damper design considered in this paper is a hydraulic damper with symmetric piston and two working chambers. A
number of functional flow paths can be identified between these chambers. Forced movement of the piston located in the
damper cylinder induces fluid flow between the chambers through these flow paths. This process is accompanied by
energy transformation, particularly to heat, such that the damper acts as an energy dissipating element within the overall
system or structure. The process of energy transformation is manifested in the form of pressure losses in the fluid
continuum as the fluid is forced to flow across the flow restricting elements and paths. The functional manifestation of
these losses is the force with which the damper resists the piston movement. The model configuration is shown in Fig. 1.

Assuming this damper organisation, the damper model can be represented by a non-linear, non-autonomous ordinary
differential equation, as derived in [24], and it is this model that will be used in the current work. The system has a single
dynamic state: the pressure difference between two working chambers, denoted Dp=p1�p2, where p1 and p2 are the
absolute pressures in the chambers of the damper. It is assumed that these chambers can be modelled as lumped variable
Fig. 1. General organisation of the two-chamber symmetric hydraulic damper.
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fluid volumes with compressible fluid. It is also assumed that the fluid behaviour can be characterised by the constant
parameters of the fluid density r, dynamic viscosity m and bulk modulus B, where this parameter is related to the fluid
compressibility b=1/B. Both the model of the damper and the later experimental investigations assume isothermal
operational conditions. The definition of the bulk modulus [6] in the form B=�V(dp/dV), where V is the fluid volume with
internal pressure p, allows construction of the equation of the pressure changes in this volume. Using the bulk modulus
definition, this equation adopts the form _p ¼�ðB=VÞ _V , where _V can be seen as the total volumetric flow rate in the
container including variable volume effects, fluid inflows and fluid outflows. Using this equation for both damper
chambers along with the condition D _p ¼ _p1� _p2 enables formulation of a single damper state equation. For the damper
with two chambers, symmetric piston and NF flow paths, the following model can be written [24]:

D _p ¼ Beff
1

V1ðypÞ
þ

1

V2ðypÞ

� �
AP _yP�

XNF

j ¼ 1

QjðDpÞ

2
4

3
5 ð1Þ

where AP is the (symmetric) piston cross-sectional area, yP and _yP are the piston displacement and velocity, respectively, Qj

is the volumetric flow rate through the jth flow path, Beff is the effective constant bulk modulus of the working fluid, V1 and
V2 are the variable volumes of the two damper chambers and D _p denotes the time derivative of the state Dp.

Eq. (1) can be adjusted to a form which represents a volumetric equilibrium of the flow rates

beffVðypÞD _pþ
XNF

j ¼ 1

QjðDpÞ ¼ AP _yP

VðypÞ ¼ V1V2=ðV1þV2Þ,V1ðypÞ ¼ V0,1�APyP , V2ðypÞ ¼ V0,2þAPyP ð2Þ

where V0,1 and V0,2 are the initial volumes of the chambers and Q P ¼ AP _yP represents the flow rate induced by the
movement of the piston; the latter is comprised of the demanded flow rate, QN ¼

PNF

j ¼ 1 QjðDpÞ, representing the total flow
rate through the available ‘‘hydraulic paths’’ that are located between the damper chambers, and the induced flow rate,
Qb ¼ beffVðypÞD _p, representing an apparent flow rate due to effective fluid compressibility: beff=1/Beff. This notation allows
interpretation of Eq. (2) as an equation of the volumetric flow rate equilibrium, Qb+QN=QP.

Supplementing Eq. (2) with the further assumption of incompressibility, i.e. beff=0, leads to Qb=0, and. QN=QP. It is the
term Qb, however, that introduces the dynamic features into the behaviour of the hydraulic damper model in Eq. (1). When
in use, this is manifested by delayed and smoothened damper responses with respect to the responses generated by an
equivalent damper with zero or reduced compressibility. The use of effective compressibility reflects the fact that in real
conditions the inherent fluid compressibility combines with other similar effects. One possible formulation of this quantity
is as follows:

beff ¼
1

Beff
¼
X
ðiÞ

bi � b0,Fþ
1

ðhC=dCÞE
þ

1

ðVC=VGÞBG
þA2

P

1

V1
þ

1

V2

� �
1

kC
þ

1

kP

� �
ð3Þ

where b0,F is the nominal constant fluid compressibility factor, hC, dC and E are the wall thickness, mean diameter and
Young’s modulus, respectively, of the damper cylinder assuming an approximate theory of thin-walled pressure vessels [6],
VC, VG and BG are the total volume of the container, the total volume of the gas or air entrapped in the container and the gas
or air bulk modulus [6], respectively, and kC and kP are the equivalent stiffnesses of the attachment fixture on the side of
the cylinder and the piston, respectively.

The second and third terms on the right hand side of Eq. (3) are derived by Merritt [6]. The second term introduces the
effect of finite cylinder stiffness, where the cylinder is represented as a thin-walled internally pressurised vessel. The third
term represents the volumetric effect of entrained air or gas. Merritt [6] illustrated these effects on an example where 1% of
entrained air in a steel pipe with dC=6hC causes beffE4b0,F. The fourth term, introduced here, represents the effects of finite
stiffness in the damper attachment fixtures. This term is derived while assuming a serial arrangement of the damper with
two linear ‘‘springs’’, of stiffness kC and kP, respectively. Within the context of this approach, the velocity term _yP represents
the relative velocity between ends of these springs, i.e. the springs are considered to be an integral part of the damper. The
reduction in these stiffnesses causes an increase in the associated compressibility term, leading to direct increase in beff.

2.2. Pressure-flow relationships for damper model

The nature of the term QN determines the global behaviour of the dampers. It represents the inherent static
characteristics of the flow transport paths under steady flow conditions and the term Qj represents the static
characteristics of the jth individual flow path. Furthermore, the jth path can be seen as an independent fluid flow route
consisting of Nj segments causing energy losses. Each segment in the jth path participates in the overall pressure loss
Dp�Dpj, such that Dpj ¼

PNj

k ¼ 1 Dpj,k. Dependency between the upstream–downstream pressure differential and the
volumetric flow rate forms the static pressure-flow characteristics, i.e. Qj(Dp) or Qj,k(Dpj,k). Assuming incompressible flow,
the direct and the inverse characteristics of the jth path are

Dp¼ fjðQjÞ-Qj ¼ f�1
j ðDpÞ ð4Þ
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One parametric family of these static models is based on the general exponential form

Dp¼ signðQjÞCa9Qj9
a
, a 2 ½0,amax� ð5Þ

where signð3Þ is the sign function, Ca is the coefficient of the exponential model and a is a specific coefficient of the model,
usually specified such that amaxr2.

The model in Eq. (5) is used to represent different fluid flow modes, such as developed laminar flow, with a=1 [2,25],
turbulent flow, with a=2 [2,3,6,9], or a flow model based on the Blasius formula for mixed flow in straight pipes, with
a=1.75 [4,26]. Model (5) is related to the rational polynomial formulation [26]

Dp¼
XNS

i ¼ 1
ciQ

ki

j ð6Þ

where NS is the number of polynomial terms, exponent kiA[0,2] and the parameter ci depends on the flow character,
geometry and other relevant factors. Solving model (6) for Qj, for a given Dp, allows its use in Eqs. (1) or (2). A special case
of model (6) comes with NF=2, k1=1 and k2=2. Solving this model for Qj provides an explicit laminar-turbulent flow model
representing two discrete pressure loss segments in series inducing laminar followed by turbulent pressure losses [22,25],

Dp¼ c1Qjþc2Qj9Qj9

Qj ¼ signðDpÞð�c1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1þ4c29Dp9
q

Þ=ð2c2Þ ð7Þ

where c1 corresponds to the laminar loss model and c2 is related to the turbulent losses. If c1=0, then
Qj �Qj,q ¼ signðDpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9Dp9=c2

q
and conversely, for c2=0 the flow rate is Qj,l=Dp/c1. The previous models, given in Eqs. (5)–(7),

can be related to specific fluid, geometry and other context dependent parameters. In the case of fully developed laminar
flow in a smooth pipe the relationship between the pressure and the flow has the following form: Dp=c1Qj [6], where
c1 ¼ 8pmlO=A2

O, m is the dynamic fluid viscosity, and lO and AO are the length and the cross-sectional area of the pipe,
respectively. In the case of turbulent flow through a flow restrictor the relationship between the pressure and the flow has
the form Dp=c2Qj9Qj9, where c2 ¼ r=ð2C 2

D A2
OÞ, r is the density of the fluid and CD is the discharge coefficient [6].

Alternative parametric representations exist for describing the physical aspects of the complete individual flow paths,
or for the separate discrete flow restricting elements, and the choice of model depends on the user’s interpretation of the
problem, the internal organisation of the flow paths, and personal preferences. One objective of this paper is to evaluate an
experimental method that can be used for direct identification of the pressure–flow relationship, or as a decision making
support tool during the modelling process. The pressure–flow model used within this paper for analytical studies will be
based on the model in Eq. (7).

2.3. A note on induced damper forces

Assuming known initial conditions (e.g. Dp(0)=0) and external excitation yP(t), integration of Eq. (1) or (2) can be used
to predict damper behaviour. Often, the following model can be used to compute the forces induced by the damper

FDðtÞ ¼ AP DpþmP €yPþFf ð8Þ

where mP is the mass of the piston and Ff represents the friction effects between the moving damper parts. The hydraulic
component of the damper force FD,h=APDp in Eq. (8) is often used as the only damper force representative, i.e. FDEFD,h, as
these devices are usually designed to induce the forces that are primarily determined and dominated by their internal
hydraulic configuration.

Multiplying Eq. (2) by AP provides a new form of the hydraulic model, with FD,h as the state variable

beffVðtÞ _F D,hþHNðFD,hÞ ¼ A2
P
_yP

HNðFD,hÞ ¼ APQNðFD,h=APÞ ð9Þ

This form of damper model gives closer information about the link between the flow restricting features in the damper,
the first order dynamics (due to the assumption of a compressible fluid) and the force with which the damper acts against
the imposed piston motion.

The following example assumes a single flow path, QN=Qj, with one laminar pressure loss segment, Qj=(1/c1) Dp.
Substitution of these relationships into Eq. (9) gives the following model:

beffVðtÞ _F D,hþc�1
1 FD,h ¼ A2

P
_yP ð10Þ

Furthermore, when assuming small prescribed oscillations yP(t) around the central position, such that V0,2=V0,1,
yP5V0,1/AP and VðtÞ � V0,1=2, model (10) can be written in the following linear form:

_F D,hþK1FD,h ¼ K2 _yP

K1 ¼ ð2Beff Þ=ðc1V0,1Þ, K2 ¼ 2A2
PBeff =V0,1 ð11Þ

Model (11) can be related to the model of the Maxwell viscoelastic unit [2,27], which can be represented as a series
arrangement of a linear spring and a dashpot element [27]. Due to the simplicity of this model, it can serve as an
illustration of the effects provided by the different model components and the different physical parameters.
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The parameters of the damper’s response such as the relaxation time due to step input, i.e. _yP ¼WP ¼ const for tZt0, and
the value of the steady state response can be defined. The relaxation time is defined as TR=1/K1=c1beffV0,1/2 and the steady
response of system (11) is ~F D,h ¼ ðK2=K1ÞWP ¼ c1A2

PWP . These two relationships reveal some facts about the nature of the
damper response during and after the transition between two constant velocities WP,1 and WP,2, for example WP,2=�WP,1.
The value of TR depends on beff and therefore it affects the transition to the steady force values. These in turn, after scaling
by AP, lead to the pressure-flow relationship D ~p ¼ c1QP,W . Considering Eq. (3), in any practical situation the parameter beff

will be seriously affected by the presence of elastic damper components, most significantly the air or gas trapped in the
hydraulic system [6,8].

The previous paragraph provides a description of the behaviour of the damper for the selected set of assumptions. In
relation to Eq. (9), in practical circumstances, the nature of HN can be uncertain. Furthermore, some other effects will be
unavoidably present in the measured signals, for example the friction component, Ff. Despite these unwanted
contributions, the data acquired from the test using step changes in the velocity can provide useful information for
analytical work with the damper models. Importantly, however, the dynamic term Qb ¼ beffVðypÞD _p from Section 2.1 is
unsteady during the whole range of the piston motion. Even with the justifiable assumption of constant fluid
compressibility beff, the function V is not constant and its range is VðypÞ 2 ½0,ðV0,1þV0,2Þ=4�, assuming the case of a damper
without any ‘‘dead’’ volumes.

3. Formulation and analysis of the test methodology

3.1. Damper model for steady test conditions

The rationale behind the proposed testing methodology is the need for a systematic investigation of the performance of
the damper, using specific test conditions to promote the investigation of only a selected subset of its physical behaviours.
In this instance, the tests are designed to induce steady operational conditions by suppressing or cancelling the dynamical
aspects of the damper behaviour. In accordance with the assumed models, Eqs. (1) or (2), this situation is achieved through
the use of constant excitation: AP _yP ¼ const. The implication of this choice, in an ideal analytical setting, is that
_yP ¼WP 2 R, yP=WPt and €yP ¼ 0. Assuming this form of excitation, model (2) can be written in the following form:

beffVðtÞD _pþQNðDpÞ ¼ APWP ,

V ¼ V1V2=ðV1þV2Þ, V1ðypÞ ¼ V0,1�APWPt, V2ðypÞ ¼ V0,2þAPWPt: ð12Þ

A constraint is applied for the maximum time and travel, tA[0,Tmax,i), where Tmax,ioTlim,i, and Tlim,i=V0,i/(APWP), i=1,2
represents the maximum possible time for the travel due to physical damper dimensions. The limiting case in this model is
achieved when 9yP9-V0,i/AP, i=1,2, i.e. when Vi(yP)-0 and t-V0,i/APWP. Accordingly, the time can be normalised to give
d=t/(V0,i/APWP), which is also effectively a normalised measure of the piston stroke.

The model given in Eq. (12) represents a non-linear differential equation with time-variable coefficient and the constant
excitation term APWP assumed to be applied at t=0. Initial conditions of this problem are assumed to be Dp(0)=0, i.e. p1=p2.
The general integral of the problem can then be determined from the following differential form:

dðDpÞ

APWP�QNðDpÞ
¼

dt

beffVðtÞ
ð13Þ

Integration of this general problem leads to the following integral equation:Z Dp

0

dP
APWP�QNðPÞ

¼ ln
V0,1

V0,2

� �
V0,2þAPWPt

V0,1�APWPt

� �� �Beff =APWP

ð14Þ

Further integration of model (14) depends on the specific pressure-flow model QN.

3.2. Theoretical analysis of test configuration

So far it has been assumed that the pressure differential converges on a steady state under constant velocity excitation.
In this section, the validity of that assumption is investigated. The damper symmetry allows consideration of only a
positive piston velocity, WP40, and application of the normalised piston stroke d=t/(V0,1/APWP) to Eq. (14) givesZ Dp

0

dP
APWP�QNðPÞ

¼ lnRðdÞ�Beff =ApWP

RðdÞ ¼
1�d

1þðV0,1=V0,2Þd
ð15Þ

For the pressure-flow model, the case of a serial linear–quadratic restriction as described by Eq. (7) is assumed so that

ZDp

0

2c2

2APWPc2�signðPÞð�c1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1

2þ4c29P9
q

Þ

dP ¼ lnRðdÞ�Beff =ApWP ð16Þ
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Integrating the previous equation for positive WP and thus positive Dp, the pressure differential is defined as follows:

Dp¼
1

4c2
2APWPc2 1�RðdÞBeff =AP WP ð2AP WPc2þ c1Þeðc1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1

2þ4c2 DpÞ
p

=ð2APWP c2þ c1Þ
� �

þc1

n o2

�c1
2

� �
ð17Þ

This equation fails to offer a closed form solution on account of the appearance of a pressure term in the natural
exponent on the right hand side. Further investigation is thus needed to draw rigorous conclusions on the transient
behaviour of the pressure differential. Two specific cases will be addressed here: purely laminar flow and purely turbulent
flow. The former is convenient, as an exact solution can be found, while comparisons with the latter are included on
account of the popularity of such models.

Considering laminar flow, if c2=0 Eq. (17) becomes

Dp9c2 ¼ 0 ¼ APWPc1 1�RðdÞBeff =APWP c1

� �
ð18Þ

This result shows that as d-1, causing R(d)-0, then Dp-APWPc1. Thus, as the piston approaches the end of the
cylinder and the volume in the chamber goes to zero, the pressure differential approaches its supposed equilibrium: the
same value predicted using incompressible assumptions. The question remains as to the nature of its approach; the above
equation does not in itself confirm the assumed asymptotic approach. Substituting R(d) from (15) back to (18) and taking
its first derivative with respect to time gives

D _p9c2 ¼ 0 ¼ Beff APWP
V0,1þV0,2

V0,1V0,2

� �
ð1�dÞG1�1

ð1þðV0,1=V0,2ÞdÞ
G1þ1

 !
ð19Þ

where G1=Beff/ApWPc1. From this equation the variation of the pressure is seen to be qualitatively dependent upon the
value of G1. If G141 then the numerator is zero when d=1 so the pressure differential between the chambers is static. If
G1o1 then D _p-1 as d-1. From this observation it can be concluded that a prerequisite for a converging pressure
differential is that G141. Furthermore, the greater the value of G1, the faster the numerator will converge to zero and the
faster the pressure differential will converge to a steady state. Thus a fast convergence is associated with a large bulk
modulus (i.e. small compressibility), a small piston area, a low piston velocity, and a small linear loss coefficient. Fig. 2
illustrates the qualitative shape change in the pressure differential curve, followed by the faster convergence for increasing
values of G1.

Turning attention to the more common turbulent orifice flow model, letting c1=0 in Eq. (17) produces

Dp9c1 ¼ 0 ¼ ðAPWPÞ
2c2 1�RðdÞBeff =2ðAP WP Þ

2c2 e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dp=ðAP WP Þ

2c2

p� �2

ð20Þ

which is no longer closed form. In other respects the solution is similar to that of Eq. (18). When the piston reaches the end
of the cylinder and d=1, then R(d)=0 and the pressure differential once again takes on its incompressible value:
Dp=(APWP)2c2. At this time Dp/(APWP)2c2=1 and the exponential expression gives e�1E0.37, while at time t=0 then
Dp/(APWP)2c2=0 and e0=1. The exponential term thus varies from 1 to 0.37 for positive pressure differentials, speeding up
the convergence compared with the laminar flow case. The squaring of the right hand side, however, counters this effect
and serves to slow the convergence. The time derivative of Eq. (20) is found to be

D _p9c1 ¼ 0 ¼ Beff

ffiffiffiffiffiffiffi
Dp

c2

s
V0,1þV0,2

V0,1V0,2

� �
ð1�dÞG2�1

ð1þðV0,1=V0,2ÞdÞ
G2þ1

 !
e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dp=ðAP WP Þ

2c2

p

�RðdÞG2

� ��1

ð21Þ

which exhibits a numerator of ð1�dÞG2�1, equivalent to that of the linear case, where now G2=Beff/2(ApWP)2c2. Once more
the numerator will be infinite when d=1 if G2o1, so a suitable convergence has a prerequisite of G241. The pressure
differential curves for a range of values of G2 are shown in Fig. 2.

The general form of G for a serial laminar–turbulent arrangement can be given as

G3 ¼
Beff

2ðApWPÞ
2c2þApWPc1

¼
Beff

ApWPc3
ð22Þ

corresponding to a linear–quadratic pressure differential derivative of

D _p ¼ BeffjðDpÞ
V0,1þV0,2

V0,1V0,2

� �
ð1�dÞG3�1

ð1þðV0,1=V0,2ÞdÞ
G3þ1

 !
c3eðjðDpÞ�c1Þ=c3�2c2RðdÞG3

� ��1
ð23Þ

where c3=2APWPc2+c1 is a constant based upon the loss coefficients and piston geometry: in effect a mixed flow loss
coefficient; and j(Dp)=(c1

2+4c2 Dp)1/2 is an adjusted measure of the pressure differential. It is also instructive to normalise
the pressure differential term with respect to the incompressible value, and noting that Q=APWP for incompressible fluid,
Eq. (7) gives

Dp Beff ¼ 1
¼ APWPc1þðAPWPÞ

2c2

			 ð24Þ
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A central starting position is assumed: V0,1/V0,2=1.15.
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for positive WP. Thus, a normalised quantity can be introduced so that f=Dp/(Dp9Beff =N) leading to the following formula
for j(Dp):

jðDpÞ ¼ ðð1�fÞc1
2þfc2

3Þ
1=2

ð25Þ

It is interesting to note how the laminar terms dominate for small values of f, where the pressure differential is low,
and the mixed loss coefficient c3 dominates when f approaches unity.

The above equations demonstrate how the attainment of a quasi-steady state, comparable to incompressible flow
conditions, is contingent primarily upon a high enough value of G3, defined by Eq. (22). How high is ‘high enough’ depends
on the accuracy required for the study, and this will be considered in the test design discussions that follow.
3.3. Proposed experiment methodology and test design

The previously described configuration, with constant velocity excitation, is formalised in this section. To allow for
repeatability checks during the test process, the input velocity signal to the system is assumed to be piecewise constant
corresponding to the triangular piston displacement signal. A single excitation cycle can thus induce two opposite and
nominally equal piston velocities allowing investigation of the directional effects in the damper. A controlled sequence of
triangular signals with appropriately chosen parameters produces a range of piston velocities and corresponding flow
conditions. A choice of excitation signal parameters which provide varying density may be desirable to provide a complete
picture about the performance of the damper, for example concentrating measurements in flow mode transitional regions,
or in the neighbourhood of conditional activation of the valves.



Fig. 3. Piecewise constant-velocity excitation for damper performance mapping: (a) triangular excitation signal and (b) A–T diagram for the test design.

B. Titurus et al. / Mechanical Systems and Signal Processing 24 (2010) 2868–28872876
A triangular piston excitation around the reference piston position is assumed in the following form:

yPðtÞ ¼ YPtriðOtþjPÞ,

_yPðtÞ ¼ EðtÞ2OYP=p¼ EðtÞ4YP=T ¼ EðtÞWP , EðtÞ ¼
þ1, t 2 T þ

�1, t 2 T�

(
ð26Þ

where trið3Þ 2 ½�1,þ1� is the function generating the triangular signal, O is the angular frequency, YP is the amplitude of
triangular waveform, jP is the phase of the waveform, and T+ and T� represent ‘‘half-periods’’ of the triangular signal with
period T with positive and negative slopes, respectively. An example of this signal and its derivative is presented in
Fig. 3(a).

The absolute piston velocity WP ¼ _yPðtÞ
		 		¼ 4YP=T is specified by means of two free parameters, the amplitude of

triangular waveform YP and its period T. A choice of the two parameters is required to specify any given piston velocity, as
illustrated in Fig. 3(b). This figure presents an amplitude–period design chart (henceforth an A–T diagram). Application of
the logarithmic transformation to the formula for WP defines an ‘‘iso-kinetic’’ plane with constant velocity contours

logWP ¼ log4þ logYP�logT ð27Þ

This representation can be used to prepare the experimental conditions in the form of a sequence of the parameters
½logTi,logYP,i� for NV test points. This allows characterisation of the steady damper performance between two limiting
velocity points A and B. A specific test design is represented in this domain as a path connecting points A and B. Two
exemplary test designs are represented by the dashed line (a) and the solid line (b) connecting limiting points A and B in
Fig. 3(b). Alternative paths can be considered to allow suitable test optimisation. Furthermore, different density of the path
discretisation allows localised studies, e.g. relief valve activation velocity.

Some additional constraints have to be taken into consideration during actual test planning. The A–T diagram allows
inclusion of some of these directly into the test plan. This is illustrated in Fig. 3(b) for the case of three constraints: (i)
limited permissible piston travel, (ii) measurement noise floor due to piston displacement sensors, and (iii) minimum time
required to achieve quasi-steady values of the measured forces. The first two constraints can be derived directly from
inspection of the damper and sensors, while the third constraint can be based either on a conservative a priory estimate, or
it can be derived a posteriori from the complete measured damper response records.

The method outlined above by-passes problems with mechanical backlash, significantly reduces ‘‘hysteretic’’ effects due
to highly resistive hydraulic restrictors during harmonic excitation tests, and minimises the influence of the actuator
dynamics. The constant velocity excitation effectively removes piston inertia effects and allows more focused
investigations in the velocity regions of interest. The effect of directional flow dependencies can be investigated as well
with this approach. Another important feature of this methodology is that it allows estimation of the overall damper
characteristics. A negative aspect of this methodology is that, in a single test run, it provides only one pair of the
experimental points, instead of whole groups or loops as is the case with alternative existing methodologies.
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4. Case study

4.1. Test platform and test configuration

The previously described test methodology is applied in this section to the industrial hydraulic damper, used in
medium-sized production helicopter rotors for stability augmentation [28]. The basic organisation of the damper test rig
and a description of the damper’s functional components is provided in Fig. 4. The damper test rig consists of the hydraulic
damper attached to a bracket on one side and to a HydropulsTM servohydraulic actuator on the other side. The mechanical
link between the damper and the actuator is formed by a 25 kN load cell augmented with a damper attachment fixture. The
organisation of the test rig is illustrated in Fig. 4(a). The test rig is controlled with the help of two computers and
the Instron Structural Testing system Labtronic 8800 with a standard PID-based controller, in displacement control mode.
The first computer is simply a user interface for the Labtronic 8800, which is controlled via an auxiliary control signal. This
signal is provided by a dSpace DS1103 system attached to the second computer, equipped with the Matlab-Simulink
programming platform and dSpace ControlDesk suite.

Purpose built Matlab-Simulink test control software was compiled and during the experiment exported to the real-time
environment of the dSpace DS1103. This test control software provides control of the experiment according to the A–T

diagram (Fig. 3(b)). One of the tasks covered by this platform is generation of the demanded actuator displacement signal
yP,command. Observed quantities are: the actuator piston displacement yP,meas, measured by the LVDT transducer integrated
with the actuator, and the force FD measured by the load cell. The signals yP,meas and FD are further processed as described
later in this paper.

The damper internal organisation is shown in Fig. 4(b). The device is a hydraulic damper with a symmetric piston and
an orifice located in the piston head. The orifice forms the primary flow path and it defines the low-velocity pressure-flow
regime characterised by a steep rise of damper forces with increasing velocity. The rise of the forces is restricted by a pair
of relief valves. The relief valves and their respective flow paths are denoted by the grey lines in Fig. 4(b). The components
described so far represent the damper’s functional parts, these being primarily responsible for its operational
characteristics. A second part of the damper, consisting of a fluid accumulator and its flow network, is not shown in
Fig. 4(b) as it does not significantly influence the damper behaviour. Further information on the operational context of this
damper can be found in [28].

The current study investigates the low-velocity characteristics of the damper that are nominally defined by the single
piston orifice. A practical motivation behind this study is the highly resistive nature of this orifice, which causes strong
interaction between the ‘‘hysteretic’’ compressibility effects and the static characteristics during traditional tests with
harmonic excitation signals. A further complication with these traditional tests is introduced by the appearance of
mechanical backlash. It is assumed that during the current investigations both relief valves stay nominally closed. The
purpose of this study is to identify and evaluate the qualitative nature of the overall losses induced in the damper’s low-
velocity range and to compare these with the losses determined from the nominal parametric model of the damper in this
regime.

4.2. A study of transient effects in the damper

For the approach being taken, a critical consideration is how much time to allow for the transient force, or pressure
differential, characteristics to subside. This was seen as one of the constraints illustrated in Fig. 3(b). In Section 3.2 it was
seen that true steady-state conditions are never achieved. To quantify the speed of convergence towards quasi-steady
conditions, where the pressure differential is close to the equivalent incompressible value, it is helpful to plot the piston
stroke required to achieve a given normalised pressure differential (derived in Section 3.2). Rearranging Eq. (17) gives

d¼
1� c3�j

2APWP c2

� �
eðj�c1Þ=c3

n o1=G3

1þ V0,1

V0,2

� �
c3�j

2APWP c2

� �
eðj�c1Þ=c3

n o1=G3
ð28Þ
Fig. 4. Functional organisation of the test rig and the internal structure of the damper.
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Table 1
Geometric parameters measured from physical damper and assumed fluid properties.

Quantity Value Quantity Value

Piston area, AP �4�10�3 m2 Orifice area, AO �6�10�8 m2

Initial volume of each chamber, V0,1=V0,2 �3�10�4 m3 Orifice pipe length, lO �5�10�4 m

Oil compressibility, boil 3.8�10�9 Pa�1 Lin. orifice coeff., c1 8plOm=A2
O

Oil density, r 815 kg/m3 Quad. orifice coeff., c2 r=ð2A2
OC2

DÞ

Oil viscosity, m 0.03 kg/(m s) Air compressibility (isothermal), bair�bG 9.9�10�6 Pa�1

Discharge coeff., CD 0.6 (dimensionless)

B. Titurus et al. / Mechanical Systems and Signal Processing 24 (2010) 2868–28872878
and together with Eq. (25) it permits the determination of the normalised piston stroke required to attain a given fraction,
f, of the incompressible pressure differential. The laminar and quadratic cases are presented below for comparison:

d c2 ¼ 0 ¼
1�ð1�fÞ1=G1

1þðV0,1=V0,2Þð1�fÞ1=G1
, d c1 ¼ 0 ¼

1� ð1�
ffiffiffiffi
f

p
Þe

ffiffiffi
f
pn o1=G1

1þðV0,1=V0,2Þ ð1�
ffiffiffiffi
f

p
Þe

ffiffiffi
f
pn o1=G1

							
							 ð29Þ

In the linear, laminar flow case, the normalised relationship between pressure and stroke is governed entirely by the
quantity G1�G3, and the normalised starting position of the piston, V0,1/V0,2. In the turbulent case, the pressure–stroke
relationship depends on G2�G3. To compare the laminar and turbulent cases it is necessary to define the damper geometry
and test conditions relating G1 to G2. To this end, measured geometric data from the real damper is used to produce the
figures that follow, assuming a constant damper geometry and varying piston speeds. The damper geometries and orifice
loss coefficients are given in Table 1 along with the working fluid properties.

Assuming a central starting position, Fig. 5 shows the relationship between the laminar, turbulent and combined flow
cases, as well as demonstrating the effect of different effective fluid compressibilities, beff, on the mixed flow convergence
times. The change in compressibility is effected in this case by the inclusion of small quantities of air mixed with the
hydraulic oil. The shaded regions in the figure denote 95.0–99.999% of the incompressible pressure differential for the
serial laminar-turbulent flow cases. The area to the left of the curves represents the design space available for the test
configuration. If higher accuracies are demanded in the estimation of the steady state pressure differential, the design
space is reduced. Generally the limiting factor will be the available piston travel, and an important observation is that air
contamination in the oil produces significant reductions in the range of velocities that can be tested with a given piston
stroke and a specified pressure convergence criterion. This contingency must be accounted for in the preparation of the test
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configuration. For larger values of G1 and G2 (i.e. for lower loss coefficients) the design space is less restrictive, but the most
restrictive coefficient will always dominate.

4.3. Test plan with A–T diagram

The A–T diagram with the selected test velocities is shown in Fig. 6. The range of velocities is selected to cover the
majority of the low-velocity range. The information corresponding to the relief valve activation thresholds (characteristic
piston velocity and activation force levels) are not presented here as they are not publically available.

The test plan is designed for the range of velocities WP,iA[0.005,1.5] mm/s, where i=1,y,23. This range of test velocities
is chosen to provide a good understanding of the transition between the different flow modes. Furthermore, a pair of
extremely low velocities is selected to give an indication of the friction effects. The specific parameter pairs selected to
define the triangular waveforms, ½logTi,logYP,i�, are illustrated in Fig. 6 in the form of circle markers. Three groups of
triangular signals are specified on the basis of their periods TA{20,80,240} s. This arrangement was adopted in order to
reduce test times for separate test cases, while avoiding very low amplitudes, respecting the maximum allowed piston
travel, and facilitating an automated acquisition process through consistent data acquisition times within each group.

The surface temperature of the damper during the tests was approximately 40 1C. The phase angle of the signal in
Eq. (26) is defined for all test cases as fP=�p/2 and the length of data acquisition is 2� T, where T is the signal’s
fundamental period. This test signal specification provides two complete consecutive measurements for the two opposite
flow directions.

4.4. Primary test processing

An important part of the test procedure is the processing of the raw experimental data in the form of the measured
piston displacements and damper forces. The purpose of this operation is the extraction of the data subsets with stabilised
or quasi-steady forces. Three selected test cases are provided in Fig. 7.

Test cases 4, 12 and 22 are shown in the time domain in the left column of Fig. 7, while the standard representation in
the displacement–force domain is shown in the right column of Fig. 7. All the quantities are scaled to achieve a comparable
level of visual detail in the presented data. Test case 4 clearly demonstrates the increased presence of noise in the
measured data due to the low absolute force levels, where ~F

þ

D � 0:102kN and ~F
�

D ��0:095kN. The displacement signal
presented indicates very good linearity and the damper force achieves an apparently steady level after a brief transient
period, as suggested following the discussion of the models in Section 2. Test case 12 demonstrates the decreasing effect of
noise in the measured force data and similar qualitative features can be observed here as in the previous case. The absolute
force levels are ~F

þ

D � 0:802kN and ~F
�

D ��0:812kN. Similar conclusions can be drawn for set 22, with absolute damper
forces of ~F

þ

D � 6:590kN and ~F
�

D ��7:366kN.



Fig. 7. Example of three selected test cases with triangular waveform excitation (scaling used to achieve consistent level of detail in the visual

representation).
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Even though the signals in Fig. 7 are scaled independently, it is still possible to observe some global effects in the form
of the changing nature of the steady force asymmetries. For this purpose, the scaled piston displacement signal can be
taken as a symmetric visual guide. Test case 4 indicated slightly higher positive forces levels 9 ~F

þ

D 9 compared to the
negative force levels 9 ~F

�

D9. Conversely, in test case 22, negative force levels 9 ~F
�

D 9 are larger than the positive forces 9 ~F
þ

D 9.
These effects are caused by two different physical mechanisms. While test case 4 is influenced by friction, the dominant
effects in test case 22 are of hydrodynamic origin, i.e. the pressure losses due to constricted fluid flow between the damper
chambers.

Further presentation of the measured data and the applied data processing is shown in Fig. 8. The measured damper
forces are shown with physical units and the measured piston displacements are plotted in a scaled form. The data subsets
selected for the identification of the mean steady forces are indicated as solid black lines with dot markers. Similarly, the
corresponding data subsets used for the experimental piston velocity identification are indicated as thick grey lines with
dot markers. Finally, the variability of the force levels within the selected data subsets is represented by their standard
deviation, and this value is visually identified by the solid line with the ‘‘+’’ markers. The data subsets are selected
identically in all test cases as the data samples in the interval [0.45,0.95]� T/2, where T/2=T+ =T� . This arrangement allows
determination of the characteristics for both flow directions, thus evaluating any potential asymmetries. It also provides
two independent curves for each direction, thus providing a tool to check for repeatability in the test results.
4.5. Test results and flow analysis for steady flow conditions

The results of all 23 test cases are summarised in Fig. 9. The curve presented represents the damper characteristics for
the induced quasi-steady flow conditions at 40 1C (measured on the surface of the damper). The identified characteristics
consist of two branches, located in the 1st and the 3rd quadrants of the velocity–force domain. Each test case is
represented by a circle marker. The thick grey line in the background shows the same characteristics identified from the
second period of the measured signals. The line may be hard to distinguish, as it lies almost exactly behind the first line.

As the test conditions cover a relatively wide range of forces, a detail of the extremely low velocity characteristics is
provided in Fig. 10. This figure illustrates better the non-linear effects associated with decreasing piston speed. The
following significant effects can be observed in the identified characteristics when _yP - 0: (a) the varying nature of the
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fluid flow mode, (b) the convergence to non-zero force levels for both flow directions, (c) the asymmetric shape of the
identified branches, and (d) close repeatability in the identified characteristics.

The previous observations can be correlated with an analytical model presented by Wallaschek [25] and later extended
by Surace et al. [22]. The model presented in [25] is an analytical aggregate model combining the laminar–turbulent flow
assumption in Eq. (7) with a simple Coulomb model of friction. This model is extended by using an assumption of
asymmetric characteristics in [22], where two independent sets of parameters characterising laminar, turbulent and
friction losses are considered for the opposite piston motions.

The changing nature of the fluid flow observable in Fig. 9 is more clearly seen in the logarithmic domain presented in
Fig. 11. Non-zero damper forces for the piston velocities approaching zero can be related to the mechanical friction
between the moving parts of the damper. Asymmetries in the shape of the characteristics for higher piston velocities can
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be attributed to the asymmetric shape of the flow restricting paths between the working chambers of the damper.
Consistent repeatability was observed in the measured data for all 23 data sets, offering confidence in the measured
characteristics. Finally, the identified damper characteristics presented in Fig. 9 and detailed in Fig. 10 suggest, after
neglecting friction effects, the presence and dominance of the laminar pressure losses for low piston velocities. These can
be recognised by non-zero gradients at the origin.

To allow improved analysis of the flow mode transition, the characteristics shown in Fig. 11 can be related to the other
single-term polynomial models based on the general formulation in Eq. (5). Families of curves can be considered for specific
exponential terms and these can be related to discernible physical effects. Based on remarks presented in Section 2.2 and
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other findings presented in this section, the models considered here will include aA{0,1,2}. After applying the logarithmic
coordinate transformation in Fig. 11, all families of exponential curves are converted to families of parallel skewed lines.
Thus, in this system, any slope changes in the original identified curves can be associated with specific flow modes or
physical mechanisms. The data from quadrant 3 are transformed to quadrant 1 for comparative purposes, by taking absolute
values of their velocity and force coordinates.

The curves corresponding to the identified data from quadrant 1 are identified with circle markers and a thick solid line,
while the data from the quadrant 3 are identified with star markers and a thick dashed line. The three families of
exponential models are represented by the thin lines with styles according to the figure’s legend. A transition in the
character of the flow with increasing piston velocities is clearly indicated in this figure, corresponding with an increasing
orifice flow Reynolds number. Two limiting regimes are represented by the friction at low piston velocities and the
dominant turbulent flow at ‘‘high’’ piston velocities. These two physical modes can be visually inspected by looking at the
convergence of the identified curves to the line families with a=0 and 2. A section of the characteristics starting at
approximately 0.5 mm/s can be related to the pressure-flow models based on the Blasius formula [4,26], and the models
with free exponential parameters [5]. Increasingly turbulent fluid flow can be related to the line family with a=2.

While Figs. 9 and 11 represent the characteristic damper curves alone, Fig. 12 complements these figures with
information on the extent of the variability in the selected data subsets. The top subplot of this figure shows the absolute
values of the standard deviations of the measured data. This subplot indicates that the variability in the steady responses
increases with increasing piston excitation velocity, possibly being caused by unaccounted-for unsteady pressure
fluctuations in the damper.

To give a better appreciation of the significance of these effects, the lower subplot of Fig. 12 shows the ratio between the
standard deviations and the mean force values. Increased levels of variability (5–10%) are present in the regions influenced
by friction, due to low steady force levels. The relative sizes of the deviations decrease to approximately 1% with increasing
test number. Both subplots of this figure contain four lines, where each line corresponds to one segment of the test signal
with constant slope. The similarity of the two pairs of lines (one for each quadrant) is indicative of good test repeatability.

The foregoing figures allow detailed non-parametric analysis of the damper and the steady state specifics of its
performance. The identified damper characteristics shown in Fig. 9 are considered now in the wider context of alternative
test methodologies and nominal model-based predictions. The parametric model of the damper is based on Eq. (9).
Assuming the internal damper structure shown in Fig. 4(b) and pressure-flow model (7) with parameters c1 and c2 as
defined in Section 2.2, the following simplified model of the damper’s new hydraulic state FD,h can be written

beffVðtÞ _F D,hþsignðFD,hÞAPð�c1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1þ4A�1
P c29FD,h9

q
Þ=ð2c2Þ ¼ A2

P
_yP ð30Þ

The assumption of an incompressible damper configuration, beff=0, in Eq. (30) and the subsequent rearrangement of the
resulting algebraic equation leads to an explicit formula for the hydraulic component of the damper force:

FD,h ¼DL _yPþDQ _yP9 _yP9¼ A2
Pc1 _yPþA3

Pc2 _yP9 _yP9 ð31Þ
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Finally, assuming the specific parametric forms given in Section 2.2 for the flow coefficients c1 and c2, the formula for
FD,h is specified as follows:

FD,h ¼ 8pm40lO
A2

P

A2
O

 !
_yPþ

r40

2C2
D

A3
P

A2
O

 !
_yP9 _yP9 ð32Þ

where m40 and r40Er are the dynamic viscosity and the fluid density at 40 1C, respectively. The other quantities in Eq. (32)
are defined in the previous sections. The parameter values that are used in this formula are taken from Table 1. These
parameters are either directly measured or adopted from available engineering sources. The model in Eqs. (31) and (32)
represents a fully symmetric damper model. While the experimental data indicate considerable asymmetries, this model is
used only for demonstration purposes and the qualitative comparisons provided in Figs. 13 and 14. Parametric
identification based on the presented data could use two instances of the above model, each representing one direction of
the piston motion. This approach is also physically justifiable due to the asymmetric design of the orifice primarily
responsible for the observed pressure losses. The curves resulting from the use of Eq. (32) will be presented for three
different values of the discharge coefficient CDA{0.6,0.7,0.8}, due to this parameter’s uncertainty and its high dependency
on the specific orifice context.

Fig. 13 summarises the results of two different experimental techniques and one analytical study. Results of the
experiments with triangular piston excitation, originally presented in Figs. 9 and 10, are denoted in the legend of this figure
as the ‘‘damper curves’’. The results from the experiment with harmonic piston excitation, denoted as HE, are presented in
the figure in the form of the ‘‘hysteretic’’ loops. The four different test cases are presented with the sine frequency 1.75 Hz
and the amplitudes {0.23,0.38,0.45,0.64} mm. Additionally, an alternative representation of these loops is used in the form
of the characteristic ‘‘peak-to-peak’’ curves. These curves can be seen as the summary test information from the harmonic
tests and they consist of points representing the non-coincident extremes, or peaks in the velocities and forces for each
harmonic excitation test case. The figure also contains two families of lines based on formula (32) denoted as the ‘‘theoretic
model’’. The first family assumes a purely turbulent flow mode and it is denoted by ‘‘T’’. The second family assumes
combined laminar–turbulent pressure losses and it is denoted by ‘‘L–T’’. The three lines in each family correspond to the
three discharge coefficients.

A number of qualitative and quantitative observations can be made in relation to the testing techniques and damper
performance on the basis of Fig. 13. The results produced during the harmonic piston excitation tests, i.e. the
‘‘characteristic curve’’, represent the lower boundary among the three data sets presented. This is due to the dynamic
behaviour of the damper during the tests with variable piston velocities. This dynamic behaviour can be associated with
the fluid–gas compressibility and it results in counter-clockwise loops in the measured data [9]. The sense of the rotation of
these loops can be visually identified by looking at the positions of the velocity spikes corresponding to the mechanical
backlash during zero damper force crossing. The smaller transients detectable in these loops, located after the initial, large
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backlash spikes, indicate the counter-clockwise orientation of the loops. Overall, the damper appears to behave as ‘‘softer’’
than the one identified using the triangular piston excitation. In addition, the characteristic curve presented in the figure is
specific to the applied harmonic excitation frequency. In this respect, the tests with constant piston velocity can be seen as
harmonic tests with an infinitely long period, or infinitesimal frequency.

The perceived upper boundary in the characteristics shown in Fig. 13 is associated with the parametric predictions
computed from model (32). Both families of these curves are characterised by a steeper rise than the curves identified from
the triangular piston excitation tests. This rise is indicative of the lower pressure losses in the actual physical
damper setup. The parametric predictions of the damper forces are calculated based on the best attainable information
about the relevant geometries and properties, so the results shown in the figure suggest the possibility of additional
unmodeled flow paths. One candidate for a previously unidentified flow path is the leakage flow between the piston and
the damper cylinder walls.

The foregoing analysis points to the usefulness of the testing procedure presented here. The two primary applications of
this approach include: (a) damper model refinement via the qualitative and quantitative analysis of the identified velocity–
force characteristics and (b) semi-empirical representation of the overall pressure-flow characteristics derived from the
identified velocity–force characteristics for further use in model (1). Some other alternative applications of this
methodology can be friction identification, overall damper asymmetry evaluation or quality and performance monitoring.

The analysis in this section is concluded with Fig. 14, which complements Fig. 13. The identified results are presented
here in the logarithmic coordinate system allowing further evaluation of the nature of the flows modes and their
transitions. The identified results from the third quadrant are in this case again projected to the first quadrant to allow
logarithmic transformation.

Fig. 14 complements earlier observations by indicating the insufficiency of the parametric predictions, using nominal
parameter values, in capturing the actual loss mechanism. This deficiency is apparent in the different slopes and the offset
of the measured characteristics, showing significant over-predictions in the actual steady forces. However, as expected the
predicted turbulent and identified damper curves tend to share similar slopes for higher piston velocities.
5. Conclusions

This paper provides a detailed exposition of a valuable test methodology in the analysis of hydraulic dampers. The
technique uses triangular displacement signals applied to the damper piston to produce piecewise constant velocity
excitation. This approach has been shown to allow robust automated identification of the steady state damper
characteristics. It has been demonstrated that the resulting velocity–force curves can provide a useful tool in a variety of
damper analysis tasks, including model validation, model refinement and quality and performance monitoring.
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The paper focuses in particular on two aspects of the method: firstly, it provides an in-depth examination of the
feasibility of the technique in the presence of transient pressure variations. Secondly, it presents a thorough demonstration
on an industrially relevant device, and compares the results with those of analytical and traditional experimental methods.

The transient pressure variations occur with step changes in the excitation velocities, and hamper the identification of
steady state characteristics. They are caused by effective compressibility of the working fluid, accounting for both the
actual fluid compressibility and the related effects such as structural damper flexibilities and air contamination. It has been
shown analytically that the resulting damper model responses are unsteady to some extent throughout the entire stroke of
the piston. The conditions under which the responses approximate steady states have been investigated for laminar,
turbulent and combined laminar–turbulent flows, and quantitative methods for determining suitable test regimes have
been presented. Parametric studies found that for reasonable test configurations the response showed fast progression
towards steady flow conditions, endorsing the application of the methodology to the identification of steady state
characteristics.

The methodology was then tested on a lag damper: a device used in production helicopters for stability purposes.
Specifically, the low-velocity operational regime of the damper was investigated to highlight the challenges posed by the
use of hydraulic components with high loss coefficients. The validity of the results produced by this methodology was
confirmed through their physical consistency with other predicted and measured results. In particular, the results from the
proposed technique have been shown to have a direct physical relationship with the results of the traditional harmonic
excitation tests. A comparison of the new results with the fully parametric model predictions, based on the nominal
parameters and measured internal damper topology, suggests the need for augmentation of the damper model flow paths,
incorporating for example cross-piston leakage through the seals. This observation typifies the insight offered by the rich
and accessible results set produced with the methodology of this paper, and the formal framework presented here is
intended to aid with the design of such tests.
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